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Abstract— An optimized rendering algorithm of the OpenVG 2D 
vector graphics for hardware implementation is presented in this 
paper. In the rendering algorithm we adopted a hybrid of raster 
and vector rendering, which uses vector rendering only within 
each scanline, to reduce both the number of external memory 
accesses and the computational complexity. We implemented a 
hardware accelerator with the proposed algorithm. Experimental 
results show that our hardware accelerator can handle 11.8 fps of 
Tiger image for a QVGA panel at the operating clock frequency 
of 100 MHz. 
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I. INTRODUCTION 

Recently, the mobile applications using the 2D vector 
graphics such as SVG viewers, portable mapping applications, 
E-book readers, games, scalable user interfaces has been 
widely accepted in embedded devices because the 2D vector 
graphics has relatively smaller input data file size, provides 
lossless compression without artifacts and easy scalability for 
any target display size [1]. These features are provided at the 
cost of its increased computational complexity. For mobile 
devices, we need to reduce its power consumption by 
implementing it in hardware.  The OpenVGTM is a promising 
2D vector graphics standard constituted recently by the 
Khronos group. It is a royalty-free, cross-platform API that 
provides low-level interfaces for vector graphics libraries such 
as Flash and SVG. Its primary applications are targeted for the 
handheld devices that require high-quality rendering with a 
limited power budget [2].  

After an OpenVG-compliant reference software was firstly 
released in 2005 [3], several works on the optimized software 
algorithms have been reported [4][5]. However, their 
approaches were mainly focusing on reducing computational 
complexity as a sequential code without considering hardware 
implementation. Thus, they are not suitable for implementing 
an OpenVG hardware accelerator that satisfies the 
requirements of mobile devices. The purpose of this paper is to 
describe an optimized rendering algorithm for hardware 
implementation and its architecture that reduces the algorithm 
complexity and external memory accesses.  

The rest of the paper is organized as follows. Section II 
briefly explains the OpenVG overview and describes the 
previous works. Section III proposes an optimized rendering 
algorithm suitable for the hardware accelerator. Experimental 
results obtained from RTL and FPGA simulation are 
summarized in section IV. Finally, the conclusion of this work 
is in section V. 

II. RELATED WORK

A. OpenVG Overview 
Paths, paints, and images are the three types of basic 

components in the OpenVG 2D vector graphics. All the 
geometric objects to be drawn are defined by one or more paths, 
each of which consists of a sequence of segment commands 
and their corresponding coordinates. Each segment command 
in the standard format may specify a move, a straight line 
segment, a quadratic or cubic Bézier segment, or an elliptical 
arc.  A paint command defines a color and a transparent effect, 
which is called a filtered alpha value (FAV), for each pixel 
being drawn, and images are rectangular collections of pixel 
effects such as texturing. Among the three types of the 
components, we need to better understand path drawing in 
order to find an efficient way of accelerating the rendering part. 
Users can fill or stroke a path, and each path segment described 
with a math formula is transformed into a series of edges 
through tessellation operations. Finally, the generated edges are 
displayed through rasterization process on a raster screen. Note 
that the number of edges in each path varies wildly, so the total 
number of edges in one image depends on its features. For 
example, Tiger, which is a representative test image of 2D 
vector graphics, has more than 220,000 edges and the number 
of edges in each path ranges from 2 to 40,000.  

B. Previous researches 
A hardware accelerator for the typical 2D vector graphics 

can be generally divided into two parts: a geometry part, which 
translates input commands and coordinates into geometrical 
objects, and a rendering part, which translates objects into pixel 
position and maps the proper colors [7]. It is especially more 
important to optimize the rendering part [8] because its 
computational complexity and memory bandwidth are substan- 
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Figure 1. Two types of rendering mode: (a) a vector rendering mode, and (b) a 
raster rendering mode using scanline-based approach. A shaded rectangle in 
(a) represents the amount of memory requirement.

tially higher than those of the geometry part. The rendering part 
is often composed of two steps: object rasterizing and pixel 
processing. 

We can classify 2D vector graphics rendering algorithms 
into two types: vector rendering, which draws each object 
every time in the frame buffer, and raster rendering, which 
draws each object by calculating the colors of its pixels in an 
image [9][10][11]. Architecture for the two rendering modes is 
illustrated in Fig. 1.   

