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Optimum Pilot Pattern for Channel Estimation in OFDM Systems
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Abstract—The performance of channel estimation in orthogonal
frequency division multiplexing (OFDM) systems significantly de-
pends on the pilot signal, which is usually scattered in time and
frequency domains. For a given pilot density, the authors opti-
mally design the pilot pattern so as to minimize the mean squared
error (MSE) of the channel estimate with the use of a general inter-
polator. The analytic results are verified by computer simulation.

Index Terms—Channel estimation, orthogonal frequency divi-
sion multiplexing (OFDM) system, pilot pattern.

I. INTRODUCTION

O RTHOGONAL frequency division multiplexing (OFDM)
systems often employ coherent detection that requires ac-

curate information on the channel impulse response (CIR). The
CIR can be estimated using predetermined pilot symbols in real
time. In the OFDM system, pilot symbols are scattered in the
time and frequency domain to track time-variant and frequency-
selective channel characteristics. The estimated CIR is usually
interpolated for coherent demodulation of the received signal.

The interpolation can be achieved optimally using a two-
dimensional (2-D) Wiener interpolator with infinite tap size.
The mean squared error (MSE) of the Wiener channel estimate
only depends upon the pilot density, not the pilot pattern [1].
However, it may not be practical to use such a Wiener scheme
mainly due to the implementation complexity. As a result, a
simple interpolator such as a linear Lagrange and Spline inter-
polation scheme is often employed in practice [2], [3]. When
these interpolators are employed, the performance of the chan-
nel estimate is affected by the pilot pattern (i.e., the shape and
spacing) as well as the pilot density [4]–[7]. For example, when
the channel varies fast with a small multipath delay spread, it
would be advantageous to insert more pilot symbols in the time
domain than in the frequency domain, and vice versa.

There has been a number of studies on the optimal pilot
pattern design for single- and multicarrier systems [4]–[13].
Optimal pilot patterns for OFDM systems were derived for
time-invariant or quasi-static channels [8], [9]. The MSE of the
CIR estimate is minimized, which leads to a number of equi-
spaced pilot subcarriers, equal to the number of channel taps
[8]. The power and the spacing of pilot subcarriers are opti-
mized with respect to the lower bound on the average channel
capacity [9]. For time-variant flat fading channels, an optimal
time-domain pilot pattern with respect to the lower bound on
the average channel capacity is derived [10]. Finally, an optimal
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pilot arrangement is constructed for packet data transmission in
time-variant Rayleigh flat fading channels so as to minimize the
MSE of the CIR estimate [11].

Since these schemes were designed assuming one-
dimensional (1-D) channel variation, they may not provide an
optimal performance when applied to 2-D signaling (i.e., in
the time and frequency domain), where the relative difference
of channel variation in the time and frequency domain should
be considered. There has been a few studies on the design of
2-D pilot patterns in time-variant frequency-selective channels
[4], [6], [7], [12]. For a given pilot density, the pilot spacing is
determined in the time domain to minimize the MSE, assuming
that there are as many equi-spaced pilot subcarriers as there
are channel taps [12]. However, this approach may result in
significant performance degradation when the CIR varies fast
since a fixed number of pilot symbols are allocated in the
frequency domain regardless of the channel condition. Some
heuristic methods for 2-D pilot pattern design were proposed in
[4], [6], and [7], where only the maximum Doppler frequency
and maximum delay spread are considered to be known.
However, these methods cannot provide optimal performance
since they do not consider the exact distribution of the Doppler
spread and power delay profile.

This paper considers the design of the optimal 2-D pilot
pattern so as to minimize the MSE of the estimated CIR as-
suming the use of a conventional interpolator. The authors first
analytically verify the optimum pilot shape that was suggested
in [5] by computer simulation. For a given pilot density, the
authors derive the optimal pilot spacing in terms of the moments
of the Doppler spectrum and power delay profile representing
the channel characteristics in the time and frequency domain,
respectively.

Following the introduction, the system and channel models
are described in Section II. In Section III, the optimum pilot
pattern is derived for a given pilot density. The analytical design
is verified by computer simulation. Finally, the concluding
remarks are summarized in Section IV.

II. SYSTEM MODEL

In an OFDM transmitter, at the nth symbol time, K data
symbols {X[n, k]}, k = 0, 1, 2, . . . , K − 1, are converted into
time-domain signals using the inverse fast Fourier transform
(FFT). A cyclic prefix (CP) is inserted to preserve the orthogo-
nality between the subcarriers and to eliminate the interference
between the adjacent OFDM symbols.

