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= Abstract =A new graphic software written in PASCAL and TURBO GRAPHIC language has
been developed for an IBM PC-XT machine. It determines the geometrical characteristics of
complex shaped bone, e.g., area, centroid, area moment of inertia and principal axis of
moment of inertia. This software can also determine three-dimensional pictures of bone from

two-dimensional cross-sections of tomograph.
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INTRODUCTION

It is very important to understand mechanical
characteristics of complex bone cross-sections in
designing artificial joint, analyzing stress of bone or
musculoskeletal mechanics (Black and Dumbleton
1981). Therefore, many studies have been per-
formed to investigate geometrical characteristics of
complex and irregular bone corss-sections (Nagur-
ka and Hayes 1980; Uhthoff and Jaworski 1978).
However, in the most previous studies, many num-
ber of meshes were required to increase the
accuracy of the methods. It is due to the approx-
imation which simplifies the complex cross-secti-
ons as collection of triangles or circles (Martin
1975; Pizial 1976; Slatis 1978). Recently develop-
ment of tomography scanning system enables us to
obtain two-dimensional cross-sections of complex
shaped bone from arbitrary angles.

In the present study, an interactive computer
graphics software has been developed. This soft-
ward determines three-dimensional pictures of the
bone projected from arbitrary angles and also de-
termines geometrical characteristics of bone, I.e.,
1. area, 2. centroid, 3. area moment of inertia, 4.
principal moments of inertia and orientation of the
axes.

MATERIALS AND METHODS

1. Analytical methods
An algorithm which derives geometrical charac-
teristics of cross-section from perimeter coordin-

ates of arbitrary cross-section is utilized to develop
a new software packages (Nagurka and Hayes
1980; Wojeciechowski 1976).

An arbitrary cross-section is devided into a
series of trapezoids. Segments between neighbor-
ing perimeter coordinates are assumed to be linear.
The derivation of cross-sectional characteristics is
as follows. Notations are given in Fig. 1.
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Fig. 1. Area section properties under line GE.

1) Area: A

The area of [ ABGE is A = (Xps1—X0)
Vo1 +YoV2.

2) Centroid: X, Y

The centroid of an area is the point of which the
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area might be considered to be concentrated and
still leave unchanged the first moment of the area
about any axis. Therefore, the centroid of an area
is defined by the equations:
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where M,, M, is the first moment of inertia,

3) the first moments of inertia of an element
] ABEG are:
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4) Area moments of inertia: |, I,

The axial moment of inertia of an element of
area about an axis in its plane is the product of the
area of the element and square of its distance from
the axis. For the element of ABEG, the area of
moments of inertia with respect to each axes are,
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5) Product moment of inertia: lyy

The product moment of inertia of an element

CTABEG with respect to the x-y axes in the plane
of the area is given by:

1
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6) Rotated set of axes

The moments of inertia of any area with respect
t0 a rotated set of axes (x’, y’) as shown in Fig. 2
may be expressed in terms of the moments and
product of inertia with respect to the (x, y) axes as
follows:
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Fig. 2. Moment of inertia with respect to a rotated set of axes (x"y").



moment of inertia about any axis is equal to the
moment of inertia about a parallel axis through the
centroid of the area plus the product of the area
and the square of the perpendicular distance be-
tween the two axes.

The I, and |, are given by:

|xx: (lxx)G + A(yl )2
ly=(1,,)G +A(x;)?

7) Principal moments of inertia: |,

At any point in the plane of an area, there exist
two perpendicular axes (principal axes) about
which the moments of inertia of the area are max-
imum and minimum for that point. These max and
min vaiues of moment of inertia are termed prin-
cipal moments of inertia. The magnitudes of these
moments are,
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and the orientation of these axes is
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The product of inertia vanishes if the axes are prin-
cipal axes.

2. Computer program

In this research, the graphic software package
was developed by means of the PASCAL and TUR-
BO GRAPHICS language, and executed on IBM
PC-XT computer.

The output variables are as follows:

AREA: area

Xbar, Ybar: the X and Y coordinates of the cen-
troid

Ixx, lyy: the moments of inertia about x and y
axes

Ixy: the product of inertia

Ixxbar, lyybar: the moments of inertia about the x
and y axes translated to the centroid

Ixybar: the product of inertia about the translated
axes

Phi: the angle between the translated axis and
principal axis

Ixxbar-P, lyybar-P: the moments of inertia about
the translated and rotated principal x and y axes

Theta: the angle between the translated axis and
arbitrarily desired axis

Ixxbar-R, lyybar-R: the moments of inertia about
the translated and arbitrarily rotated x and y axes

Ixybar-R: the product moment of inertia about
the translated and arbitrarily rotated axes.

Fig. 3 shows the flowchart of the developed com-
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Fig. 3. Flowchart of the program.

puter program.

To use this program, the reference coordinate
frame should be selected to satisfy the all peri-
meter coordinates of the interest cross-section
positive. The cross-section may be multiply-con-
nected, defined by an outer perimeter and inner
perimeters, denoting "holes” or cross-section
voids. Quter perimeter coordinates must be input
sequentially in a clockwise path around the bound-
ary. Coordinate points for inner perimeter must be
input in a counter-clockwise.

RESULTS

A number of simple geometric shapes of known
geometrical characteristics, as shown in Fig. 4,
have been used as test examples to validate the
program and to verify its high degree of accuracy.
The program attains accuracy to five significant fi-
gures between analytical and numerical results.
Therefore, the numerical method applied to the
more complex shaped bone to get all the area
properties. Fig. 5 shows the geometric characteris-
tics of the cross-sectional picture of the proximal
part of femoral shaft of the twenty-seven aged
man. By means of the digitizer, the perimeter--
coordinates of the cross-section of a complex
shaped bone are obtained from the CT scanning.
All the digital data of a series of the cross-sectional
area are filed up along the Z-axis. Corrdinate trans-
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Fig. 4. Test example for program verification.

F
k

Iawy

nnbar

Ivyhar

T
i
LS

Ivebar _F

Thats

Insbar_K
vybar _R
Isypar _K

OFTIOKRE

Ry 0. 4y 0 .EE ¥

Y

1.0E

- FRY bau
- CI0 kew
- (91 hay

1.10

-00]

Fig. 5. Cross-section of femur at arbitrary position.
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Fig. 6. Front view of femur in (0, O, O) rotation.

formations are carried out to the 3-dimensional
picture with the arbitrary view angle. In this proce-
dure, hidden line treatment is also executed. Fig. 6
and Fig. 7 show the three-dimensional pictures of
the femur for different points of view, that is, (0°,
0°, 0°) and (0°, 45° 0°) respectively.

DISCUSSION

A simple algorithm for computing the cross-
sectional properties of complex geometric shaped
bone has been programed for automatic data ac-
quisition and analysis. This program can be used
to analyze the area properties of multiple, complex
biological cross-sections and to display the
three-dimensional pictures of the bone from the
arbitrarily desired point of view.

Especially, biological changes in cross-sectional
geometries can be quantified to better understand
changes due to aging, metabolic bone disease, and
internal fixation devices.

As shown in Fig. 7, three-dimensional pictures
of femur can be directly used in the computer
aided design of femoral prothesis. Besides, these
pictures make possible to better understand spine
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Fig. 7. Three-dimensional view of femur in (0, O, O) rota-
tion.

fracture and acetabular fracture which are not
clearly observed when a simple radiography (a
two-dimensional tomography) is used.
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