
An Optimized Rendering Algorithm for Hardware
Implementation of

OpenVG 2D Vector Graphics

Kilhyung Cha, Daewoong Kim, and Soo-Ik Chae
Electrical Engineering and Computer Science Department

Seoul National University
Seoul 151-742, Korea

{kilhyung.cha, dwkim316, chae} @sdgroup.snu.ac.kr

Abstract— An optimized rendering algorithm of the OpenVG 2D
vector graphics for hardware implementation is presented in this
paper. In the rendering algorithm we adopted a hybrid of raster
and vector rendering, which uses vector rendering only within
each scanline, to reduce both the number of external memory
accesses and the computational complexity. We implemented a
hardware accelerator with the proposed algorithm. Experimental
results show that our hardware accelerator can handle 11.8 fps of
Tiger image for a QVGA panel at the operating clock frequency
of 100 MHz.

Keywords-OpenVG, 2D Vector Graphics Hardware Accelerator

I. INTRODUCTION

Recently, the mobile applications using the 2D vector
graphics such as SVG viewers, portable mapping applications,
E-book readers, games, scalable user interfaces has been
widely accepted in embedded devices because the 2D vector
graphics has relatively smaller input data file size, provides
lossless compression without artifacts and easy scalability for
any target display size [1]. These features are provided at the
cost of its increased computational complexity. For mobile
devices, we need to reduce its power consumption by
implementing it in hardware. The OpenVGTM is a promising
2D vector graphics standard constituted recently by the
Khronos group. It is a royalty-free, cross-platform API that
provides low-level interfaces for vector graphics libraries such
as Flash and SVG. Its primary applications are targeted for the
handheld devices that require high-quality rendering with a
limited power budget [2].

After an OpenVG-compliant reference software was firstly
released in 2005 [3], several works on the optimized software
algorithms have been reported [4][5]. However, their
approaches were mainly focusing on reducing computational
complexity as a sequential code without considering hardware
implementation. Thus, they are not suitable for implementing
an OpenVG hardware accelerator that satisfies the
requirements of mobile devices. The purpose of this paper is to
describe an optimized rendering algorithm for hardware
implementation and its architecture that reduces the algorithm
complexity and external memory accesses.

The rest of the paper is organized as follows. Section II
briefly explains the OpenVG overview and describes the
previous works. Section III proposes an optimized rendering
algorithm suitable for the hardware accelerator. Experimental
results obtained from RTL and FPGA simulation are
summarized in section IV. Finally, the conclusion of this work
is in section V.

II. RELATED WORK

A. OpenVG Overview
Paths, paints, and images are the three types of basic

components in the OpenVG 2D vector graphics. All the
geometric objects to be drawn are defined by one or more paths,
each of which consists of a sequence of segment commands
and their corresponding coordinates. Each segment command
in the standard format may specify a move, a straight line
segment, a quadratic or cubic Bézier segment, or an elliptical
arc. A paint command defines a color and a transparent effect,
which is called a filtered alpha value (FAV), for each pixel
being drawn, and images are rectangular collections of pixel
effects such as texturing. Among the three types of the
components, we need to better understand path drawing in
order to find an efficient way of accelerating the rendering part.
Users can fill or stroke a path, and each path segment described
with a math formula is transformed into a series of edges
through tessellation operations. Finally, the generated edges are
displayed through rasterization process on a raster screen. Note
that the number of edges in each path varies wildly, so the total
number of edges in one image depends on its features. For
example, Tiger, which is a representative test image of 2D
vector graphics, has more than 220,000 edges and the number
of edges in each path ranges from 2 to 40,000.

B. Previous researches
A hardware accelerator for the typical 2D vector graphics

can be generally divided into two parts: a geometry part, which
translates input commands and coordinates into geometrical
objects, and a rendering part, which translates objects into pixel
position and maps the proper colors [7]. It is especially more
important to optimize the rendering part [8] because its
computational complexity and memory bandwidth are substan-

This work was supported by “System IC2010” project of Korea Ministry
of Knowledge Economy, Inter-university Semiconductor Research Center
(ISRC) in Seoul National University, and the IC Design Education Center
(IDEC) in KAIST.

- 338 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

Figure 1. Two types of rendering mode: (a) a vector rendering mode, and (b) a
raster rendering mode using scanline-based approach. A shaded rectangle in
(a) represents the amount of memory requirement.

tially higher than those of the geometry part. The rendering part
is often composed of two steps: object rasterizing and pixel
processing.