The authors consider a wireless channel whose impulse re-
sponse is represented as

h(t, τ) =
L−1∑
l=0

hl(t)δ(τ − τl) (1)
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Fig. 1. Pilot arrangements on a 2-D grid.

where L is the number of paths, δ(·) is the Kronecker delta
function, and τl and hl(t) are the delay and complex-valued
CIR at time t of the lth path, respectively. The authors assume
that hl(t) is zero-mean Gaussian, statistically independent of
each other paths and has the same normalized correlation
function rt(∆t) for all l. Then, the time-domain correlation
function of the lth path CIR can be represented as

rl(∆t) = E {hl(t + ∆t)h∗
l (t)} = σ2

l rt(∆t) (2)

where E{X} denotes the expectation of X , the superscript ∗

denotes complex conjugate, and σ2
l denotes the average power

of the lth path. The frequency response of the CIR at time t can
be represented as

H(t, f) =

∞∫
−∞

h(t, τ)e−j2πfτdτ. (3)

Assuming a normalized average path power (i.e.,∑L−1
l=0 σ2

l = 1), the correlation function of the frequency re-
sponse can be represented as

rH(∆t,∆f) =E {H(t + ∆t, f + ∆f)H∗(t, f)}
= rt(∆t)rf (∆f) (4)

where rf (∆f) =
∑

l=0 σ2
l e−j2π∆fτl . Assuming that the CIR is

unchanged within the OFDM symbol period Ts, the authors can
neglect the effect of intercarrier interference [6], [8]. Denoting
the subcarrier spacing by ∆fc, the correlation function can be
represented as

rH [n, k] = rt[n]rf [k] (5)

where rt[n] = rt(nTs) and rf [k] = rf (k∆fc). The corre-
sponding spectrum of the channel correlation can be repre-
sented as

SH(w1, w2) =
∞∑

n=−∞

∞∑
k=−∞

rH [n, k]e−j(w1n−w2k)

=
∞∑

n=−∞
rt[n]e−jw1n

∞∑
k=−∞

rf [k]ejw2k

=SH1(w1)SH2(w2) (6)

Fig. 2. Pilot pattern in Cartesian coordinates.

where SH1(w1) and SH2(w2) are the FT of rt[n] and rf [k],
respectively.

At the receiver, the CP is removed before the FFT process.
Assuming ideal synchronization at the receiver, the received
symbol of the kth subcarrier at the nth symbol time can be
represented by

Y [n, k] = X[n, k]H[n, k] + Z[n, k] (7)

where H[n, k] is the frequency response of the channel at
the kth subcarrier and the nth symbol time, and Z[n, k] is
the background noise, which can be approximated as zero-
mean additive white Gaussian noise (AWGN) with variance σ2

z .
The authors also assume that the signal is sampled at a rate
satisfying the Nyquist sampling condition.

III. OPTIMUM PILOT PATTERN

The authors consider the use of pilot patterns with a regular
structure since the use of equi-spaced and equi-powered pat-
terns has been shown to provide better performance in addition
to the simplicity of implementation [8], [11], [12]. Fig. 1 depicts
various kinds of pilot patterns on a 2-D time–frequency grid in
OFDM systems.

A regular pilot arrangement can be represented using two
basis vectors v1 = [x1, y1]T and v2 = [x2, y2]T as shown in
Fig. 2, where the vectors are represented in Cartesian coordi-
nates: the time axis by the abscissa and the frequency axis by
the ordinate. Then, all the pilot patterns with a regular structure
included in Fig. 1 can be represented by using these two basis
vectors. Since the pilot density D is inversely proportional to
the pilot spacing, it can be defined as the inverse of the area of
a parallelogram formed by v1 and v2, i.e.,

D ≡ |det(V )|−1 = |x1y2 − x2y1|−1 (8)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005 2085

where V = [v1, v2] is a (2 × 2) matrix representing the pilot
pattern. Although x1, x2, y1, and y2 can be of any value, the
authors assume y1 = 0 without loss of generality since any
parallelogram can be rotated such that y1 = 0.

The CIR is first estimated from the pilot signal as

H̃[np, kp] =
Y [np, kp]
X[np, kp]

=H[np, kp] + Z ′[np, kp] (9)

where np and kp denote the pth symbol and subcarrier index of
the pilot symbol, respectively, and Z ′[np, kp] denotes the noise
term. CIR can be estimated by interpolating the received pilot
symbols as

Ĥ[n, k] =
∞∑

p=−∞

∞∑
q=−∞

H̃s[n + p, k + q]w[ p, q] (10)

where H̃s[n, k] is equal to H̃[n, k] for the pilot symbol
and zero otherwise, and w[p, q] denotes the coefficient of the
interpolator. The authors consider the use of two 1-D inter-
polators for 2-D interpolation, i.e., one in the time domain
and the other one in the frequency domain, to reduce the
computational complexity without noticeable performance
degradation [13].

