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SUMMARY We consider equalizer initialization problems
when the transmitted symbol rate is higher than the available
channel bandwidth. In this case, the coefficients of an adaptive
equalizer in the receiver can be updated only once per a prede-
fined symbol period, requiring unacceptably long training time.
The training time can be reduced significantly if the equalizer be-
gins the training process from a properly initialized condition. In
this letter, a fast initialization method is analytically designed for
a minimum mean squared error (MMSE) type equalizer. Finally,
the initialization performance is verified by computer simulation.
key words: equalization, MMSE, faster than Nyquist signaling

1. Introduction

It is well known that the bandwidth W of the channel
needs to be larger than or equal to fb/2 to transmit the
data at a symbol rate of fb. However, when fb > 2W ,
called faster than Nyquist signaling [1], it is still possible
to transmit the user data by reducing the actual trans-
mission rate lower than 2W symbols/sec [1]–[3]. For
example, this can be done by transmitting sequences
of N symbols comprised of M user data and (N − M)
zeros, where M and N(≥ M) are integers such that
M/N ≤ 2W/fb [1].

The use of conventional equalizers cannot be ap-
plied to reception of the signal with fb > 2W because it
will result in enhancement of signal components in the
stop-band of the channel. To overcome this problem, a
new type of zero-forcing equalizer was proposed in [4],
where an LMS algorithm was applied to adaptation of
the equalizer coefficients. Since the use of the LMS
adaptation algorithm in [4] enables the update of the
equalizer coefficients only once per received symbols, it
requires a relatively long time to train the equalizer.

To reduce the equalizer training time, the use of
a recursive least square (RLS) method can be consid-
ered. However, the RLS method may not be practi-
cal since it can be unstable under some channel condi-
tions in addition to large implementation complexity.
As an alternative, it may be practical to use an initial-
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ization method to reduce the equalizer training time.
The equalizer can reach to the steady-state in a short
time, if it can start the training from a properly initial-
ized status. Although an LMS algorithm was applied
to adaptation of an MMSE-type equalizer in [4], no re-
sult has been reported for fast training of the equalizer
scheme.

We consider the use of a fast initialization method
to reduce training time of the MMSE type equalizer. In
this letter, a fast initialization method is analytically
designed using the MMSE solution. Following Intro-
duction, Sect. 2 describes the transceiver model. The
proposed initialization method based on the MMSE cri-
teria is described in Sect. 3. Some numerical results are
discussed in Sect. 4. Finally, conclusions are summa-
rized in Sect. 5.

2. System Model

For ease of description, we consider the case of up-
link communications in the V.90 class modem [5]. As-
sume that we want to employ the PCM mode to in-
crease the transmission throughput instead of using
the V.34 mode [6]. Due to the use of anti-aliasing
low pass filters and isolation transformers in the lo-
cal loop, the effective available bandwidth is less than
3500 Hz, which is much smaller than the required band-
width for transmitting the PCM formatted signal. A
new equalizer scheme was proposed for application to
this kind of faster than Nyquist signals [4]. Figure 1
depicts the structure of this equalizer, where h(t) rep-
resents the impulse response of the channel and cm(t),
m = 0, 1, · · · , (M − 1), denotes the impulse response of
the m-th sub-equalizer, ∆ is the sampling time offset
in the receiver, T = NTb and Tb is the PCM symbol
rate equal to 1/8000 sec. To accommodate the available

Fig. 1 Equalizer scheme for faster than Nyquist signaling.
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channel bandwidth, every N -PCM symbols comprises
of M user data and (N − M) consecutive zeros. As an
example, when M = 6 and N = 8, the transmitter will
sequentially send the data signal as

· · · a0,na1,na2,n · · · a5,n00a0,n+1a1,n+1 · · · a5,n+100 · · ·

where am,n denotes the user data at time t = nT +mTb.
As can be seen in Fig. 1, although the received

samples are sequentially input to all the sub-equalizers,
each sub-equalizer generates the output and updates its
coefficients only once per every N received PCM sym-
bols. Thus, it may require long training time to train
the equalizer. The training time can be reduced by
starting the training from a properly initialized status.

