
A Two-week Program for an Platform-based SoC Design

Sanggyu Park and Soo-Ik Chae

Center for SoC Design Technology,

Seoul National University, Seoul, Korea, TN +82-2-880-5457

{sanggyu,chae}@sdgroup.snu.ac.kr

Abstract

This paper describes a two-week program for a

platform-based SoC design using SoCBase 1.0, a platform

developed in the Center for SoC Design Technology. This

program consists of 4 lectures and 9 labs. It covers several

design steps from the transaction level to the FPGA

prototype level for a Motion JPEG decoder. In this

program we employed an SoC design flow based on

SoCBase 1.0. It is targeted for graduate students and ASIC

designers out in the industry. More than 100 engineers and

graduate students have completed this program in 2004.

1. Introduction

Recently platform based design (PBD) methodologies

have been widely accepted in the SoC design community.

A SoC platform contains a library of reusable components

and pre-integrated subsystems as well as an effective design

flow. By reusing the architecture of the SoC platform, a

complex system can be designed with less effort in a

shorter period of time. The platform users design

derivatives from the already developed SoC platforms by

others. Thus, a platform must be provided with enough

information to make it easily understandable and usable by

the users. SoCBase is an SoC platform developed in the

Center for SoC Design Technology, Seoul National

University, Seoul, Korea [1]. The SoCBase 1.0 includes a

component library, a system template library, and a

verification library as well as all its documentation.

 A platform must also be accompanied with a good

training program so that the platform users can exploit the

platform effectively to design derivatives. For this purpose

we developed an example design of the Motion JPEG

decoder to guide the platform users to the design

methodology of SoCBase. In this paper, we briefly

introduce SoCBase and required EDA tools in Section 2,

and describe its tutorial course in Section 3. which is

followed by the conclusion.

2. SoC Platform : SoCBase

SoCBase includes a component library, a system

template library, a verification library and a design

methodology that utilizes those libraries effectively. The

component library contains more than 30 hardware

component IPs including AMBA bus components, memory

controllers and I/O peripherals. We provide both

transaction level model in SystemC and synthesizable RT-

level model in VHDL for each component. Several I/O

models including a serial terminal model and a TFT-LCD

panel model are also provided for virtual prototyping of the

transaction level and the RT level.

The system template library contains several system

templates in which a processor core and peripheral

components are pre-integrated with AMBA 2.0 buses. The

current SoCBase version supports only ARM7TDMI and

ARM926ejs cores. Fig. 1 shows an example of the system

templates. Each system template includes three prototype

models: a transaction level virtual prototype model, a RT

level virtual prototype model, and a FPGA prototype model.

Table I shows EDA tools for each prototype model.

The verification library is a collection of methods for

rapid verification of a system and its components. We

developed a SystemC-based verification environment for

users not accessible to the commercial verification tools.

They can use it without learning a new verification

language such as OpenVera or e-Language required for the

commercial verification tools [2][3].

Instruction
AHB I/F

Data
AHB I/F

AHB

AHB

Static
Memory

Controller

SDRAM
Memory

Controller

Interrupt
Controller GPIO UART0

I2CTimer Watchdog
Timer

ARM926ejs

DMA
Controller

TFT-LCD
Controller

AHB2APB
Bridge

UART1

IDCT

APB

Fig. 1. Example architecture of system template

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)

0-7695-2374-9/05 $20.00 © 2005 IEEE

Table I. EDA tools used for each prototype models

Prototype models EDA Tools

Transaction level

virtual prototype

SystemC

CoWare ConvergenSCTM

ARM ADSTM 1.2

RT-level virtual

prototype

Mentor Graphics Seamless CVETM

Mentor Graphics ModelSimTM

FPGA prototype

ARM ARM IntegratorTM

ARM Multi-ICETM

HUINS SoCMasterTM

Xilinx ISETM

Synplicity SynplifyProTM

3. Motion JPEG Design Program

Users need to know how to use the libraries of SoCBase

as well as the EDA tools listed in Table I. The EDA

vendors often provide 1-week courses for their specific

tools. Therefore it might take several months just to learn

all the EDA tools for designing a derivative SoC. Moreover,

it is very important to practice not just the point tools but

the entire design flow.

We provide a 2-week program, which is one of the

deliverables of SoCBase, for a Motion JPEG decoder. We

selected the Motion JPEG decoder because its algorithm is

relatively simple for students to understand. The course

consists of four lectures and nine lab sessions. In the lecture

sessions, we introduce basic concepts of the SoC design

and the platform-based design methodology. In the lab

sessions, students can design a Motion JPEG decoder and

verify it step by step from the transaction level to the FPGA

prototype level. Each lecture is a three-hour session and

each lab is four hours long. All the sessions in this program

are outlined in Table II.

This program is targeted for graduate students as well as

ASIC engineers out in the industry. Although the

participants are assumed to be familiar with the basics of

C/C++, we cover the basics of SystemC and VHDL in the

program. The transaction level modeling of a Inverse

Discrete Cosine Transform (IDCT) accelerator in SystemC

is scheduled for the 1st lab session and the RT level

modeling in VHDL is scheduled for the 4th. These models

are used in the later parts of the program. In the 2nd and

3rd lab sessions, the students exercise design space

exploration for the M-JPEG SoC at the transaction level

using ConvergenSCTM of CoWare [4]. The students execute

and profile the fully S/W implementation of M-JPEG and

find out that the IDCT operation is performance critical.

And then, they replace the SW implementation of IDCT

with the transaction level HW implementation which was

described in section 1. In the 5th and 6th sessions, they

practice system-level integration and simulation at the RT

level with ModelSimTM and Seamless CVETM of Mentor

Graphics. All the H/W and S/W components are given to

the students from the component library except the IDCT

accelerator which is designed in the 4th lab. Finally, the

students exercise FPGA prototyping with ARM

IntegratorTM in the last three sessions.

Table II. Outline of the Motion JPEG design program

Category No Session Title

L1 Platform-based SoC design methodology

L2 Transaction level design

L3 RT-level design

Lecture

Session

L4 SoC implementation and verification

P1 System modeling in System-C

P2 M-JPEG S/W Codec Implementation

P3 M-JPEG H/W-S/W Co-design

P4 System modeling in VHDL

P5 HW-SW cosimulation with seamless CVETM

P6 RT-level integration of M-JPEG SoC

P7 Design exercise with ARM IntegratorTM

P8 M-JPEG SoC prototyping

Practice

Sessions

P9 M-JPEG verification with ARM IntegratorTM

4. Conclusion

We have offered this 2-week program four times in

2004, and more than 100 engineers and graduate students

have completed this program. We found our program quite

effective to educate students to find out what is important in

designing a derivative with PBD, but on the other hand, it

was a bit difficult for a novice to learn about all the

materials in two weeks. Right after each program, we made

a survey on students about the quality of the program.

Many of them said that although they could follow all

design steps in our program, they didn’t understand them

fully by the time. After several months, we could see some

of them coming back and commenting that the design flow

of our program was helpful on their personal design

projects. Our two-week program does not cover all subjects

for the SoC design although it can be a good starting point

for beginners. We are presently improving the structure and

contents of this program in two aspects; One by covering

the back-end design issues such as logic synthesis, design

for test, and place and route, and the other one by covering

the component and system verification using the

verification library of SoCBase, which can be a separate 1-

week program.

REFERENCES

[1] Sanggyu Park, Soo-Ik Chae, “SoCBase : An Integrated

solution for platform based design,” International SoC

Design Conference, pp. 862-863, Oct. 2004

[2] Synopsys, “Constrained-Random Test generation and

Functional Coverage with Vera,” Feb. 2003

[3] Verisity, “Specman Elite,”

http://www.verisity.com/products/specman.html, 2004.

[4] CoWare, “ConvergenSC TM,” http://www.coware.com

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)

0-7695-2374-9/05 $20.00 © 2005 IEEE