Raster rendering has an advantage compared to vector 
rendering because its algorithmic complexity is getting lower 
as the number of paths and the area enclosed by the path are 
increased. Thus, Most of the previous rendering algorithms for 
the 2D vector graphics are based on raster rendering [3][5][6]. 
It first searches all the edges in a path to find active edges and 
then sorts them in the scanning direction for each scanline. 
Then it calculates the coverage of a pixel based on the scanning 
direction in every scanline. However, this approach requires 
more computation because it should generally calculates all the 
parts which are not in fact displayed in a screen [13]. 
Furthermore, because sorting requires a lot of memory accesses, 
it could be the bottle neck in hardware implementation.  

Vector rendering does not need to find and sort all the 
active edges but it computes the contribution of each object 
directly to the corresponding pixels according to the order of 
edges described in a path and accumulates them in a panel-
sized buffer, which can be implemented as either off-chip or 
on-chip. A memory buffer allocated in an off-chip memory 
generally increases power consumption due to the large 
number of the external memory accesses while an on-chip 
memory buffer requires a large silicon area. It is prominently 
important especially if non-zero fill rule or super-sampling for 
anti-aliasing is supported. Therefore, the vector rendering 
architecture is not suitable for low-power applications 

Although raster rendering does not require a larger memory 
buffer, it requires more external memory accesses for finding 
and sorting the active edges. Therefore, although its 
computational complexity is relatively low [5], the raster 
rendering approach is not suitable for hardware-based low-
power applications [12].  

Figure 2. Flowchart for proposed 2D vector graphics rendering algorithm

We employed a hybrid of raster and vector rendering, 
which uses vector rendering only within each scanline. 
Consequently, it removes unnecessary memory accesses 
associated with sorting process and also reduces the size of 
required memory buffer. Therefore, it needs only a scanline-
sized buffer, which can be implemented as an on-chip buffer. 
Moreover, it does not calculate the coverage of the sample 
points that are not affected by the edge. For this purpose we 
defined the cases of pixels intersecting with the edge into four 
categories, and this optimization scheme reduces most of the 
unnecessary edge calculations in scanline filling.  

III. PROPOSED ALGORITHM

A. Proposed Rendering Algorithm 
The proposed rendering algorithm starts with performing 

vector rendering for each scanline. Thus, it does not perform a 
scanline filling process by pixel-by-pixel but by edge-by-edge. 
Since edge-by-edge rasterizing does not require any sorting 
process, this approach can substantially reduce the bandwidth 
of its external memory accesses.  

The proposed rendering algorithm consists of three steps: 
active edge table (AET) generation, edge function (EF) 
calculation, and FAV calculation. The AET generation gathers 
only the edges that cross a scanline, thereby substantially 
reducing the number of edges to be examined. This step is not 
covered in details in this paper since it is described in the 
previous works [3][6]. The second step evaluates the intensity 
of each sample point by performing EF calculation, which 
determines whether the edge is on the left side or not, and 
updates the partial winding values into the corresponding 
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memory buffer for all the pixels affected by each selected edge. 
After completing the EF calculation for all the edges in the 
AET, we can finally calculating FAVs by summing up the 
intensities of sample points for each pixel. Fig. 2 shows the 
overall flowchart of the proposed rendering algorithm. Scanline 
filling corresponds to the EF and FAV calculation in our 
algorithm.  

Now we compare the computational complexity of the 
proposed algorithm to the raster rendering algorithm. The AET 
generation is required in the proposed algorithm as like the 
raster rendering algorithm. Since the proposed algorithm does 
not need AET sorting process, however, the proposed 
algorithm reduces the complexity of at least O(N log2N), where 
N is the size of the AET. For the scanline filling stage, the 
proposed algorithm is more complex because it visits the same 
pixel repeatedly, whereas pixel-based raster rendering just 
visits one pixel once. However, the proposed rendering 
algorithm stores temporal winding counts, which are the result 
of EF calculation, in the local buffer, and then calculate the 
FAV just once for each pixel. Thus, the total number of EF and 
FAV calculation is the same. Moreover, the proposed 
algorithm eliminates the redundant EF calculations which are 
required in raster rendering [13], and apply further optimization 
that may not be applicable in raster rendering; more details for 
this optimization are stated later in this section. 