3. MMSE Equalization

An equivalent receiver model of the m-th sub-equalizer
in additive white Gaussian noise (AWGN) channel is
depicted in Fig. 2, where the channel h(t) includes the
transmit and receive filters as well as the local loop.
The output ym(t) of the m-th sub-equalizer can be ex-
pressed as

ym(t) =
∞∑

n=−∞

M−1∑
�=0

a�,nwm(t−nT +�Tb)+νm(t),

for m=0, 1, 2, · · · , M−1 (1)

where νm(t) ≡
∫

n(t − τ )cm(τ ) dτ . Here, n(t) is zero
mean AWGN with a two-sided power spectral density
of N0/2.

The mean-squared error (MSE) of the m-th sub-
equalizer output at time t = kT is defined as

εm = E{[ym(kT ) − am,k]2} (2)

where E{·} denotes the expectation process. Since
{am,n} can be assumed statistically independent and
identically distributed with the same power, (2) can be
rewritten as [7]

εm

Pa
=

∫∫ 


∞∑
n=−∞

M−1∑
�=0

h(nT−�Tb−t)h(nT−�Tb−τ )

+σ2δ(t−τ )




· cm(t)cm(τ )dtdτ

− 2
∫

h(mTb−t)cm(t)dt + 1, (3)

where Pa is the power of am,n and σ2 ≡ N0/Pa. It

Fig. 2 An equivalent system model for the m-th sub-equalizer
with T = NTb.

can be easily shown that the coefficient of the m-th
sub-equalizer minimizing the MSE εm is given by

cm(t) =
1
σ2




h(mTb − t)

−
∞∑

n=−∞

M−1∑
�=0

wm(nT−�Tb)h(nT−�Tb−t)




=
∞∑

i=−∞
αm(i)s(i)h(iTb − t), (4)

where

αm(i)=




[1−wm(iTb)] /σ2,
for i=m, m=0, 1, · · · , M−1

0, for ((i))N =1, 2, · · · , N−M
−wm(iTb)/σ2, otherwise

(5)

and

s(i) =
{

0, for ((i))N =1, 2, · · · , N−M
1, otherwise (6)

Here ((·))N denotes the modulo-N operation. Thus,
cm(t) is determined by a weighted sum of the matched
filter output with (N − M) zeros in every N symbols.
Since αm(i) involves fm(iTb) which is a function of
cm(t) itself, it cannot be expressed in an explicit form.
We consider the design of cm(t) (or equivalently the co-
efficients cm(i)) as a function of the channel correlation
and noise characteristics.

The MMSE coefficients of the m-th sub-equalizer
can be obtained by transforming the above equations
into the frequency domain. Setting the first variation
of (3) with respect to cm(t) to zero and using (4), it
can be shown that

∞∑
i=−∞




∞∑
k=−∞

M−1∑
�=0

rh(Nk−i−�)h(NkTb−�Tb−t)

+σ2h(iTb−t)




· αm(i)s(i) = h(mTb−t), (7)

where rh(·) is the channel correlation function defined
by

rh(Nk − i) ≡
∫

h(NkTb − τ )h(iTb − τ )dτ (8)

Taking the Fourier transform of (7), we have

∞∑
k=−∞

∞∑
i=−∞

M−1∑
�=0

rh(Nk−i−�)αm(i)s(i)

· e−j2πf(NkTb−�Tb)

+ σ2
∞∑

i=−∞
αm(i)s(i)e−j2πfiTb =e−j2πfmTb . (9)

Here we assume that H(f) �= 0 for all f . Note that, for
any integer j
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∞∑
k=−∞

rh(Nk−i)e−j2πf(NkTb−iTb)

=
∞∑

k=−∞
rh(Nk−(Nj+i))e−j2πf [NkTb−(Nj+i)Tb]

(10)

because (Nj)-sample shifted sequences of rh(Nk) have
the same transformed output. Since s(i) has (N − M)
zeros in every N positions, (9) can be rewritten as

∞∑
k=−∞

M−1∑
n=0




rh(Nk−n)e−j2πf(NkTb−nTb)

×
∞∑

i=−∞
αm(i)pn(i)e−j2πfiTb




+ σ2
∞∑

i=−∞
αm(i)p0(i)e−j2πfiTb = e−j2πfmTb

(11)

where pn(i)≡s(i)s(i − n), for n=0, 1, · · · , N − 1. Note
that p0(i)=s(i)s(i − 0)=s(i). Defining Am(f), Pn(f)
and Rn(f) as

Am(f) =
∞∑

i=−∞
αm(i)e−j2πfiTb

for m = 0, 1, · · · , M − 1,

Rn(f) =
∞∑

k=−∞
rh(Nk − n)e−j2πf(Nk−n)Tb

for n = 0, 1, · · · , N − 1,

Pn(f) =
1
N

∞∑
i=−∞

pn(i)e−j2πfiTb

for n = 0, 1, · · · , M − 1,

(11) can be rewritten as

N−1∑
n=0

Rn(f) [Pn(f) ⊗ Am(f)] + σ2P0(f) ⊗ Am(f)

= e−j2πfmTb (12)

where ⊗ denotes the convolution process and the term
1
N in Pn(f) is used for normalization of the power. Note
that Am(f) cannot be expressed in a closed form due
to the convolution process. However, we only need dis-
crete samples of Am(f) to calculate coefficients αm(i)
for ditital implementation.

Letting L be the number of discrete sample points,
(12) can be expressed as

N−1∑
n=0

Rn(k) [Pn(k) ⊗ Am(k)] + σ2P0(k) ⊗ Am(k)

= e−j2πfkm/L, k = 0, 1, · · · , L − 1 (13)

where Rn(k), Am(k), Pn(k) and e−j2πfkm/L are ob-
tained by sampling Rn(f), Am(f), Pn(f) and

e−j2πfmTb at frequency f = k/(LTb), respectively.
Thus, (13) can be represented in a matrix form of size
(L × L) as


K(0, 0) K(0,−1) · · · K(0,−L+1)
K(1, 1) K(1, 0) · · · K(1,−L+2)

...
...

. . .
...

K(L−1, L−1) K(L−1, L−2) · · · K(L−1, 0)




×




Am(0)
Am(1)

...
Am(L−1)


 =




1
e−j2πm/L

...
e−j2π(L−1)m/L


 (14)

where K(i, j) =
N−1∑
n=0

Rn(i)Pn(j) + σ2P0(j). For exam-

ple, the span of the impulse response of the local loops
in the telephone network is less than 128 Tb in most of
practical cases. In this case, the use of L = 256 sample
points is large enough to represent the autocorrelation
of the channel impulse response. The use of (14) with
L = 256 can uniquely determine the MMSE solution.

The computational burden to solve L equations
can be significantly reduced by noting that Am(k) has
a conjugate symmetric property and that Pn(k) is non-
zero only at N positions among L discrete frequency
bins. If L = µN , where µ is an even integer, it is
possible to break an (L × L) matrix of (14) into µ/2
matrices of size (N × N), where the factor 2 comes
from conjugate symmetry of Am(k). Thus, the reduced
matrix for the m-th sub-equalizer can be represented
as

MkAm,k = Em,k , k = 0, 1, 2, · · · , µ/2 − 1 (15)

where Mk is an (N ×N) matrix whose (i, j)-th element
is

Mk(i,j)=




N−1∑
n=0

Rn((i−1)µ+k)Pn((i−j)µ)

+σ2P0((i−j)µ)


 ,

1 ≤ i, j ≤ N, (16)

Am,k is an N -dimensional vector of unknowns whose
i-th element is

Am,k(i) = Am((i − 1)µ + k), i = 1, 2, · · · , N (17)

and Em,k is an N -dimensional unit rotation vector
whose i-th element is

Em,k(i) = e−j2π[(i−1)µ+k]mTb , i = 1, 2, · · · , N.
(18)

Note that the rank of Mk is M since the transmitted
sequence has only M independent data symbols among
every N symbols. Thus, (15) can be solved by setting
(N − M) unknowns in Am,k to arbitrary constants.
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Fig. 3 Magnitude response of the channel (loop7) and the sub
equalizer C0(k).

The MMSE coefficients of the m-th sub-equalizer can
be obtained in the frequency domain using (4)

Cm(k) = [P0(k) ⊗ Am(k)] H∗(k),
m = 0, 1, · · · , M − 1 (19)

where the superscript ∗ denotes the complex conjugate.
Finally, the coefficients cm(i) are obtained by taking the
inverse discrete Fourier transform of Cm(k).

4. Numerical Results

The initialization performance of the proposed method
is verified by computer simulation when the PCM for-
matted signal of fb = 8kHz is transmitted over band
limited AWGN channels with W ≤ 3.5 kHz. Figure 3
shows the magnitude response of the channel and the
sub-equalizer C0(k) just after initialization when the
PCM formatted signal is sent over the ANSI loop 7,
with N = 8, M = 6 and L = 256 at an SNR of 45 dB.
Although the transmitted signal has spectrum compo-
nent of up to 4 kHz, each sub-equalizer dose not need to
compensate all the channel distortions unlike a general
MMSE equalizer that enhances the signal components
attenuated by the channel. Since each of the M sub-
equalizers has to recover only non-zero symbols of every
N -th transmitted symbol of the corresponding phase,
it dose not need to recover the signal components in
the stop-band. This process can be easily seen in the
overall impulse response of the channel and sub equal-
izer as illustrated in Fig. 4, where every N -th symbol
of {a0,k} are passed through without any interference.
The overall impulse response has a magnitude of one
at index 0 and has magnitude zero otherwise, except
when zero symbols are transmitted.

The MMSE solution can be obtained by using the
estimated channel response. The channel response can
be estimated by using six periods of a periodic se-
quences of length 128 as in [8], corresponding to a
time interval of approximately 800 PCM symbols. Ta-
ble 1 summarizes the initialization performance by the
proposed method on the ANSI local loop 1 through 7
when the channel SNR is 40 dB, 45 dB and 50 dB. To
illustrate the initialization performance, Fig. 5 depicts

Fig. 4 Overall impulse response of the channel (loop7) and the
sub-equalizer c0(t).

Table 1 Equalizer output SNR (dB) after initialization.

Channel loop loop loop loop loop loop loop
SNR 1 2 3 4 5 6 7
40 dB 40.2 40.5 40.5 40.2 40.3 38.1 38.4
45 dB 44.6 45.5 45.5 44.6 45.2 43.0 43.1
50 dB 48.0 50.4 50.3 48.0 50.1 50.1 50.1

Fig. 5 Convergence characteristics of the equalizer.

the normalized equalization error when the proposed
method is employed in the loop 7 at a channel SNR
of 45 dB. For simple comparison, the equalization error
is also depicted when the conventional LMS adaptive
training method of [4] is employed. It can be seen that
the use of the proposed method significantly reduces
the training time at the expense of small additional
complexity for the initialization.

5. Conclusion

In this letter, we have proposed a fast initialization
method for an MMSE equalizer applicable to faster
than Nyquist signaling. The proposed initialization
method can be applied to real environment by estimat-
ing the channel response in real-time. Simulation re-
sults show that the MMSE equalizer can be fast trained
by the proposed method.
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