When there is no interference, the CIR can be perfectly
estimated using an ideal interpolator

H[n, k] =
∞∑

p=−∞

∞∑
q=−∞

Hs[n + p, k + q]wid[ p, q] (11)

where Hs[n, k] is equal to H[n, k] for the pilot symbol and
zero otherwise, and wid[p, q] is the coefficient of an ideal 2-D
brick-wall-type noncausal filter represented as [14]

wid[ p, q] =
sin

(
πp
x1

)
sin

(
πq
y2

)
(

πp
x1

)(
πq
y2

) . (12)

Using (10) and (11), Ĥ[n, k] can be rewritten as

Ĥ[n, k]

=
∞∑

p=−∞

∞∑
q=−∞

(Hs[n + p, k + q] + Zs[n + p, k + q]) w[ p, q]

+

(
H[n, k] −

∞∑
p=−∞

∞∑
q=−∞

Hs[n + p, k + q]wid[ p, q]

)

= H[n, k] +
∞∑

p=−∞

∞∑
q=−∞

Hs[n + p, k + q]

× (w[ p, q] − wid[ p, q])

+
∞∑

p=−∞

∞∑
q=−∞

Zs[n + p, k + q]w[ p, q] (13)

where Zs[n, k] is equal to Z ′[n, k] at the pilot symbol time and
zero otherwise. Note that the first term of (13) is the desired
CIR, the second term is the self-distortion noise due to the use
of a nonideal interpolator, and the third term is the interference
due to the background noise plus interference.

The MSE of the CIR estimate can be represented as

σ2
e = E

{∣∣∣Ĥ[n, k] − H[n, k]
∣∣∣2}

=
1

(2π)2

π∫
−π

π∫
−π

SHs
(w1, w2) |We(w1, w2)|2 dw1dw2

+
σ2

ZD

(2π)2

π∫
−π

π∫
−π

|W (w1, w2)|2 dw1dw2

= σ2
S + σ2

I (14)

where σ2
S and σ2

I are, respectively, the MSE due to the self-
distortion and interference, SHs

(w1, w2) is a sampled version
of SH(w1, w2) [15]

SHs
(w1, w2) = (x1y2)−2

×
x1−1∑
n=0

y2−1∑
k=0

SH

(
w1 −

2π

x1
n,w2 −

2π

y2
k − 2πx2

x1y2
n

)
(15)

and W (w1, w2) is the 2-D FT of w[ p, q].
Defining the interpolation error coefficient due to the use of

a nonideal interpolator as

we[ p, q] = w[ p, q] − wid[ p, q] (16)

the authors can represent the 2-D FT of we[ p, q] as

We(w1, w2) =




W (w1, w2) − x1y2, |w1| ≤ π
x1

and |w2| ≤ π
y2

W (w1, w2), otherwise
.

(17)

For example, W (w1, w2) of a linear interpolator can be
represented as [14]

W (w1, w2) =
1

x1y2

[
sin

(
w1x1

2

)
sin

(
w1
2

) sin
(

w2x2
2

)
sin

(
w2
2

)
]2

. (18)

Since σ2
I is independent of the pilot pattern, the opti-

mum pilot pattern should be designed to minimize σ2
S for

a given interpolator. For example, Fig. 3 depicts SHS(w1,w2)

and |We(w1, w2)|2 when a linear interpolator is employed,
where fd and τmax denote the maximum Doppler frequency
and maximum delay of the channel, respectively. Given x1

and y2, σ2
S depends on x2 due to the MSE difference in
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Fig. 3. 2-D spectrum of the channel correlation and interpolation error for a linear interpolator when x1 = y2 = 4 and x2 = 1.

the out-of-passband spectrum (i.e., w1 �∈ [−π/x1 π/x1] and
w2 �∈ [−π/y2 π/y2]). Using the symmetrical property, it can
easily be shown that σ2

S is minimized when x2 = x1/2. This
means that the optimum pilot pattern has a diamond shape that
was suggested by the simulation results in [5]. However, the
variation of σ2

S due to x2 is marginal since the MSE in the
out-of-passband spectrum is usually much smaller than that in
the passband as seen in Fig. 3(b). Note that other conventional

interpolation filters have a stopband attenuation larger than
the linear interpolator. Thus, the MSE in the out-of-passband
spectrum can be neglected for the calculation of the MSE when
other conventional interpolation filters are employed.

Neglecting the MSE in the out-of-passband spectrum and
using a Taylor series approximation of |We(w1, w2)|2, the
authors can approximate σ2

S as that shown in (19) at the bottom
of the page, where w

(n)
1 and w

(n)
2 are, respectively, the nth

σ2
S ≈ 1

(2π)2

π
y2∫

− π
y2

π
x1∫

− π
x1

SHs
(w1, w2)

(
cIF,0w

2
1w

2
2 + cIF,1w

4
1 + cIF,2w

4
2

)
dw1dw2

=
1

(x1y2)2(2π)2

π∫
−π

π∫
−π

SH1(w1)SH2(w2)
(
cIF,0w

2
1w

2
2 + cIF,1w

4
1 + cIF,2w

4
2

)
dw1dw2

= (x1y2)−2
(
cIF,0w

(2)
1 w

(2)
2 + cIF,1w

(4)
1 + cIF,2w

(4)
2

)
(19)
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TABLE I
SIMULATION CONDITIONS

order moment of the Doppler spectrum and power delay profile
represented as

w
(n)
1 =

1
2π

π∫
−π

wn
1 SH1(w1)dw1

w
(n)
2 =

1
2π

π∫
−π

wn
2 SH2(w2)dw2 (20)

and cIF,0, cIF,1, and cIF,2 are the coefficients of the approxi-
mated polynomial of |We(w1, w2)|2. Note that w

(n)
1 and w

(n)
2

depend on the channel correlation, but cIF,0, cIF,1, and cIF,2,
depend on the interpolator.

Assume that x1 and y2 are continuous parameters for ease of
analytical design. The optimal spacing x̂1 and ŷ2 can then be
uniquely determined by solving

∂σ2
S

∂x1

∣∣∣∣
x1=x̂1

= 0 and
∂σ2

S

∂y2

∣∣∣∣
y2=ŷ2

= 0. (21)

The spacing of the optimum pilot symbol should be deter-
mined by the interpolator type and the moments of the Doppler
spectrum and power delay profile of the channel. As an
example, consider the spacing of the optimum pilot pattern
when a linear interpolator is employed for channel estima-
tion. Assuming x2

1, y
2
2 	 1, cIF,0, cIF,1, and cIF,2 can be

represented as a function of x1 and y2

cIF,0 =

(
x2

1 − 1
) (

y2
2 − 1

)
(72D2)

≈ x2
1y

2
2

(72D2)

cIF,1 =

(
x2

1 − 1
)2

(144D2)
≈ x4

1

(144D2)

cIF,2 =

(
y2
2 − 1

)2

(144D2)
≈ y4

2

(144D2)
. (22)

Thus, σ2
s can further be approximated as

σ2
S ≈ 2D−2w

(2)
1 w

(2)
2 + w

(4)
1 x4

1 + w
(4)
2 y4

2

144

≥
w

(2)
1 w

(2)
2 +

(
w

(4)
1 w

(4)
2

) 1
2

72D2
(23)

where the equality holds when

w
(4)
1 x4

1 = w
(4)
2 y4

2 . (24)

From (24) and D−1 = x1y2, the optimum spacing x̂1 and ŷ2 is
determined as

x̂1 =D− 1
2 α

1
8
H

ŷ2 =D− 1
2 α

− 1
8

H (25)

where αH = w
(4)
2 /w

(4)
1 .

For a given pilot density, the pilot symbol should be in-
serted considering the ratio of the fourth-order moments of the
Doppler spectrum and the power delay profile. When the mo-
bility decreases (i.e., w

(4)
1 decreases), it is required to increase

x̂1 and to decrease ŷ2. As w
(4)
1 goes to zero, x̂1 goes to infinity

while ŷ2 goes to zero, resulting in a block-type pilot pattern
as shown in Fig. 1(b). If w

(4)
1 decreases (i.e., the frequency

selectivity of the channel decreases), it is required to insert less
pilot symbols in the frequency direction (i.e., to increase ŷ2) and
vice versa. The proposed approach can also be applied to the
use of other interpolators for channel estimation. In practice, the
optimum pattern can be determined by estimating the fourth-
order moments of the channel spectrum that usually varies very
slowly [17]. Or, it can be predetermined assuming the worst
channel condition.

To verify the analytical results, the performance is evaluated
by computer simulation in terms of the bit error rate (BER)
when the proposed pilot pattern is used with a linear inter-
polator. Table I summarizes the simulation parameters of
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Fig. 4. BER performance for different pilot patterns with density D = 1/72.

the OFDM system and propagation channel [16]. For these
parameters, the optimum pilot spacing is analytically deter-
mined as (x̂1, ŷ2) = (12, 6). For performance comparison, the
authors also evaluate the performance of (x1, y2) = (8, 9) and
(18, 4), which have the same pilot density as (12, 6). Note that
(x1, y2) = (8, 9) corresponds to the pilot spacing in [12] and
(18, 4) to that in [4], [6], [7]. It can be seen from Fig. 4 that
the use of the proposed pilot pattern provides noticeable BER
performance improvement over the use of other ones when a
linear interpolator is employed. It can also be seen that the
use of a diamond pattern is slightly better than the use of a
rectangular pattern.

IV. CONCLUSION

This paper analytically determined the optimum pilot pattern
for channel estimation in an OFDM system with the use of
conventional interpolators. The authors have verified that the
optimum pilot pattern has a diamond shape. The spacing of
the pilot symbols is optimally determined in terms of the pilot
density, Doppler spectrum, and power delay profile. Finally, the
analytical results have been verified by computer simulation.

REFERENCES

[1] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless
systems,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1207–1215,
Jul. 2000.

[2] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation tech-
niques based on pilot arrangement in OFDM systems,” IEEE Trans.
Broadcast., vol. 48, no. 3, pp. 223–229, Sep. 2002.

[3] K. F. Lee and D. B. Williams, “Pilot-symbol-assisted channel estima-
tion for space–time coded OFDM systems,” EURASIP J. Appl. Signal
Process., vol. 2002, no. 5, pp. 507–516, May 2002.

[4] F. Said and H. Aghvami, “Linear two dimensional pilot assisted chan-
nel estimation for OFDM systems,” in IEE Conf. Telecommunications,
Edinburgh, Scotland, Apr. 1998, pp. 32–36.

[5] M. J. F.-G. Garcia, S. Zazo, and J. M. Paez-Borrallo, “Pilot patterns
for channel estimation in OFDM,” Electron. Lett., vol. 36, no. 12,
pp. 1049–1050, Jun. 2000.

[6] J. K. Moon and S. I. Choi, “Performance of channel estimation
methods for OFDM systems in a multipath fading channels,” IEEE
Trans. Consum. Electron., vol. 46, no. 1, pp. 161–170, Feb. 2000.

[7] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-
aided channel estimation by Wiener filtering,” in Proc. Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP), Munich, Germany,
Apr. 1997, pp. 1845–1848.

[8] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a
mobile OFDM system,” IEEE Trans. Consum. Electron., vol. 44, no. 3,
pp. 1122–1128, Aug. 1998.

[9] S. Ohno and G. Giannakis, “Capacity maximizing pilots and precoders
for wireless OFDM over rapidly fading channels,” in Proc. Int. Symp.
Signals, Systems and Electronics, Tokyo, Japan, Jul. 2001, pp. 246–249.

[10] ——, “Average-rate optimal PSAM transmissions over time-selective
fading channels,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 712–
720, Oct. 2002.

[11] M. Dong, L. Tong, and B. M. Sadler, “Training placement for tracking
fading channels,” in Proc. Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), Orlando, FL, May 2002, pp. 2189–2192.

[12] ——, “Optimal pilot placement for channel tracking in OFDM,” in Proc.
Military Communications Conf. (MILCOM), Anaheim, CA, Oct. 2002,
pp. 602–606.

[13] R. Nilsson, O. Edfors, M. Sandell, and P. O. Borjesson, “An analysis of
two-dimensional pilot-symbol assisted modulation for OFDM,” in Proc.
Int. Conf. Personal Wireless Communications (ICPWC), Bombay, India,
Dec. 1997, pp. 71–74.

[14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

[15] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[16] N. Maeda, H. Atarashi, S. Abeta, and M. Sawahashi, “Throughput
comparison between VSF-OFCDM and OFDM considering effect of
sectorization in forward link broadband packet wireless access,” in
Vehicular Technology Conf. (VTC) Fall, Vancouver, BC, Canada,
Sep. 2002, pp. 47–51.

[17] J.-W. Choi, “Design of adaptive OFDM wireless transceivers,” Ph.D.
dissertation, Sch. Elect. Eng., Seoul Nat. Univ., Seoul, Korea, Aug. 2004.