For hardware implementation, the number of external 
memory accesses should be minimized to reduce power 
consumption. Thus, we compare the number of external 
memory accesses in evaluating the proposed algorithm. Table I 
describes the number of memory accesses for both algorithms 
per scanline. In the raster rendering algorithm [3][5][6], the 
number of read accesses to the active edges for scanline filling 
is increased in proportion to the number of  sample points for 
anti-aliasing filtering, and the repeated read accesses to the 
active edge can be increased, which depends on the distribution 
of the edges. On the other hand, the proposed rendering 
algorithm requires the constant number of read accesses to the 
active edge regardless of the sampling quality and the edge 
distributional because it calculates the EF edge-by-edge. 
However, because the proposed algorithm calculates the EF  
edge-by-edge and store all the temporal winding counts for 
each pixel in the local buffer, thereby visiting one pixel 
repeatedly according to the range of each active edge and 
sample points affected by them. An external memory access for 
active edge generation step is same for both algorithm, and 
sorting is not required for proposed algorithm. 

B. Further Optimization 
The partial winding value of a pixel contributed from an 

active edge is obtained by evaluating the EF for all sample 
points in a pixel. This optimization scheme reduces the number 
of EF calculations by limiting them only for the active samples 
whose y-coordinates are within the range of the y-coordinates 
of the active edge. 

We can classify the cases of pixels intersecting with an 
edge into four categories: (a) fully active, (b) partially active, 
(c) edge-embedded and (d) non-intersecting as shown in Fig. 3. 

TABLE I. EXTERNAL MEMORY ACCESS ANALYSIS 

 Raster Rendering [6] Proposed Rendering 

Active Edge  
Generation M * Read + N * Write M * Read + N * Write 

Active Edge  
Sorting  

N * (Read+Write) + 
N *log2N* (Read+Write) None 

Scanline Filling N * Q * Read +  
Xrepeated * Read N * Read  

M: the number of edge for one path 

N: the number of active edge 

Q: the number of sample points for one pixel 

Xrepeated: the repeated access number depend on active edge’s distribution 

Figure 3. Active sample distribution in the examples for the four categories of 
edge pixels

Since we employed an equal-weight 8-Queen box filter for 
anti-aliasing filtering, only the active samples, which are 
represented with a filled circle, are evaluated for each edge. 
This optimization can not be applicable to the pixel-based 
raster rendering algorithm because it requires searching all the 
contribution edges per pixel at a time, thus we can not figure 
out which sample points can be skipped. According to our 
experimental results, it substantially improves performance 
since most edges intersects with only a small part of each pixel. 

IV. EXPERIMENTAL RESULTS

We implemented a hardware accelerator for the 2D vector 
graphics with the proposed algorithm as shown in Fig. 4. For 
anti-aliasing filtering, we used an equal-weight 8-Queen box. 
We assumed a QVGA display panel and used a SDRAM 
memory controller for the external memory. For the bus 
architecture, we used an AMBATM AHB bus using a burst-4 
transfer mode to minimize the memory access latency. For the 
number representation in the rendering part of the 2D graphics 
engine, we used a 24-bit fixed-point number system in which 
the integer and fractional parts of a number are represented by  

Figure 4. Architecture of Implemented 2D Vector Graphics Engine
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10 and 13 bits, respectively and its sign by 1 bit. With the 24-
bit fixed-point number system we reduced the complexity of 
the rendering part and improved its performance without losing 
the accuracy. Note that the edge information generated in the 
geometry part is represented as the IEEE754 single-precision 
32-bit floating point standard, is immediately converted into 
the 24-bit fixed point as shown in Fig. 4.  

To evaluate the performance of the proposed accelerator, 
we have used eight test images, whose features are summarized 
in Table II. Tiger and Dude are representative test images 
released from Khronos Group [2] and Hybrid Graphics Ltd. [3], 
respectively, and the others are translated from SVG files by 
the authors.  

In Table III (a) we compare the number of external memory 
accesses for the raster and the proposed rendering algorithm. 
The experimental results show that the proposed algorithm 
reduces the SDRAM accesses by 52% to 82%; it implies that 
the proposed rendering algorithm is more efficient than the 
raster rendering algorithm for low-power systems. Table III (b) 
shows the proposed optimization scheme reduces the number 
of EF calculations by 36% to 83%, each of which takes 4 or 5 
cycles. We found that most edges are crossing with only a 
small part of each pixel, which implies that the raster rendering 
algorithm performs a lot of unnecessary calculations. Table III 
(c) describes the estimated performance of the hardware 
accelerator. Assuming that the operating clock frequency is 
100MHz, it can render 11.8 Tiger images per second for a 
QVGA display panel while a previous works [6] can handle 5 
fps.  