We can classify 2D vector graphics rendering algorithms
into two types: vector rendering, which draws each object
every time in the frame buffer, and raster rendering, which
draws each object by calculating the colors of its pixels in an
image [9][10][11]. Architecture for the two rendering modes is
illustrated in Fig. 1.

Raster rendering has an advantage compared to vector
rendering because its algorithmic complexity is getting lower
as the number of paths and the area enclosed by the path are
increased. Thus, Most of the previous rendering algorithms for
the 2D vector graphics are based on raster rendering [3][5][6].
It first searches all the edges in a path to find active edges and
then sorts them in the scanning direction for each scanline.
Then it calculates the coverage of a pixel based on the scanning
direction in every scanline. However, this approach requires
more computation because it should generally calculates all the
parts which are not in fact displayed in a screen [13].
Furthermore, because sorting requires a lot of memory accesses,
it could be the bottle neck in hardware implementation.

Vector rendering does not need to find and sort all the
active edges but it computes the contribution of each object
directly to the corresponding pixels according to the order of
edges described in a path and accumulates them in a panel-
sized buffer, which can be implemented as either off-chip or
on-chip. A memory buffer allocated in an off-chip memory
generally increases power consumption due to the large
number of the external memory accesses while an on-chip
memory buffer requires a large silicon area. It is prominently
important especially if non-zero fill rule or super-sampling for
anti-aliasing is supported. Therefore, the vector rendering
architecture is not suitable for low-power applications

Although raster rendering does not require a larger memory
buffer, it requires more external memory accesses for finding
and sorting the active edges. Therefore, although its
computational complexity is relatively low [5], the raster
rendering approach is not suitable for hardware-based low-
power applications [12].

Figure 2. Flowchart for proposed 2D vector graphics rendering algorithm

We employed a hybrid of raster and vector rendering,
which uses vector rendering only within each scanline.
Consequently, it removes unnecessary memory accesses
associated with sorting process and also reduces the size of
required memory buffer. Therefore, it needs only a scanline-
sized buffer, which can be implemented as an on-chip buffer.
Moreover, it does not calculate the coverage of the sample
points that are not affected by the edge. For this purpose we
defined the cases of pixels intersecting with the edge into four
categories, and this optimization scheme reduces most of the
unnecessary edge calculations in scanline filling.

III. PROPOSED ALGORITHM

A. Proposed Rendering Algorithm
The proposed rendering algorithm starts with performing

vector rendering for each scanline. Thus, it does not perform a
scanline filling process by pixel-by-pixel but by edge-by-edge.
Since edge-by-edge rasterizing does not require any sorting
process, this approach can substantially reduce the bandwidth
of its external memory accesses.

The proposed rendering algorithm consists of three steps:
active edge table (AET) generation, edge function (EF)
calculation, and FAV calculation. The AET generation gathers
only the edges that cross a scanline, thereby substantially
reducing the number of edges to be examined. This step is not
covered in details in this paper since it is described in the
previous works [3][6]. The second step evaluates the intensity
of each sample point by performing EF calculation, which
determines whether the edge is on the left side or not, and
updates the partial winding values into the corresponding

Coloring
and

Images
for each

pixel

Geometry

(A) Vector Rendering Mode Architecture

Find Active
Edge for each

scanline
Sorting

Scanline Filling
for Each Pixel

(B) Rater Rendering Mode Architecture

Active Edge Generation for each scanline

Edges

Rasterizing Each Object to the Frame Buffer

Memeory

Panel Width

Panel Height
Objects

- 339 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

memory buffer for all the pixels affected by each selected edge.
After completing the EF calculation for all the edges in the
AET, we can finally calculating FAVs by summing up the
intensities of sample points for each pixel. Fig. 2 shows the
overall flowchart of the proposed rendering algorithm. Scanline
filling corresponds to the EF and FAV calculation in our
algorithm.

Now we compare the computational complexity of the
proposed algorithm to the raster rendering algorithm. The AET
generation is required in the proposed algorithm as like the
raster rendering algorithm. Since the proposed algorithm does
not need AET sorting process, however, the proposed
algorithm reduces the complexity of at least O(N log2N), where
N is the size of the AET. For the scanline filling stage, the
proposed algorithm is more complex because it visits the same
pixel repeatedly, whereas pixel-based raster rendering just
visits one pixel once. However, the proposed rendering
algorithm stores temporal winding counts, which are the result
of EF calculation, in the local buffer, and then calculate the
FAV just once for each pixel. Thus, the total number of EF and
FAV calculation is the same. Moreover, the proposed
algorithm eliminates the redundant EF calculations which are
required in raster rendering [13], and apply further optimization
that may not be applicable in raster rendering; more details for
this optimization are stated later in this section.

For hardware implementation, the number of external
memory accesses should be minimized to reduce power
consumption. Thus, we compare the number of external
memory accesses in evaluating the proposed algorithm. Table I
describes the number of memory accesses for both algorithms
per scanline. In the raster rendering algorithm [3][5][6], the
number of read accesses to the active edges for scanline filling
is increased in proportion to the number of sample points for
anti-aliasing filtering, and the repeated read accesses to the
active edge can be increased, which depends on the distribution
of the edges. On the other hand, the proposed rendering
algorithm requires the constant number of read accesses to the
active edge regardless of the sampling quality and the edge
distributional because it calculates the EF edge-by-edge.
However, because the proposed algorithm calculates the EF
edge-by-edge and store all the temporal winding counts for
each pixel in the local buffer, thereby visiting one pixel
repeatedly according to the range of each active edge and
sample points affected by them. An external memory access for
active edge generation step is same for both algorithm, and
sorting is not required for proposed algorithm.

B. Further Optimization
The partial winding value of a pixel contributed from an

active edge is obtained by evaluating the EF for all sample
points in a pixel. This optimization scheme reduces the number
of EF calculations by limiting them only for the active samples
whose y-coordinates are within the range of the y-coordinates
of the active edge.

We can classify the cases of pixels intersecting with an
edge into four categories: (a) fully active, (b) partially active,
(c) edge-embedded and (d) non-intersecting as shown in Fig. 3.

TABLE I. EXTERNAL MEMORY ACCESS ANALYSIS

 Raster Rendering [6] Proposed Rendering

Active Edge
Generation M * Read + N * Write M * Read + N * Write

Active Edge
Sorting

N * (Read+Write) +
N *log2N* (Read+Write) None

Scanline Filling N * Q * Read +
Xrepeated * Read N * Read

M: the number of edge for one path

N: the number of active edge

Q: the number of sample points for one pixel

Xrepeated: the repeated access number depend on active edge’s distribution

Figure 3. Active sample distribution in the examples for the four categories of
edge pixels

Since we employed an equal-weight 8-Queen box filter for
anti-aliasing filtering, only the active samples, which are
represented with a filled circle, are evaluated for each edge.
This optimization can not be applicable to the pixel-based
raster rendering algorithm because it requires searching all the
contribution edges per pixel at a time, thus we can not figure
out which sample points can be skipped. According to our
experimental results, it substantially improves performance
since most edges intersects with only a small part of each pixel.

IV. EXPERIMENTAL RESULTS

We implemented a hardware accelerator for the 2D vector
graphics with the proposed algorithm as shown in Fig. 4. For
anti-aliasing filtering, we used an equal-weight 8-Queen box.
We assumed a QVGA display panel and used a SDRAM
memory controller for the external memory. For the bus
architecture, we used an AMBATM AHB bus using a burst-4
transfer mode to minimize the memory access latency. For the
number representation in the rendering part of the 2D graphics
engine, we used a 24-bit fixed-point number system in which
the integer and fractional parts of a number are represented by

Figure 4. Architecture of Implemented 2D Vector Graphics Engine

- 340 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

10 and 13 bits, respectively and its sign by 1 bit. With the 24-
bit fixed-point number system we reduced the complexity of
the rendering part and improved its performance without losing
the accuracy. Note that the edge information generated in the
geometry part is represented as the IEEE754 single-precision
32-bit floating point standard, is immediately converted into
the 24-bit fixed point as shown in Fig. 4.

To evaluate the performance of the proposed accelerator,
we have used eight test images, whose features are summarized
in Table II. Tiger and Dude are representative test images
released from Khronos Group [2] and Hybrid Graphics Ltd. [3],
respectively, and the others are translated from SVG files by
the authors.

In Table III (a) we compare the number of external memory
accesses for the raster and the proposed rendering algorithm.
The experimental results show that the proposed algorithm
reduces the SDRAM accesses by 52% to 82%; it implies that
the proposed rendering algorithm is more efficient than the
raster rendering algorithm for low-power systems. Table III (b)
shows the proposed optimization scheme reduces the number
of EF calculations by 36% to 83%, each of which takes 4 or 5
cycles. We found that most edges are crossing with only a
small part of each pixel, which implies that the raster rendering
algorithm performs a lot of unnecessary calculations. Table III
(c) describes the estimated performance of the hardware
accelerator. Assuming that the operating clock frequency is
100MHz, it can render 11.8 Tiger images per second for a
QVGA display panel while a previous works [6] can handle 5
fps.

TABLE II. FEATURES OF TEST IMAGES

Test
Image

Number of
Path

Number of
total Edges

Max. Edge
per Path

Max.
Active Edge
per Scanline

Tiger 305 225,297 40,433 2,209
Dude 167 83,171 15,835 5,609
E-Book 19 44,955 3,105 817
Picture 712 50,820 464 136
Basket 719 77,904 232 136
Bottle 899 46,565 128 59
Snow 481 16,922 632 136
Pelican 95 4,027 722 136

TABLE III. MEMORY ACCESS COMPARISON AND PERFORMANCE

Test
Image

(a) SDRAM access
(x 106 in byte)

(b) the number of
EF Calculation (c) FPS

@ VGA,
100MHz Raster

Rendering
Proposed

Rendering
without

Opt. with Opt.

Tiger 413.61 197.95 2,179,640 496,320 11.8
Dude 115.98 39.31 487,960 82,528 40.5

E-Book 66.12 12.98 971,312 198,231 33.4
Picture 81.28 28.17 721,104 309,208 20.9
Basket 71.74 13.10 574,496 168,432 40.3
Bottle 51.71 10.45 537,312 204,597 36.0
Snow 26.58 8.60 267,688 124,189 45.2

Pelican 15.74 7.04 163,376 104,407 77.8

V. CONCLUSIONS

In this paper, we proposed a hybrid rendering algorithm for
the 2D vector graphics, which uses vector rendering only
within each scanline. Experimental results show that it
substantially reduces both the external memory accesses and
the computational complexity, which make it suitable for low-
power high-performance graphics engine. We implemented a
hardware accelerator with the proposed rendering algorithm,
which can render more than 11 fps for Tiger QVGA image at
the operating clock frequency of 100 MHz.

REFERENCES

[1] K. Pulli, “New APIs for mobile graphics,” Proceedings of SPIE – The
International Society for Optical Engineering, vol. 6074, 2006

[2] Khronos Group Inc., OpenVG 1.0.1 Specification. [Online] Available:
http://www.khronos.org/openvg/.

[3] Hybrid Graphics Forum, OpenVG Reference Implementation (2005),
http://forum.hybrid.fi

[4] G. He, B. Bai, Z. Pan, and X. Cheng, “Accelerated rendering of vector
graphics on mobile devices,” Lecture Notes in Computer Science, vol.
4551, pp. 298-305, 2007.

[5] S. Lee, S. Kim and B. Choi, “Vector graphics reference implementation
for embedded system,” Lecture Notes in Computer Science, vol. 4761,
pp. 243-252, 2007.

[6] R. Huang and S. Chae, “Implementation of an OpenVG rasterizer with
configurable anti-aliasing and multi-window scissoring,” Proceedings of
the Sixth IEEE International Conference on Computer and Information
Technology, pp. 179-184, 2006.

[7] J. Foley, A. vanDam, S. Feiner, and J. Hughes, Computer Graphics:
Principles and Practice, 2nd ed., Addison-Wesley, 1990.

[8] T. Mitra and T. Chiueh, “Three-dimensional computer graphics
architecture,” Current Science, vol. 78, pp. 838-846, April 2000.

[9] A. Schilling, “A new simple and efficient antialiasing with subpixel
masks,” ACM SIGGRAPH Computer Graphics 25(4), pp. 133-141,
1991

[10] P. Haeberli and K. Akeley, “The accumulation buffer: hardware support
for high-quality rendering,” ACM SIGGRAPH Computer Graphics
24(4), pp. 309-318, 1990

[11] K. Doan, “Antialiased rendering of self-intersecting polygons using
polygon decomposition,” Proceeding of 12th Pacific Conf., Computer
Graphics and Applications, pp. 383-391, 2004

[12] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. D. Man,
“Global communication and memory optimizing transformations for low
power signal processing systems,” in VLSI Signal Processing, vol. VII,
pp. 178-187, 1994.

[13] S. Harrington, Computer Graphics A Programming Approach, 2nd ed.,
McGraw Hill, New York, 2006

- 341 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