TABLE II. FEATURES OF TEST IMAGES

Test 
Image 

Number of 
Path 

Number of 
total Edges 

Max. Edge 
per Path 

Max.  
Active Edge 
per Scanline 

Tiger 305 225,297 40,433 2,209 
Dude 167 83,171 15,835 5,609 
E-Book 19 44,955 3,105 817 
Picture 712 50,820 464 136 
Basket 719 77,904 232 136 
Bottle 899 46,565 128 59 
Snow 481 16,922 632 136 
Pelican 95 4,027 722 136 

TABLE III. MEMORY ACCESS COMPARISON AND PERFORMANCE 

Test 
Image 

(a) SDRAM access  
(x 106 in byte) 

(b) the number of  
EF Calculation (c) FPS  

@ VGA, 
100MHz Raster 

Rendering 
Proposed 

Rendering 
without 

Opt. with Opt.  

Tiger 413.61 197.95 2,179,640 496,320 11.8 
Dude 115.98 39.31 487,960 82,528 40.5 

E-Book 66.12 12.98 971,312 198,231 33.4 
Picture 81.28 28.17 721,104 309,208 20.9 
Basket 71.74 13.10 574,496 168,432 40.3 
Bottle 51.71 10.45 537,312 204,597 36.0 
Snow 26.58 8.60 267,688 124,189 45.2 

Pelican 15.74 7.04 163,376 104,407 77.8 

V. CONCLUSIONS

In this paper, we proposed a hybrid rendering algorithm for 
the 2D vector graphics, which uses vector rendering only 
within each scanline. Experimental results show that it 
substantially reduces both the external memory accesses and 
the computational complexity, which make it suitable for low-
power high-performance graphics engine. We implemented a 
hardware accelerator with the proposed rendering algorithm, 
which can render more than 11 fps for Tiger QVGA image at 
the operating clock frequency of 100 MHz.  

REFERENCES

[1] K. Pulli, “New APIs for mobile graphics,” Proceedings of SPIE – The 
International Society for Optical Engineering, vol. 6074, 2006  

[2] Khronos Group Inc., OpenVG 1.0.1 Specification. [Online] Available: 
http://www.khronos.org/openvg/. 

[3] Hybrid Graphics Forum, OpenVG Reference Implementation (2005), 
http://forum.hybrid.fi 

[4] G. He, B. Bai, Z. Pan, and X. Cheng, “Accelerated rendering of vector 
graphics on mobile devices,” Lecture Notes in Computer Science, vol. 
4551, pp. 298-305, 2007. 

[5] S. Lee, S. Kim and B. Choi, “Vector graphics reference implementation 
for embedded system,” Lecture Notes in Computer Science, vol. 4761, 
pp. 243-252, 2007. 

[6] R. Huang and S. Chae, “Implementation of an OpenVG rasterizer with 
configurable anti-aliasing and multi-window scissoring,” Proceedings of 
the Sixth IEEE International Conference on Computer and Information 
Technology, pp. 179-184, 2006. 

[7] J. Foley, A. vanDam, S. Feiner, and J. Hughes, Computer Graphics: 
Principles and Practice, 2nd ed., Addison-Wesley, 1990. 

[8] T. Mitra and T. Chiueh, “Three-dimensional computer graphics 
architecture,” Current Science, vol. 78, pp. 838-846, April 2000. 

[9] A. Schilling, “A new simple and efficient antialiasing with subpixel 
masks,” ACM SIGGRAPH Computer Graphics 25(4), pp. 133-141, 
1991 

[10] P. Haeberli and K. Akeley, “The accumulation buffer: hardware support 
for high-quality rendering,” ACM SIGGRAPH Computer Graphics 
24(4), pp. 309-318, 1990 

[11] K. Doan, “Antialiased rendering of self-intersecting polygons using 
polygon decomposition,” Proceeding of 12th Pacific Conf., Computer 
Graphics and Applications, pp. 383-391, 2004 

[12] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. D. Man, 
“Global communication and memory optimizing transformations for low 
power signal processing systems,” in VLSI Signal Processing, vol. VII, 
pp. 178-187, 1994. 

[13] S. Harrington, Computer Graphics A Programming Approach, 2nd ed., 
McGraw Hill, New York, 2006 

- 341 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC


