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Energy Aware Computing: Analysis, 
Optimization and Upcoming Challenges 

Diana Marculescu, Member, IEEE 

  
Abstract—Power dissipation has become a critical design 

concern in recent years, driven by the increased levels of 
complexity and emergence of mobile applications. Embedded 
applications are not an exception to this trend and thus, are also 
very much affected by the increasing power consumption and 
cooling and packaging costs of existing platforms for embedded 
computing. While it is recognized that power consumption has 
become the limiting factor in keeping up with increasing 
performance trends, static or point solutions for power 
reduction are prone to reach their limits eventually. The 
paradigm of energy aware computing is thus intended to fill the 
gap between gate/circuit-level and system level power 
management techniques, by providing more power 
management levels and application-driven adaptability in the 
context of using multiple or dynamically adjustable voltages 
and local speeds. No less important are the challenges imposed 
by emerging platforms and technologies in the area of low 
power and energy aware computing. As a driver application, we 
consider wide-area computing substrates for ambient 
intelligent systems which provide an unexplored hardware 
platform for executing distributed applications under strict 
energy constraints. A new dimension in requirements, is that of 
reliability in the presence of runtime failures, thus paving the 
ground for achieving Dynamic Fault-Tolerance Management 
(DFTM) in addition to classic dynamic power management. 
Solutions to some of the emerging issues will be presented, along 
with open questions and directions for future research. 
 

Index Terms—energy aware computing, fault tolerance, low 
power design. 
 

I. INTRODUCTION 

Power consumption has become the limiting factor not 
only for portable, embedded applications but also for 

high-performance or desktop systems. While there has been 
notable growth in the use and application of these systems, 
their design process has become increasingly difficult due to 
the increasing design complexity and shortening 
time-to-market. The key factor in the design process of these 
systems is the issue of efficient power-performance 
estimation that can guide the system designer to make the 
right choice among several candidate architectures that can 
run a set of selected applications.  

As important as the other levels of abstraction, the 
microarchitectural level presents additional challenges and 

issues that need to be addressed. As such, one focus of this 
paper is on microarchitectural power analysis and 
optimization for core processors, characterized by either 
multimedia, or more general workloads. High-end and 
embedded processors are analyzed in the context of efficient 
design exploration for power-performance trade-off, as well 
as their potential for application-driven adaptability for 
energy-aware computation. 
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Another alternative to exploit fine grain microarchitectural 
adaptation is to use globally asynchronous locally 
synchronous (GALS) architectures, which attempt to 
combine the benefits of both fully synchronous and 
asynchronous systems. A GALS architecture is composed of 
synchronous blocks that communicate with each other only 
on demand, using an asynchronous or mixed-clock 
communication scheme. Through the use of a locally 
generated clock signal within each individual domain, such 
architectures make it possible to take advantage of the 
industry-standard synchronous design methodology. Not 
requiring a global clock distribution network and de-skewing 
circuitry, such systems have important advantages when 
compared to their fully synchronous counterparts. 

Finally, challenges imposed by emerging platforms or 
technologies, such as electronic textiles or Ambient 
Intelligent systems are poised to play an important role in 
next generation low power or energy aware systems. We will 
also discuss some of these challenges in this paper, and their 
implications on the future design flows and methodologies. 

The paper is organized as follows: Section II provides an 
overview of various techniques for power modeling and 
optimization including techniques for fine grain power 
adaptation at microarchitectural level, while Section IV 
addresses the problem of upcoming challenges imposed by 
emerging platforms. 

 

II. MICROARCHITECTURE-DRIVEN POWER ANALYSIS AND 
OPTIMIZATION 

To characterize the quality (in terms of power and 
performance) of various microarchitectural configurations, 
we need to rely on a few metrics of interest. In the case of 
power consumption, most researchers have concentrated on 
estimating or optimizing energy per committed instruction 
(EPI) or energy per cycle (EPC). While in the case of 
embedded computer systems with tight power budgets some 
performance may be sacrificed for lowering the power 
consumption, in the case of high-performance processors this 
is not desirable, and solutions that jointly address the problem 
of low power and high performance are needed. To this end, 
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the energy delay product per committed instruction (EDPPI), 
defined as EPI*CPI*Tcycle, has been proposed as a measure 
that characterizes both the performance and power efficiency 
of a given architecture. Such a measure can identify 
microarchitectural configurations that keep the power 
consumption to a minimum without significantly affecting 
the performance. In addition to classical metrics (such as 
EPC and EPI), this measure can be used to assess the 
efficiency of different power-optimization techniques and to 
compare different configurations as far as power 
consumption is concerned. 

One of the most widely used microarchitectural power 
simulators for superscalar, out-of-order processors is Wattch, 
which has been developed using the infrastructure offered by 
SimpleScalar. SimpleScalar performs fast, flexible, and 
accurate simulation of modern processors that implement a 
derivative of the MIPS-IV architecture and support 
superscalar, out-of-order execution, which is typical for 
today’s high-end processors. The power estimation engine of 
Wattch is based on the SimpleScalar architecture, but in 
addition, it supports detailed cycle-accurate information for 
all modules, including datapath elements, memory and CAM 
(Content-Addressable Memory) arrays, control logic, and 
clock distribution network.  Wattch uses activity-driven, 
parameterizable power models, and it has been shown to be 
within 10% accurate when compared against three different 
architectures. 

 For accurate estimates, the power models used for the 
datapath modules can be based on input-dependent 
macromodels. The input statistics are gathered by the 
underlying detailed simulation engine and used, together 
with technology-specific load capacitance values, to obtain 
power-consumption values. Assuming a combination of 
static and dynamic CMOS implementations, one can use a 
cycle-accurate power macromodeling approach for each of 
the units of interest: 

),( ,mod1,modmod,mod kulekuleulekule VVFP −=                          (1) 

where Pmodule,k is the power consumption of a given module 
during cycle k when input vector  Vmodule,k-1 is followed by 
Vmodule, k . 

Today’s superscalar, out-of-order processors pack a lot of 
complexity and functionality on the same die. Hence, design 
exploration to find high performance or power efficient 
configurations is not an easy task. As shown previously, 
some of the factors that have a major impact on the 
power/performance of a given processor are issue width, 
cache configuration, etc. However, as shown before, the 
issue window strongly impacts the power cost of a typical 
superscalar, out-of-order processor. The issue width (and 
corresponding number of functional units), instruction 
window size, as well as the pipeline depth have the largest 
impact as parameters in a design exploration environment.  

Figure 1. The design exploration framework 

 A possible design exploration environment follows the 
flow in Figure 1. At the heart of the exploration framework is 
a fast microarchitectural simulator (estimate_metrics) that 
provides sufficiently accurate estimates for the metric of 
interest. Depending on the designer’s needs, this metric can 
be one of: CPI, CPI*Tcycle, EPI, or EDPPI, depending on 
whether a high performance or a joint high-performance and 
energy-efficient organization is sought. As shown in Figure 1, 
the exploration is performed for a set of benchmarks B, a set 
of possible issue widths I, instruction window sizes W, and a 
number of possible voltage levels N. For each pair (issue 
width, instruction window size), the stage latencies are 
estimated. If a balanced pipelined design is sought, the 
pipeline is further refined to account for this, and only one 
voltage level is assumed for the entire design. Otherwise, 
depending on the latencies of the different stages, up to N 
different voltages are assigned to different modules such that 
performance constraints are maintained, and the slowest 
stage dictates the operating clock frequency. 

A. Efficient microarchitectural power simulation 
For a design exploration environment to be able to explore 

many possible design configurations in a short period of time, 
it has to rely either on a smart methodology to prune the 
design space or on a fast, yet sufficiently accurate estimation 
tool for the metrics of interest.  

The crux of the estimation speed-up methodology relies on 
a two-level simulation methodology: for critical parts of the 
code, an accurate, lower-level (but slow) simulation engine is 
invoked, whereas for non-critical parts of the application 
program, a fast, high-level, but less accurate simulation is 
performed. Following the principle “make the common case 
accurate,” ideal candidates for critical sections that should be 
modeled accurately are those pieces of code in which the 
application spends a lot of time, which have been called 
hotspots.  

Example: Consider the collection of basic blocks in Figure 
2, where edges correspond to conditional branches and the 
weight of each edge is proportional to the number of times 
that direction of the branch is visited.  
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Figure 2. An example of two hotspots 
design_explore (B, I, W, N) 
for each benchmark BN in B{ 

for IW in I = (IW1, IW2,...,IWn) 
for WS in W = (WS1, WS2,...,WSm) 

 estimate_stage_latencies (IW, WS); 
  if (balanced_pipeline) { 
   balance_stages (IW, WS); 
   estimate_metrics (BN, IW, WS, 1); 
  } 
  else 
   estimate_metrics (BN, IW, WS, N); 
} 

Hotspots are collections of basic blocks that closely 
communicate one to another but are unlikely to transition to a 
basic block outside of that collection. In Figure 2, basic 
blocks 1-4 and 5-9 are part of two different hotspots that 
communicate infrequently to one another.  As shown before, 
these hotspots satisfy nice locality properties not only 
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temporally, but also in terms of the behavior of the metrics 
that characterize power efficiency and performance. 
Temporal locality, as well as the high probability of reusing 
internal variables, make hotspots attractive candidates for 
sampling metrics of interest over a fixed sampling window 
after a warm-up period that would take care of any transient 
regimes. Estimated metrics obtained via sampling can be 
reused when the exact same code is run again. Although 
different, such an approach is similar in some ways to 
power-estimation techniques for hardware IPs using 
hierarchical sequence compaction or stratified random 
sampling. In addition, the relative sequencing of basic blocks 
is preserved, and the use of a warm-up period ensures that 
overlapping of traces is not necessary. This is in contrast with 
synthetically constructing traces for evaluating performance 
and power consumption. 

Figure 3. The two-level simulation engine 
 
 To speed-up the simulation time inside the hotspots and 

achieve the goal of “making the common case fast,” the 
sampling of power and performance metrics can be used until 
a given level of accuracy is achieved. This is supported by the 
fact that while being in a hotspot, both power consumption 
(EPC) and performance (IPC) achieve their stationary values 
within a short period of time, relative to the dynamic duration 
of the hotspot. As experimental evidence has shown, the 
steady-state behavior is achieved in less than 5% of the 
hotspot dynamic duration, thus providing significant 
opportunities for simulation speed-up, with minimal 
accuracy loss. 

Figure 3 shows how the two-level simulation engine is 
organized. During detailed simulation, all performance and 
related power metrics are collected for cycle-accurate 
modeling. When a hotspot is detected, detailed analysis is 
continued for the entire duration of the sampling period. 
When sampling is done, the simulator is switched to basic 
profiling that only keeps track of the control flow of the 
application. Whenever the code exits the hotspot, detailed 
simulation is started again. This way, the error of estimation 
is conservatively bounded by the sampling error within the 
hotspots. Performing detailed simulation outside the hotspots 
ensures that the estimates are still accurate for benchmarks 
with low temporal locality (e.g., less than 60% time spent in 
hotspots).  

B. Using a GALS Design Paradigm 
An example of a GALS processor is shown in Figure 4. 
Groups of up to four aligned instructions are brought from 
the Level 1 Instruction Cache in the Fetch stages at the 

current PC address, while the next PC is predicted using a 
G-share branch predictor. The instructions are then decoded 
in the next three pipeline stages (named here Decode) while 
registers are renamed in the Rename stages. After the 
Dispatch stages, instructions are steered according to their 
type, towards the Integer, Floating Point or Memory Clusters 
of the pipeline. The ordering information that needs to be 
preserved for in-order retirement is also added here. In 
Register Read, the read operation completes and the source 
operand values are sent to the execution core together with 
the instruction opcode. 

Instructions are placed in a distributed Issue Buffer (similar 
to the one used by Alpha 21264) and reordered according to 
their data dependencies. Independent instructions are sent in 
parallel to the out-of-order execution core. The execution can 
take one or more clock cycles (depending on the type of 
functional unit that executes the instruction) and the results 
are written back to the register file in the Write Back stages. 
Finally, the instructions are reordered for in-order retirement, 
according to the tags received during Dispatch. Branches are 
resolved in Write Back, hence a minimum mispredict 
penalty of 14 cycles. 
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Of extreme importance for a GALS system is the choice of 
various design knobs that impact the overall 
power-performance trade-offs. Possible microarchitecture 
design knobs to consider include: 
• The choice of the communication scheme among frequency 

islands. 
• The granularity chosen for the frequency islands. 
• The dynamic control strategy for adjusting voltage/speed of 

clock domains so as to achieve better power efficiency.  
For example, we show in Figure 5 the impact of using 

between four and six clock domains for a typical GALS 
processor as described before. As it can be seen, for rather 
shallow pipelines (and thus, less complex systems) a smaller 
number of clock domains is desirable for achieving better 
energy delay product. 

Taking this analysis even further, one can analyze the 
effectiveness of various partitioning strategies or dynamic 
control algorithms for exploiting adaptability within and 
across applications for optimal energy and latency control. 
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Figure 4. A possible GALS microarchitecture 

Figure 5. Energy reduction for a GALS design with 4-6 clock 
domains 

C. Emerging Platforms 
Similar to other emerging technologies or platforms that are 

characterized by the need of reliable operation in the 
presence of unreliable components, ambient intelligent 
(AmI) systems or electronic  textiles must be able to react and 
self-manage themselves in case of changes in operating 
conditions or environment. Being deployed in various 
environments or surroundings that may induce various type 
of faults, AmI systems have an inherently high potential for 
runtime failure. Such failures may range from intermittent 
electrical and mechanical failures at the system level, to 

device failures at the chip level. Techniques to provide 
reliable computation in the presence of failures must do so 
while maintaining high performance, with an eye toward 
energy efficiency. When possible, they should maximize 
battery lifetime in the face of battery discharge 
non-linearities.  

Via adaptive fault-tolerance management for 
failure-prone systems and by classifying local algorithms for 
achieving system-wide reliability, we can assess the viability 
of various dynamic fault tolerance management strategies, as 
well as the appropriateness of different metrics 
characterizing fault tolerance. For example, while it is always 
possible to just look at the effective application lifetime 
achieved by a set of policies, we claim that doing so without 
including possible finite battery budgets and nonlinearities, 
provides misleading results. Figure 6 shows a comparative 
view of the overall system lifetime (Figure 6(a)) and mean 
computation (per Watt) before battery failure (Figure 6(b)) 
for six experiments employing various combinations of 
policies. While system lifetime analysis shows exp.3 as the 
best, when looking at the actual amount of work performed, 
exp.7 is the best. At the same time, while exp.8 fares worse 
than exp.3 and exp.7 in terms of overall system lifetime, is 
comparable in terms of useful computation (per Watt) 
performed.  

Energy reduction
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Figure 6. System lifetime vs. mean computation (per Watt)  before 

battery failure 

Thus, while local policies for enabling DFTM are 
important, the choice of the metric is even more critical for 
correctly characterizing the best design point in terms of 
energy delay product.  

In addition, directions that address the challenges of 
incorporating fault-tolerance as a design constraint are 
needed and should be the objective of future research. 
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Energy-Efficient Scheduling for Hard Real-Time
Applications on Dynamic Voltage Supply Processors
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Abstract— The common energy reduction techniques imply
trading performance for power, giving the impression that
timeliness and energy efficiency are opposing goals. However with
the advent of Dynamic Voltage Supply processors, even hard real-
time systems can become energy efficient if adequate methods are
employed. This paper reviews several such scheduling techniques,
addressing speed selection at both individual task and task group
level, applicable at run-time. Additionally, a couple of more
advanced techniques, making use of run-time task variation are
also briefly presented.

I. INTRODUCTION

As the consumers demand more and more functionality
from their lap-tops, PDAs, cellular phones, other mobile de-
vices, and household appliances, reducing the energy con-
sumption becomes an essential issue for embedded systems
design. In this context, Dynamic Voltage Supply (DVS) pro-
cessors seem to offer the best combination of flexibility and
energy efficiency. However, with the new dimension of pro-
cessor speed (clock and supply voltage) introduced by these,
special scheduling strategies are required to take full advantage
of the available features. In the last couple of years the research
on dynamic voltage scheduling has flourished, becoming a
mature area, waiting for the consumer market to catch up. This
paper reviews a number of such speed scheduling techniques,
covering a rather wide spectrum of approaches from task to
group level, from static to dynamic methods, including more
complex, probabilistic techniques. All of the strategies pre-
sented in here exclusively address speed scheduling, without
touching on compilation for low energy, power management,
or low power communication. Furthermore, we focus on hard
real-time scheduling techniques.

The paper is organized as follows. Section II introduces the
hardware support for speed scheduling, namely the DVS pro-
cessor with its advantages and drawbacks. Speed scheduling
methods for both task and task group level are reviewed in
Section III, which is the main part of the paper. Finally, we
summarize and conclude with Section IV.

II. HARDWARE SUPPORT

A wide variety of DVS processor systems are available today
on the market or as prototypes [1], [2], [4]–[6]. Although their
main characteristic is the ability to adjust their speed (core
clock frequency and voltage) at run-time, different solutions
achieve this in various ways. The number of speed settings

is limited, varying between two (Intel SpeedStep) and tens
of speeds (Transmeta Crusoe). Often these speed settings are
not on the same ideal delay-voltage curve, due to the discrete
increments for both voltage and clock frequency (Fig. 1).
Furthermore, only some parts of the processor are able to

0.4
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333MHz@1.0V

Ideal charcteristics

Fig. 1. Measured data for Intel 80200 speed settings as energy–clock length
points compared to ideal (non-discrete) characteristics. The circled setting is
in fact obsolete, being covered by the point on the left.

operate at different speeds, while others, such as the I/O pads,
need to satisfy certain standards. Additionally, a speed switch
has different characteristics for different processors or even for
different initial and final speeds. The most important in our
case is arguably the switch latency, which spans from tens
of µs to milliseconds. The limiting component is often the
Delay Loop Logic (DLL) or Phase Lock Logic (PLL), which
takes time to re-lock on the new clock frequency. However, the
energy overhead of a speed switch is usually very small, since
the only active part during the switch is the clock generation
logic.

Common speed scheduling techniques make several simpli-
fying assumptions, such as negligible overhead speed switches
and continuous range of speeds. These are not always limiting,
and might become closer to reality with newer generations of
processors, as we briefly show later on.

III. SPEED SCHEDULING

Scheduling tasks for DVS processors implies both time and
speed setting (clock frequency and the corresponding supply
voltage). For hard real-time systems the main requirement is
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keeping the deadlines, regardless of how fast the tasks can
run. In this context, good speed scheduling techniques take
advantage of the idle times to slow down the processor speed,
thus saving energy.

The large variation of speed scheduling methods makes
it possible to classify them in different types. Depending
on the scheduling decisions, one can distinguish between
offline (static) and run-time (dynamic) or between operating
system level and user level approaches. Depending on the task
characteristics, one can find methods for fixed or variable
execution pattern, hard or soft deadlines. Depending on the
level of intrusion, there are control flow aware approaches or
instance history sensitive techniques. Note that the distinctions
are not necessarily mutually exclusive, as typical approaches
encountered in current research combine several of these fea-
tures at different time moments or abstraction levels. Finally,
one can distinguish also between intra-task (or task level)
techniques, which are oblivious of the existence of other tasks
in the system, and inter-task (or task-group level) techniques,
which perform scheduling at system level. We review some
representative methods from the two different classes in the
following.

A. Intra-Task Approaches

At task level, deciding a speed schedule implies finding an
assignment of each task clock cycle to an available speed,
while meeting a deadline. Without any scaling, all cycles
would execute at the fastest speed, finishing before the dead-
line (Fig. 2.a). If the exact execution time is known before the
task starts executing, the ideal speed would be the one making
the task to finish exactly at the deadline (Fig. 2.b). 1 When
only the worst case behavior is known, one might still be able
to run the task at a lower speed and still meet the deadline
(Fig. 2.c).

For tasks with variable execution pattern, it turns out that
there are better speed schedules than the ones using constant
speeds, as the ones mentioned until now. Accelerating sched-
ules (Fig. 2.d) start from a low speed and, as the task keeps
executing towards its worst case, the speed is increased such
that the deadline is still kept even for the worst case. Usually
such schedules are non-intrusive, needing no other information
about the task than its execution history or execution pattern
distribution [9], [12]. Furthermore, these schedules can be
decided entirely before the task starts executing and might
be exclusively employed at run-time, making them prone for
implementation in an OS. Since they minimize the average
case energy and use probabilities to decide the speeds, these
schemes are usually referred to as Stochastic Schedules.

Finally, there are also techniques that start with a high
speed and decelerate towards an ideal speed, as more and
more information about the execution path becomes available

1Since the number of available speed settings is limited, it is very likely
that the ideal speed is not among the available speeds. However, as shown
in [11], virtual speeds can be achieved by using two of the available speeds,
bounding the desired ideal speed. For this reason, we will, from now on,
assume that any speed is achievable between the maximal and minimal ones.
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Fig. 2. A Few Intra-Task Schedule Types

(Fig. 2.e). These are usually intrusive techniques, that have to
examine the task control flow, choose the points that are good
candidates for adjusting the speed (branching points affecting
the remaining worst case execution time) and insert code for
speed switching [13], [15]–[18]. Since the best moment to
examine the control information of a task and insert new code
is at compile time, these techniques are usually referred to as
Compiler Assisted methods. Note that for this methods, every
instance energy is minimized, requiring special tools to insert
speed switching points.

Neither of the above methods is the best for all cases,
depending very much on the task characteristics, tools support,
and many other parameters, as presented in [10]. Combinations
of the last two presented approaches can also be imagined,
since both sides strive to acquire more and more of the
advantages of the other. In particular, letting the operating
system to perform the actual speed switching according to
the suggestions made by individual tasks is a more effective
way to reduce energy, since the OS has a more complete view
of the whole system [8], [14].

B. Task-Group Techniques

Classic task-group scheduling techniques are designed for
tasks with fixed execution time. Although using these com-
bined with intra-task scheduling methods may reduce the
energy consumption, special techniques, especially designed
to decide both the speed and task timing, are potentially more
efficient. Task-group speed scheduling techniques are able to
detect and reuse idle times, as well as better balance the energy
load on heterogeneous systems.

At this level, one can identify techniques designed for task
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graphs, task sets, or hybrid models such as multi-rate graphs.
Usually task graph methods are concerned with communi-
cating tasks on multi-processor systems, with a unique rate,
suitable for a static cyclic executive approach. On the other
hand, task set techniques emphasize timing (response times)
on uni-processor systems, involving both static analysis and
run-time scheduling. Regardless of the model, the majority of
speed scheduling approaches have both a static and a dynamic
(run-time) part. Predominantly static techniques are easier to
analyze and derive, being however less flexible. Dynamic
approaches exhibit increased run-time overhead and are harder
to analyze, but can adapt better to workload variations. In this
context, we start describing simple static scheduling methods
(task graph based) and continue with more complex and
dynamic methods (task set based).

1) Static Scheduling Methods: The simplest case is that
of uni-processor scheduling of a group of tasks with unique
period and deadline. The ideal schedule in this case (analog to
Fig. 2.b and c) is the one with constant speed, finishing exactly
at the deadline. A similar method, named Proportional Stretch,
can be applied to task-graph on multi-processors. First these
are scheduled using a classic technique (i.e. list-scheduling),
and the resulting schedule is then proportionally stretch to
the deadline, reducing the speeds of all tasks with the same
factor. However this method is sub-optimal for heterogeneous
systems and schedules with slack on the non-critical path.

More specialized techniques are able to overcome the
problems mentioned above [22], [23]. The LENES approach,
introduced in [19], is a list scheduling based algorithm, with
a special energy-aware priority function. The start and end of
each task are treated as separate graph nodes, being scheduled
or delayed for a later time depending on the global energy
of the partial schedule. With LENES, energy savings between
10% and 28% off the non-scaling case can be achieved, even
for the tightest possible schedule. Additionally, it is possible
to combine static speed scheduling with task to processor
mapping in an energy-aware system design flow, yielding
further energy reductions [21], [25].

2) Dynamic Scheduling Methods: For sets of tasks with
different rate, deadline and variable execution time static
methods cannot handle the idle times (slack) that appears in
the system at run-time. In this case dynamic speed scheduling
strategies must be employed, usually built on top of clas-
sic real-time scheduling techniques such as Rate-Monotonic
Scheduling (RMS) [32] or Earliest Deadline First (EDF) [33].
The majority of these techniques employ both offline and run-
time decisions. Offline procedures usually include assigning
bounds to task speeds and response time analysis for different
run-time strategies. Run-time decisions concern exact speed
assignment and slack management. Some of such speed-
related offline and run-time decisions are actually standalone,
and can be easily plugged in the classic real-time strategies.

Deciding the Maximum Required Speeds (MRS) for RMS

[9], [26] and EDF [27], [30] is an offline analysis technique
that can suggest the upper bound on each task speed, such
that all the deadlines are met. However, at this point all tasks

are assumed to be running their worst case, and therefore an
additional run-time strategy would take advantage of the slack
appearing from tasks running faster than their worst case.

A RMS-based run-time speed scheduling strategy for a two-
speed processor is described in [24]. [26] presents an improved
method, that runs lone tasks as slow as possible until the arrival
of a next task instance. Fixed-priority scheduling has been
further investigated in [9], [29], [31].

The slack management strategy presented in [9] uses slack
levels to accumulate idle times, corresponding to priorities.
Task instances can use slack from higher levels than their
own priority and produce lower priority slack if they finish
early. The approach was proven to keep the response times
from the classic RMS. Additionally, there are various ways
to distribute the available slack to the instances about to
execute, such as Greedy, if the next instance uses all the slack
and Mean Proportional, if the slack is distributed according
to the expected execution time. Furthermore, this strategy
can be combined with intra-task speed scheduling for higher
efficiency. Following a similar approach, EDF-based speed
scheduling techniques were also developed [27], [28], [30].

C. Advanced Methods

It is important to notice that most speed scheduling tech-
niques are basically classic scheduling strategies modified
to take into account idle times and run tasks slower when
possible. Task management (priorities, preemption, etc. ) are
still performed as in classic scheduling. However, there are
techniques that use additional information about the tasks to
modify the task management and reduce the energy even
more. For tasks with variable execution pattern, knowing
the expected execution time or probability distribution can
help derive more efficient schedules, such as the stochastic
schedule from section III-A. Similar principles can be applied
to task groups, as proven by Uncertainty Based Scheduling
(UBS) [20]. Designed for task sets with unique rate and
deadline running on uni-processor systems, UBS is based on
the observation that the energy consumption depends on the
order of executing tasks. In particular, short tasks and tasks
with highly variable execution should run first, in order to
achieve a ideal constant speed as soon as possible. An example
of average energy consumption for a set of six real life tasks
with different orders, including UBS and variable (random)
order, running on a XScale i80200 platform [3] is presented
in Fig. 3. An extension of UBS to EDF is described in [30].

IV. SUMMARY AND CONCLUSIONS

A wide spectrum of speed scheduling techniques for hard
real-time systems were presented, ranging from task level
techniques to task group level approaches. At task level we
reviewed compiler assisted methods and stochastic scheduling.
At task group level we looked at both task graph and task
set scheduling. For task graphs we emphasized LENES, along
with other static techniques. For task sets we mentioned offline
(MRS) and run-time strategies for RMS and EDF. Finally, UBS

was singled out as an advanced speed scheduling strategy.
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Fig. 3. Average power profile for six tasks on i80200, running according
to different orders: UBS, its inverse order, variable order, minimal constant
speed to meet the deadline in all cases and maximal speed.

To conclude, it is most likely that very soon most processors
will be DVS processors. A large number of speed scheduling
techniques are already available out there, covering most of
the situations or problem set-ups. Although improvements are
possible, expect further energy reductions to be minimal, since
the nature of the problems requires larger and larger efforts
for rapidly decreasing results. However, examining the impact
of speed scheduling techniques at system and even network
level appears to be a tempting research area. Combining
task management (migration, duplication) in wireless networks
with DVS techniques and power management seem to offer
even more possibilities for energy reduction. Minimizing the
speed switching overhead is also a must, as the processors
become faster and faster.
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Dynamic Voltage Scaling for  
Hard Real-Time Systems 
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Abstract—Dynamic voltage scaling (DVS), which adjusts the 

supply voltage and clock frequency dynamically, is an effective 
technique for designing low-power embedded real-time systems. 
In this lecture, we discuss recent DVS techniques at various 
design abstractions targeting for hard real-time systems. 
Following a brief introduction to low-power system design 
techniques in general, we cover DVS techniques from three 
software levels, the operating system level, the compiler level 
and the algorithm level. Experimental results show that DVS 
can achieve significant energy reductions in  hard real-time 
systems.  
 

Index Terms— dynamic voltage scaling, low power, hard 
real-time systems.  
 
 

I. INTRODUCTION 

Energy consumption is one of the most important design 
constraints in designing battery-operated embedded 
systems such as digital cellular phones and digital 

cameras.  For such systems, the energy consumption is a 
critical design factor because it directly affects the system’s 
lifetime. 
  The dynamic energy consumption E, which currently 
dominates the total energy consumption of CMOS circuits, is 
given by E ∝ CL Ncycle VDD

2, where CL is the load capacitance, 
Ncycle is the number of executed cycles, and VDD is the supply 
voltage. Because the dynamic energy consumption E is 
quadratically dependent on the supply voltage VDD, lowering 
VDD is an effective technique in reducing the energy 
consumption. However, lowering the supply voltage also 
decreases the clock speed, because the circuit delay TD of 
CMOS circuits is given by TD ∝ VDD/(VDD −  VT)α , where VT is 
the threshold voltage and α  is a technology dependent 
constant [1].   
  When a given task does not require the maximum 
performance of a system, the clock speed (and its 
corresponding supply voltage) can be dynamically adjusted 
to the lowest possible level that still satisfies the task’s 
required performance. This is the key principle of the 
dynamic voltage scaling (DVS) technique [2].  With an 
ever-growing importance of the power/energy consumption 
in portable embedded systems, many DVS algorithms (e.g., 
[3]-[7]) have been proposed.  At the same time, several 
commercial variable-voltage processors were developed as 

well (e.g., Intel’s Xscale, AMD’s K6–2+, and Transmeta’s 
Crusoe processors).  
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National University, Seoul, Korea (phone: +82-2-880-8792; fax: 
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 A generic DVS algorithm consists of two steps, the slack 
(i.e., idle interval) estimation step and slack distribution step. 
The slack estimation step tries to identify as much slack times 
as possible while the slack distribution step aims to distribute 
the identified slack times in such a fashion that the resulting 
speed schedule is as uniform as possible.   Slack times 
generally come from two sources; static slack times are the 
extra times available that can be identified statically, while 
dynamic slack times are caused from run-time variations of 
executions.  
 In this lecture, we cover various DVS techniques proposed 
for hard real-time systems. For hard real-time systems, the 
goal of voltage scaling algorithms is to find an 
energy-efficient voltage schedule with all the stringent timing 
constraints satisfied. We cover DVS techniques from all 
three software layers, namely, the operating system  level, 
compiler level, and algorithm level.   
 The rest of this extended abstract is organized as follows.  
In Section Ⅱ, we describe the overall organization of the 
lecture and summarize the main topics of the lecture.  
Additional information on the presented topics is given in 
Section Ⅲ.   

II. LECTURE ORGANIZATION 

A. Overview of Lecture 
As shown in Figure 1, the lecture consists of four parts. In 

Part Ⅰ, we review the main sources of power consumption in 
CMOS circuits and introduce the principle of power-aware 
software computing. In Parts Ⅱand Ⅲ, as concrete examples 
of the principle described in Part Ⅰ, we present several 
low-power techniques based on switching activity reduction 
and battery characteristics.  They include low-power register 
relabelling techniques, operation rearrangement techniques 
for VLIW processors and battery-aware balanced modulo 
scheduling [8][9].   

Part Ⅳ, which covers the main topic of this lecture, is 
organized in three sections.  In the first section, we focus on 
intra-task DVS in which the supply voltage is adjusted within 
a task boundary.  Since the execution speed is changed for a 
single task, intra-task DVS techniques are implemented in the 
compiler level. 
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Fig. 1.  Overall organization of the lecture. 
 
In the second section of Part Ⅳ, we study inter-task DVS 

algorithms which is implanted in the operating system level.  
Unlike intra-task DVS, inter-task DVS algorithms determine 
the voltage on a task by task basis at each scheduling point.  
Therefore, once a speed is assigned to a task, its speed is not 
changed unless it is rescheduled by OS.  
 In the last section of Part Ⅳ, we present a low-power 
implementation of an image convolution operation which 
takes advantages of variable voltage processors.  An image 
convolution algorithm is a typical example of algorithms that 
exhibit no workload variations.  For such algorithms, unless 
properly modified, DVS cannot be effectively utilized. This 
section gives  a good example of how to modify such 
algorithms for variable voltage processors. 

 

B. Compiler-level DVS 
Intra-task DVS can be supported both in the compile time 

and run time.  In this lecture, we focus on a compile-time 
technique which completely hides DVS-related idiosyncrasy 
from high-level language programmers.  The discussed 
technique [10], which is based on static execution-time 
analysis techniques, is novel in that (1) it automatically 
converts a given program to a low energy version and (2) 
fully exploits slack times.  Based on the discussed technique, 
we describe a prototype DVS tool, Automatic Voltage Scaler 
(AVS) which transforms a DVS-unaware program into a 
DVS-aware low-energy version with all the timing 
constraints of the original program satisfied. 

 

C. OS-level DVS 
Inter-task DVS algorithms exploit the 

“run-calculate-assign-run” strategy to determine the supply 
voltage.  When the current task completes its execution, an 
OS scheduler calculates the maximum allowable execution 
time for the next task.  Based on the execution time computed, 
an appropriate supply voltage is assigned to the next task. 
The maximum allowable execution time of a task is given by  
the sum of the worst-case execution time of the task and the 
slack time available for the task.  In the lecture, we cover 
various techniques proposed for computing the maximum 
allowable execution time for a given hard real-time task [11].   

Using two DVS evaluation environments, Simulation 

Environment for DVS (SimDVS) and DVS Evaluation 
Workbench (DEW), we compare the energy efficiency of 
various DVS algorithms  and discuss system overheads of 
using DVS.  In the lecture, we focus on preemptive hard 
real-time systems in which periodic real-time tasks are 
executed under the Earliest-Deadline-First (EDF) or 
Rate-Monotonic (RM) scheduling policies.   

Part Ⅰ Introduction to low-power systems 

Part Ⅱ  Low-power binary encoding 

Part Ⅲ Power-aware compiler techniques

Part Ⅳ Dynamic voltage scaling 
D. Algorithm-level DVS 
As an example of DVS-aware algorithm development, we 

cover a low-power implementation of image convolution 
algorithm for variable voltage processors.  Although 
DVS-aware algorithm development is largely dependent on 
the creativity of an algorithm developer, we illustrate that a 
significant energy saving is possible by optimizing an 
existing algorithm for variable voltage processors.  

Compiler-level DVS 

     OS-level DVS 

Algorithm-level DVS

Since an image convolution algorithm is a constant 
workload algorithm (i.e., no workload variations depending 
on inputs), we first modify the order of computing 
convolution sums so that the modified algorithm can exhibit 
workload variations depending on a given input.  The 
modified convolution algorithm significantly reduces the 
number of executed cycles, thus lowering the execution 
speed. In addition, it also decreases the number of memory 
accesses.  With all three factors combined, the modified 
image convolution algorithm achieves a high energy saving 
ratio over the original image convolution algorithm. 

III. ADDITIONAL RESOURCES 
In large parts, the lecture is based on several research 

projects conducted at the Computer Architecture and 
Embedded Systems Laboratory (CARES), Seoul National 
University, Seoul, Korea.  For further information on the 
lecture, you may consult the publication section of the 
CARES Web homepage  at 

 where on-line versions of  many related papers 
are available.  The  CARES homepage currently does not 
include any information on the research tools (such as 
SimDVS), but we plan to make them available on the Web as 
well. 

http://davinci.snu.ac.kr/new/ 
publication
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Abstract

The design of power-efficient systems has been a main
concern for industrial designers and has been the focus of
many academic and industrial labs. Power consumption
has a significant impact on various aspects of the system
such as power grid design, packaging and cooling, battery
lifetime and system reliability. First, we will provide an
overview of the metrics and tools used for power estima-
tion. The second part of this proposal shows the need for
a holistic power optimization approach that spans from cir-
cuit to software design issues. We illustrate this showing
power optimizations applied to the memory system.

Index Terms: low power design, estimation tools, memory
system, leakage power.

1 Introduction

The design of computing systems needs to consider var-
ious factors such as performance, cost, power dissipation
and reliability. Among these power dissipation is consid-
ered as the biggest stumbling block in designing the next
generation systems. Power problems are a significant is-
sue ranging from small sensors to large compute servers.
However, the underlying reasons for their importance are
different.

In small embedded and mobile systems, the limited bat-
tery capacity is a main concern. The battery technology
improvements have not matched to the increasing power re-
quirements of the computing resources. Current lithium-
ion batteries provide only 100W-hr per pound compared
to around 10W-hr/lb capacities in the 1960’s. In contrast,
the power consumption numbers of the processors have in-
creased from much less than a watt in 1970s to around
100Watts in current microprocessors. Consequently, bat-
tery technology has been a bottleneck making the battery
pack a dominant part of the system weight and influencing
the duration required between battery recharges.

Power dissipation has become an important issue in
desktop systems and server environments for a variety of
other reasons. The increasing power density due to the
miniaturization of the circuits makes the task of packag-
ing and cooling harder and costlier. Higher power densities
also translate to higher on-chip temperatures and make it
necessary to support costlier packaging. Power and cooling

requirements are also a major bottleneck for many data cen-
ters and is considered a significant part of the operating cost.
The higher power densities also degrade system reliability.
Furthermore, the increasing current draw poses difficulties
in the power supply grid design.

2 Sources of Power Consumption

The three main sources of power consumption in a
CMOS chip occur due to the switching activity of the sig-
nals, short-circuit current and leakage currents. Power is
consumed whenever current is drawn to charge a node or
wire from zero to one. This is referred to as the dynamic
power consumption and is represented as CV 2f , where C
is the capacitance of the node or wire being switched, V is
the voltage swing associated with a change from a logical
zero to a logical one and f is the operating frequency. Dy-
namic energy consumption has been the dominant source of
power consumption and has been the focus of most power
optimization efforts. The second source of power consump-
tion is due to the short-circuit current that flows when both
the pull-up and pull-down circuits are both on for a short
duration when the inputs are changing. Short circuit cur-
rent is not a major concern for well designed circuits. The
third source of power consumption is due to leakage current
that flows even when the transistors are turned off. Leakage
power is consumed immaterial of whether there is switch-
ing activity or not and is becoming a major concern with the
scaling down of threshold voltages and the reducing thick-
ness of the gate oxide.

In order to reduce power consumption, tools for estimat-
ing the various sources of power consumption are essential.
The estimation tools are useful in identifying the compo-
nents that are problematic from a power consumption per-
spective and in evaluating the effectiveness of optimizations
proposed to overcome these problems. The power estima-
tion tools can be used at different stages in the system de-
sign (See Figure 1). Tools for accurate power-performance
prediction are essential for designing power-aware architec-
tures, compilers, run-time support, communication proto-
cols, and applications. Currently, there are tools to mea-
sure the power at either a very fine-grain (circuit or gate)
level or coarse-grain (procedural or program) level. With
fine-grain estimation, it is difficult or impossible to measure
power usage in (future) billion transistor designs or for large
programs. However, this is the most accurate approach to
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power estimation. On the other hand, coarse-grain mea-
surements can only give gross estimates, but do so quite
efficiently.

At the earliest stage of the design, power is estimated for
a given system with little implementation detail at the ar-
chitectural level. Architectural power simulators have been
typically built on top of performance simulators that keep
track of accesses to the different components in the archi-
tecture and obtain the power consumption by modeling the
per access energy cost of a single access for each compo-
nent. The models for the different components are built us-
ing the structure, bitwidth and design style. For example,
the power consumed for a cache access can be modeled us-
ing information such as the size of the cache, the number
of ports and the use of single-ended or double-ended sense
amplifiers for reading the data. Examples of architectural
level estimation tools include Simplepower [24], Softwatt,
Wattch [2] and Wattwatcher.

Once the RTL and the corresponding gate level imple-
mentation of the architecture are available more accurate
power estimation is possible. Even at this level actual lay-
out or circuit implementation is not available and gate and
wiring capacitances are estimated using models. Gate ca-
pacitances are modeled using the sizing information while
wire loads are obtained from number of pins incident on the
net and based on placement information. The switching ac-
tivity at the nodes is estimated through simulation. Once
capacitance and switching information is available the dy-
namic power estimation can be performed.

Later in the design cycle, even more accurate estimates
can be obtained at the circuit level as more information is
available to make estimates of the capacitance more accu-
rately. However, estimation at the higher levels is becoming
more and more important as power problems identified later
in the design cycle are hard to fix. Consequently, tools for
estimating the power at the earliest stage of design are be-
coming popular. Since software is becoming an integral part
of most systems, tools for estimating the power consumed
by software and the influence of software optimizations on
the power consumption behavior have also become impor-
tant.

These tools also help to identify the specific compo-
nents that pose the main concern from a power consump-
tion perspective. In many embedded systems, the design
of the memory system is a critical factor influencing the
power consumption profile. The rest of this paper shows
how memory power optimizations can be reduced at differ-
ent levels of system design.

3 Memory Power Optimizations

A host of hardware optimizations have been proposed to
reduce the energy consumption. Focusing on SRAM mem-
ories, common techniques used for optimization include
partitioning the memory into smaller parts, dividing the bit
lines, dividing the word lines and using reduced voltage
swings [12]. Two common optimizations applied to cache
memories are block buffering [17] and cache subbanking
[23]. In the block buffering scheme, the previously accessed
cache line is buffered for subsequent accesses [17]. If the
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Figure 1. Comparison of Energy Optimiza-
tions at Different Levels.

data within the same cache line is accessed on the next data
request, only the buffer needs to be accessed. This avoids
the unnecessary and more energy consuming access to the
entire cache data and tag array. Multiple block buffers can
be thought of as a small sized Level 0 cache. In the cache
subbanking optimization, which is also known as column
multiplexing [23], the data array of the cache is divided into
several subbanks and only the subbank where the desired
data is located is accessed. This optimization reduces the
per access energy consumption.

A common power optimization technique employed in
DRAM memories include the support for multiple low
power modes. Each mode is characterized by its power con-
sumption and the time that it takes to transition back to the
active mode (resynchronization time). Typically, lower the
energy consumption, higher the resynchronization time [1].
These modes are characterized by varying degrees of the
module components being active. The power mode tran-
sitions can be effected either by hardware or through soft-
ware.

In the hardware approach, there is a Self-Monitoring and
Prediction Hardware block which monitors ongoing mem-
ory transactions. It contains some prediction hardware to
estimate the time until the next access to a memory bank
and circuitry to ask the memory controller to initiate mode
transitions. Limited amount of such self-monitored power-
down is present in current memory controllers (e.g., Intel
82443BX [13]). The specific details of different prediction
mechanisms that can be employed is given in [7]

In the software-directed approach, the memory con-
troller is explicitly told to issue the control packets for a
specific module’s mode transitions. A set of configuration
registers in the memory controller that are mapped into the
address space of the CPU (similar to the registers in the
memory controller in [13]) are used to set the power mode.
Programming these registers using one or more CPU in-
structions (stores) would result in the desired power mode
setting. The power modes are set based on analyzing the
code and data access patterns using the compiler.

In addition, it is also possible to use code optimizations
to improve the effectiveness of the power mode control. For
example, all data accessed can be clustered together in a
single module instead of being scattered across in different
modules. This enables to put the unused modules into a
lower power mode.
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4 Reducing Leakage Energy

There have been several efforts spanning from the circuit
level to the architectural level at reducing the cache leakage
energy. Circuit mechanisms include adaptive substrate bi-
asing, dynamic supply scaling and supply gating. Many of
the circuit techniques have been exploited at the architec-
tural level to control leakage at the cache bank and cache
line granularities.

The approaches that target reducing cache leakage en-
ergy consumption can be broadly categorized into three
groups: (i) those that base their leakage management de-
cisions on some form of performance feedback (e.g., cache
miss rate) [19], (ii) those that manage cache leakage in an
application insensitive manner (e.g., periodically turning off
cache lines) [8, 15, 16], and (iii) those that use feedback
from the program behavior [15, 27, 25, 11].

The approach such as DRI I-Cache [19] in category (i)
is inherently coarse-grain in managing leakage as it turns
off large portions of the cache depending on a performance
feedback that does not specifically capture cache line usage
patterns.

Approaches in category (ii) turn off cache lines inde-
pendent of the instruction access pattern. An example of
such a scheme is the periodic cache line turn-off proposed
in [8]. The success of this strategy depends on how well
the selected period reflects the rate at which the instruc-
tion working set changes. Specifically, the optimum period
may change not only across applications but also within the
different phases of the application itself. A second exam-
ple of a fixed scheme in category (ii) is the technique pro-
posed in [16]. This technique adopts a bank based strategy,
where when execution moves from one bank to another, the
hardware turns off the former and turns on the latter. An-
other technique in category (ii) is the cache decay-based ap-
proach (its adaptive variant falls in category (iii)) proposed
by Kaxiras et al [15]. In this technique, a small counter
is attached to each cache line which tracks its access fre-
quency. If a cache line is not accessed for a certain number
of cycles, it is placed into the leakage saving mode. While
this technique tries to capture the usage frequency of cache
lines, it does not directly predict the cache line access pat-
tern. Consequently, a cache line whose counter saturates is
turned off even if it is going to be accessed in the next cy-
cle. Since it is also a periodic approach, choosing a suitable
decay interval is crucial if it is to be successful.

The approaches in category (iii) attempt to manage cache
lines in an application-sensitive manner. The adaptive ver-
sion of the cache-decay scheme [15] tailors the decay inter-
val for the cache lines based on cache line access patterns.
They start out with the smallest decay interval for each
cache line to aggressively turn off cache lines and increase
the decay interval when they learn that the cache lines were
turned off prematurely. These schemes learn about prema-
ture turn-off by leaving the tags on at all times. The ap-
proach in [27] also uses tag information to adapt leakage
management. In [25], an optimizing compiler is used to
analyze the program to insert explicit cache line turn-off
instructions. This scheme demands sophisticated program
analysis and modification support, and needs modifications
in the ISA to implement cache line turn-on/off instructions.

Further, Hu et al., in [11], proposed a hotspot based leakage
management scheme to capture the dynamic phase execu-
tion information of the running program for directing leak-
age control and a just-in-time activation scheme to signifi-
cantly reduce the performance overhead due to the leakage
control.

As Java technologies are more widely adopted in bat-
tery powered devices such as cellphones, PDAs, and pagers,
optimizing the power consumption in Java environment is
becoming a critical issue. Java virtual machine (JVM) re-
lies on the garbage collector (GC) for automatic memory
management. In [4], Chen et al. proposed a GC-controlled
leakage energy optimization technique that shuts off mem-
ory banks that do not hold live data. Their schemes reduce
the leakage energy consumed by the heap memory signifi-
cantly. However, conventional GC is invoked at a fixed fre-
quency to detect and turn off the memory banks containing
no live objects. High frequent GC will unnecessarily de-
crease the performance of the virtual machine. On the other
side, GC at very low frequency will lose the opportunities
for leakage optimization. The optimal GC frequency de-
pends on the behavior of a particular application. In [5], the
authors further developed an adaptive scheme that dynami-
cally adjusts the GC frequency according to the memory al-
location behavior of the applications. This adaptive scheme
provides a leakage reduction approaching that delivered by
the optimal GC frequency of a given application.

In attempting to reduce leakage energy, we might in-
crease the susceptibility to soft errors when reducing sup-
ply voltages. The work [26] provides a detailed investiga-
tion on impacts of soft errors in caches applying drowsy
leakage control scheme. The results indicate that the single
event upset rate (SER) increases dramatically from 2.5E-
05 FIT/bit to 5E05 FIT/bit when the supply voltage is re-
duced from the normal voltage 1.0V to a drowsy voltage
0.3V. Hence to maintain the system reliability, more sophis-
ticated error protection schemes that themselves will con-
sume more energy will be required. Hence, as these re-
liability problems aggravate, devising techniques that will
balance the tradeoffs between energy optimization and reli-
ability will become important.

5 Conclusions

Power consumption has become a major design con-
straint influencing the design of next generation systems.
Combating the power problem requires a holistic effort
spanning from circuits to software. Furthermore, there is
a complex interaction and tradeoff between power, perfor-
mance and reliability that need to be balanced carefully.
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Multimedia Handheld Device 
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Abstract—We have developed a multimedia handheld device 

using an ARM7 RISC CPU, and optimized the current 
consumption not only by employing several software 
optimization techniques but also by using dynamic clock 
frequency scaling scheme (DFS). Although the CPU employed 
does not support operating voltage scaling, the controlling of the 
clock frequency according to the CPU load helps reducing the 
current consumption in the idle time and results in up to 25 % 
of power reduction in the system level. The CPU operating 
frequency is determined by profiling the multimedia program 
components, which include LZW (Lempel-Ziv Welch) image 
decompression, MP3 audio decoding, CELP based speech 
decoding, speech recognition and ADPCM. Especially, it is 
shown that the time for LZW decompression can be predicted 
from the original image size.  The CPU load becomes almost full, 
between 80 to 95%, after applying the DFS. 
 

Index Terms—ARM7, DFS, Embedded system, low-power 
system 
 

I. INTRODUCTION 

Alow-power multimedia handheld educational device for 
kids, Speaking Partner, is developed based on a 

low-cost ARM7 CPU [1]. This device can perform animation, 
MP3 play, and speech recognition in real-time. An 
ARM7TDMI based CPU from Samsung Electronics is 
chosen for the sake of good compiler support, low cost and 
convenient system integration, such as LCD and SDRAM 
controllers [2].  

However, the ARM7 CPU only has a 32×8 hardware 
multiplier and does not support some of programmable DSP 
(Digital Signal Processor) specific features, such as hardware 
loop control, automatic address generation, and multiple 
buses [3]. Thus, it was very needed to optimize digital signal 
processing programs, such as MP3 decoding, LZW 
(Lempel-Ziv Welch) decompression and speech recognition, 
very aggressively by exploiting the ARM7 specific features 
such as large number of registers, conditional execution, 
32-bit barrel shifter, and block transfer instructions. In 
addition, it is needed to reduce the current consumption since 

the device is operating with two AA-size batteries. Obviously, 
the optimization of software components is most critical for 
power consumption reduction as well as real-time 
implementation. The CPU goes to the idle state when all the 
jobs for each time frame are finished. However, the CPU 
consumes some power due to peripheral circuits even in the 
idle state, thus it is possible to further reduce the current 
consumption by lowering the CPU clock frequency and 
eliminating the idle time. Note that the CPU consumes about 
1 mA/MHz when fully operated and drains about 30% of the 
full power when in the idle mode. The CPU does not support 
voltage control, thus the dynamic voltage scaling scheme 
according to the load is not employed [4][5].  
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The CPU clock frequency that minimizes the idle time is 
determined by analyzing the kinds of software components to 
execute in the current frame.  An operating system that 
estimates the load and scales the clock frequency based on 
this estimate is developed. 

Figure 1 shows the hardware architecture of the Speaking 
Partner. The CPU contains an ARM7TDMI core, 8 KB of 
unified cache memory, a graphic LCD controller, a 
synchronous DRAM controller, IIS interface, 8 channels of 
10 bit ADC, and many general purpose input and output ports. 
This system equips a small size, 128 KB, of NOR type flash 
memory as a system ROM, which contains code needed for 
system initialization, SSFDC (Solid State Floppy Disk Card) 
read/write, USB (Universal Serial Bus) interface, and graphic 
libraries. Most of the programs as well as multimedia 
contents are all stored on the NAND flash memory or the 
SMC (Smart Media Card). Thus, programs and contents can 
be added or removed very conveniently using the USB 
interface or the removable smart media card. Note that the 
NAND type of flash memory only allows block read or write, 
thus this device can be considered as a solid-state hard-disk 
for this portable system. The system equips a small 2.9” 
240×160 black and white 16-gray STN LCD with the 
back-light function. The LZW compression algorithm is 
employed after obtaining the frame difference, which is more 
efficient than the JPEG based compression for drawing based 
pictures [6][7].  
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Fig. 1. System architecture. 

 

II. MUILTI-TASKING OPERATING SYSTEM AND DYNAMIC 
FREQEUNCY SCALING 

Since the system should conduct several multimedia 
functions simultaneously, a simple real-time operating 
system is developed. Figure 2 shows the time-assignment for 
6 tasks where the audio input and output tasks are processed 
as top priority jobs.  Note that audio jobs can cause more 
serious damage than graphic functions when a job for this 
frame is postponed to the next frame due to the shortage of 
CPU clock cycles. 

480msec240msec time

Frame length

Idle task
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System control

Audio input
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Run
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Fig. 2. The time-assignment for real-time operation. 

 
The frame length, which can be changed by software, is 

normally set to 240 msec due to the low response time of the 
STN LCD.  As shown in Fig. 2, the CPU goes to the idle state 
when all the jobs for the current frame are finished.  

Figure 3 shows the current consumption of the CPU 
according to the load condition when the CPU clock 
frequency is 60 MHz, 30 MHz and dynamically changed. 
The current measured indicates all the currents needed for 
this system, except for speaker drive and back light, when the 
system is conducting LZW compression.  The CPU load is 
controlled by changing the size and the number of images to 
decompress.  As shown in this figure, the CPU drains some 
power even when the CPU load is very small although the 
CPU is mostly in the idle state. Thus, it is advantageous for 
power reduction to employ the lowest possible clock 
frequency.  Obviously, the estimation of the minimum clock 
frequency for a real-time implementation is needed.  

The current consumption for the CPU load of 20% is 120 
mA when the clock speed is 60 MHz without any idle state 
transition. According to Fig. 3, 95 mA is consumed when the 
clock speed is 60MHz with idle state, and 72 mA when the 
dynamic frequency scaling is employed. This shows that the 
dynamic frequency scaling scheme is more efficient than the 
constant frequency operation with idle state when the load 
condition is low.  
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Fig. 3. Current consumption of constant frequency system with 
idle state and dynamic frequency system. 

Table 1 shows the current consumption at each hardware 
block when the CPU load is 10%.  As shown in this table, the 
current consumption in the CPU is more drastically reduced, 
more than 67%, although the total system current is reduced 
by 26%. 

 
TABLE 1.  

CURRENT CONSUMPTION AT EACH HARDWARE BLOCK. 
Current Hardware block
Constant freq. DFS 

CPU 34 mA 11 mA (-67%) 
DRAM 29 mA 29 mA 
LCD display 15 mA 15 mA 
Others 11 mA 11 mA 
Total 89 mA 66 mA (-26%) 

 

III. SOFTWARE OPTIMIZATION TECHNIQUES 
The ARM7TDMI processor has a relatively simple data 

path, where the hardware multiplier only has the accuracy of 
32×8 bits.  This may mean that the CPU is not good for 
executing multiplication intensive digital signal processing 
programs. However, the CPU has a few advantageous 
characteristics for implementing DSP algorithms [8][9]. 
Firstly, it has a fairy large number of registers, 31 for general 
purpose, when compared with traditional programmable 
digital signal processors. Thus, it helps much for reducing the 
memory accesses and shows a quite good compiler 
performance. Secondly, most of the instructions can be 
executed conditionally. It significantly reduces the control 
overhead in control intensive routines like the Huffman 
decoder. Thirdly, it has a 32-bit barrel shifter that can 
simultaneously execute shift and rotation with ALU 
operations. This feature is useful for scaling and 
multiplication by 2 constant. Fourthly, block load and store 
(LDM, STM) instructions are supported, which move 16 
registers from or to memory using a single instruction. Note 
that the block load and store instructions are not normally 
found at the inside of functions in the compiler generated 
codes, thus it needs some manual assembly coding to utilize 
these instructions. 

Figure 4 shows the implementation results, in terms of the 
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needed number of instructions and cycles, for the 
implementation of the IMDCT (Inverse Modified Discrete 
Cosine Transform) function which is needed for MP3 
playback [10]. Three implementations are compared in this 
figure. The implementation ‘A’ corresponds to the one that 
employs 32×32 bit multiplications with no block move, the 
implementation ‘B’ is the one that employs 32×32 bit 
multiplications with block move, and the implementation ‘C’ 
is based on 32×16 bit multiplications with block move. The 
implementation results show that the improvement due to 
efficient data move, block moves, is much larger than the 
reduction of precision in the multiply [11]. 
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Fig. 4. Number of instructions and cycles in IMDCT function. 

 

IV. CPU LOAD ESTIMATION 
The CPU load for executing each software components 

which include image decompression, MP3 playback, CELP 
based speech decoding, and speech recognition is needed for 
determining the optimum clock frequency. The profiling 
results show that the load for MP3 decoding is dependent on 
the bit rate and sampling clock frequency. The CPU load with 
60 MHz clock is 10 % for 56kbps 22.05 kHz, 9.6% for 32 
kbps 22.05 kHz and 7% for 32 kbps 16 kHz. The time for 
CELP decoding is almost constant and is 18% of the 60MHz 
CPU load. However, the CPU load for LZW is very much 
varying in each frame.  
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Fig. 5-(a). Processing time of LZW according to the number of pixels. 

 

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

LZW data size(Byte) 

P
ro

c
e
s
s
in

g
 t
im

e
 (

m
s
e
c
)

Fig. 5-(b). Processing time of LZW according to the compressed data 
size. 

The decompression time for LZW image is shown in Fig. 
5-(a) and -(b). This figure clearly shows that the LZW 
decompression time is proportional to the image size, not the 
compressed data size. 

 Table 2 summarizes the execution time prediction of each 
software component. A 15 msec of overhead, which is added 
to LZW decompression, is needed for updating each frame of 
image, which corresponds to moving pixels from working 
memory to the display memory area. The ADPCM encoding 
time includes the CPU load for drawing speech waveforms 
on the LCD screen.  The speech recognition implemented is 
based on a connected word recognition algorithm, and 
consists of speech acquisition and recognition phases.  The 
CPU is operating at full speed until the result is obtained at 
the recognition phase [12]. 

TABLE 2.  
EXECUTION TIME PREDICTION OF EACH SOFTWARE COMPONENT. 

S/W component Execution time at 60MHz(㎳) 
LZW decompression 1555.1

800
pixel ofnumber 

+×  

MP3 decoding 27.5 
G.729 decoding 42.5 
ADPCM encoding 56.3 
ADPCM decoding 2.5 
Margin 10 

 

V. EXPERIMENTAL RESULTS 
Figure 6 shows the CPU load of an application which 

displays animation while playing MP3 sound. As shown in 
this figure, the CPU load is about 30% at the beginning 
frames, becomes about 95% at the frame number 9, and about 
65% after this frame. When the DFS is employed, the CPU 
clock frequency is changing between 20MHz and 65 MHz, 
and the CPU load of each frame is maintained over 80%. In 
this application, the average current consumption in the 
system level is reduced by 20%. 

The system is operating using two AA-size 1.5V batteries 
that normally have capacity of 1500 mAh.  The power supply 
for the system consists of 3.1 volt for most digital and analog 
circuits, 2.5 volt for CPU core, and 21 volt for LCD. The 
audio amp for the system can produce 150 mW using a 
32-Ohm speaker. 
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Figure 6. CPU load of constant and dynamic frequency systems. 

The current consumption measured at 3.0 volt supply 
(battery terminals) is shown in Table 3 according to the 
activity of the system.  Note that the power for speaker 
driving is included. 

 
TABLE 3.  

CURRENT CONSUMPTION ACCORDING TO EACH ACTIVITY. 
Activity CPU load Original 

current 
Optimized 
current 

Menu display 11 % 92 mA 68 mA 
Song with animation 65 % 175 mA 160 mA 
Speech recognition 100 % 150 mA 150 mA 
MP3 play 10 % 125 mA 100 mA 

 

VI. CONCLUDING REMARKS 
 A low-power handheld multimedia device is developed 

using an ARM7 CPU. A dynamic frequency scaling scheme 
is employed in order to reduce the CPU power consumption, 
which shows that about 20 % of system power saving can be 
achieved when compared to constant frequency operating 
scheme with idle state. The CPU clock frequency is 
determined by the real-time operating system, which sums up 
the CPU loads needed for executing all the software 
components.  The amount of clock cycles for implementing 
each software component is measured by profiling.  
Obviously, the current can be further reduced, without any 
significant change in the power reduction algorithm, if we 
employ a CPU that supports the dynamic voltage scaling, 
such as Intel’s Xscale [13].  
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Abstract 

Cycle-accurate energy measurement is very useful in 
reducing the energy consumption in the CMOS VLSI 
circuits, which was reported in [1]. This paper introduces a 
simple energy measure system, describes three energy 
models for the CMOS circuits, and derives their energy 
equations for a clock edge. Then, we compare their 
accuracy with the simulation and experiment results for a 
simple inverter. We found that instead of representing all 
load capacitance as a capacitor to ground, we should 
separate the capacitance to ground and that to supply for 
accurate energy analysis in implementing an accurate 
joulemeter. 
 
1. INTRODUCTION 

There have been several methods to estimate the per-
cycle energy or power consumed in a CMOS VLSI circuit 
[2], [3]. Simulator-based energy estimation methods are 
simple and popular. Low-level energy estimators are 
accurate but slow for a complex circuit. On the other hand 
high-level simulators are fast but inaccurate. 

We can measure the energy consumed in a CMOS VLSI 
circuit by integrating the instantaneous current value when 
the supply voltage is constant. However, what we can 
measure with an ammeter is not the instantaneous current 
but its time-average. To overcome this limitation, 
measurement using capacitors and switches was recently 
proposed by Chang [1]. 

The contents of the lecture are as follows: 
 

Introduction
Energy Estimation in Measurement System
• Energy model 1
• Energy model 2
• Energy model 3
• Energy model 4

Second Order Effects
• Leakage current
• Overlapping current
• Nonlinear capacitance

Experimental Results
• Altera FPGA
• ARM7TDMI  

 
 

2. ENERGY MEASUREMENT SYSTEM 
The methods using external capacitors and switches can 

integrate high frequency components inherently, as shown 
in Fig. 1. First, the capacitor CM is charged to a certain reset 
level before arriving a clock edge. Although the current is 
spiky when the energy is consumed in the chip, we can 

calculate the consumed energy by measuring the voltage 
drop of VM. The energy transferred into the chip can be 
written as follows,  

2
2

2
1 2

1
2
1 VCVCE MM −=  

 
 

VLSI
Chip
VLSI
Chip

VS

Clock

VM

IM

Clock

VM

IM

V1CM V2

 
 

Fig. 1. Energy measurement using a capacitor and a switch. 
 

The energy E is consumed or stored in the chip under 
measurement. A typical block diagram of the energy 
measurement system using a capacitor and two switches is 
shown in Fig. 2. 
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ADCADCAmpAmp
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S1 S2VM
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Power 
Line

Test Digital IC
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Controller
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Controller

Host 
Computer

Clock
Generator

Clock
Generator

Switch 
Control

VB

CB

 
Fig. 2. Cycle-accurate energy measurement system using a capacitor and 

two switches. 
 
First, switch S1 is closed before arriving a clock edge, 

which charges capacitor CM. to the supply voltage level VS. 
Switch S2 is open during charging capacitor CM, which 
separates the chip from the supply. Note that capacitor CB 
models the total capacitance connected to the internal power 
line, including the on-chip decoupling capacitance, which 
varies after every clock edge. Note that switch S2 is used to 
determine the value of capacitor CB. Capacitor CL represents 
the internal load capacitance, which also varies after every 
clock edge. An amplifier is employed to amplify the voltage 
drop of VM to meet the ADC input range of 1 or 2 volts. The 
voltage drop of VM should be limited not to disturb the 
proper operation of the chip. Consequently, the voltage drop 
of VM must be within 100~200mV, which can be controlled 
by adjusting the size of the capacitor CM. The digital data 
from the ADC is stored in real time in memory. Later, the 
host computer calculates the consumed energy using the 
ADC data. 

Fig. 3 shows the timing diagram of the control signals in 
the measurement system in Fig. 2. When S1 is closed, VM is 
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charged as VS. When S2 is closed, charge sharing between 
CM and CB occurs, which induces a small voltage drop of 
VM. Then, when a clock edge arrives, the chip draws a 
relatively large current, which makes another voltage drop 
of VM. Three sampling points for a clock edge are necessary 
for estimating the consumed energy. Therefore, the clock 
frequency should be lowered to ensure enough settling time 
for both recharging and sampling VM for each clock edge. 

 

t0

TM

Tsettling

Clock

S1

S2

VM

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

VB
Sampling 

Points

 
 

Fig. 3. Timing diagram of cycle-accurate energy measurement system. 

3. ENERGY CALCULATION MODELS 
Per-edge energy measurements will require proper 

modeling and analysis of its internal circuit. A per-cycle 
energy measurement can be obtained by adding two 
consecutive per-edge energy measurements. In this paper 
we describe three models and derive an expression of how 
to calculate the energy consumed for a clock edge for each 
model. 

 
A. Model 1: Energy consumed in the chip under measurement 

It calculates the energy transferred from the capacitors 
CM and CB into the load capacitor CL. If the sampled values 
of VM before and after a clock edge are represented as V1 
and V2, respectively, then we can calculate the consumed 
energy, 

))((
2
1 2

2
2

11 VVCCE BM −+=  

assuming that the capacitors CM and CB are constant. 
However, CB can change for every clock edge. 

To calculate the consumed energy for the rising edge at 
t=t4, first capacitor CM is charged to the reset level VS after 
S1 is closed at t=t1. Then, when S2 is closed at t=t3, charge 
sharing occurs between CM and CB. From the charge 
conservation law (CCL), 

 
( ) )()()()()( 44333 tVtCCtVtCtVC MBMBBMM +=+  

 
Assuming that no leakage current exist in the device 

under measurement, it is clear that VB(t3)=VB(t1)=VM(t1). 
Furthermore, CB(t3) = CB(t4) because CB does not change 
before arriving a clock edge. Therefore, 

 
( ) )()()()()( 44143 tVtCCtVtCtVC MBMMBMM +=+  

 
Because CM is a known constant, capacitor CB can be 

written as 
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Similarly, 
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Consequently, the consumed energy after a clock edge at 
t=t3 can be written as 
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Note that because it includes the measurement distortion 

due to the measurement setup, it does not equal to the 
energy consumed in the chip that is in the real operation 
setup. 

 
B. Model 2: Energy transferred to the chip 

Model 2 calculates the energy transferred into the load 
capacitor after a clock edge, which does not equal to the 
energy consumed after the edge. In this model, we first 
calculate the load capacitance CL per clock edge, which 
does not include any distortion due to the measurement 
setup, assuming that the load capacitance CL does not 
depend on the voltage. Then, we can calculate the energy 
transferred after the edge as follows, 

2
2 DDLVCE =      (1) 

 
VDD in Eq. (1) does not mean the VS in the measurement 

setup but the supply voltage used in the real application 
setup. A half of the transferred energy is consumed as a heat 
in the MOS transistors and the rest of it is stored in many 
load capacitors in a complex CMOS VLSI circuit. However, 
the stored energy of 50% is consumed partially when the 
logic state of an output, where the energy is stored in its 
load capacitance, is changed. 
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Fig. 4. Circuit modeling and four cases according to the output transition at 
the nth clock edge. 

 
To find CL, we first calculate CB, which is the same with 

CB in model 1. After that, we can write CCL for the rising 
edge at t=t4, 

 
( ) ( ) )()()()()( 55544 tVtCtCCtVtCC MLBMMBM ++=+  
 
Then, CL(t5) can be written as, 
 

( ) ( )
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tVtCCtVtCCtC
M

MBMMBM
L

+−+
=     (2) 

 
With Eq. (1) and Eq. (2), we can calculate the energy 

transferred to the chip after a clock edge 
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C. Model 3: Energy consumed in the chip 
In model 2 all load capacitance is represented as a 

capacitor to ground, which is ok only for timing analysis. 
However, for exact energy analysis, we should model the 
load capacitance with both capacitors to ground and 
capacitors to supply in a CMOS VLSI circuit. Logic states 
can be changed after arriving a clock edge as shown in Fig. 
4.There are four cases for the state transitions of the load 
capacitance, where n denotes to the transition for the n-th 
clock edge. 

Using the fact that the capacitors in groups 1 and 2 in Fig. 
4 are equivalent to the internal bypass capacitor CB, the 
circuit in Fig. 4 can be simplified to the circuit shown in 
shown in Fig. 5. Then, the energy consumed for the n-th 
edge can be written as follows, 

( 2
87653 )()()()(

2
1

DDVnCnCnCnCE ⋅+++= )  
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Fig. 5. Simplified circuit modeling for the load capacitance. 
The timing diagram for the energy measurement system 

is redrawn in Fig. 6. When S2 is closed before arriving the 
n-th edge, we can employ the CCL as follows, 
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where CH58(n)=CH(n)+C5(n)+C8(n). 
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Fig. 6. Timing diagram for the energy measurement system. 
 
Then, 
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From the CLL after the n-th edge 
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where CH58(n)=CH(n)+C5(n)+C8(n). Then, 
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Here, CH67(n) can be obtained from the measurements for 
the (n+1)-th edge. When S2 is closed prior to the (n+1)-th 

edge, by employing the CCL, 
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Note that CH67(n)=CH58(n+1). Therefore,  
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From Eqs. (3), (4), and (5),  
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where C5678(n)= C5(n)+C6(n)+C7(n)+C8(n). Consequently, 
the energy consumed after then n-th edge can be written as 

2
56783 )(

2
1)( DDVnCnE ⋅=  

This energy is dissipated as the heat because of the 
transitions corresponding to the n-th clock edge. From 
model 3, we can also obtain the energy transferred to the 
chip at the n-th clock edge, which equals to 

 
2

674 )()( DDVnCnE ⋅=  
 
For more analysis on the three models, we swept VS and 

CM. We calculated the CL and energy based on the equations 
derived in the previous section. And the errors in each 
model to the reference circuit in Fig. 7 are summarized in 
Table I and II. The error in model 1 is very sensitive to both 
VS and CM in the measurement system. Although the error 
is not sensitive to VS in model 2, it gets larger as CM 
decreases. 

However, the error in model 3 is not sensitive to both VS 
and CM and it is rather small, which is less than 1%. Among 
the three models, only model 3 is suitable for exact energy 
measurement. The error of CL in model 3 seems to be due to 
its simplified modeling, which does not include all the 
parasitic capacitors. Note that the error of energy in model 3 
is larger than that of CL because the energy equation in 
model 3 is also simplified, which does not include, for 
example, the effect of the overlapping current of the 
inverter. 

 
 

4. EXPERIMENTAL RESULTS 
We implemented the cycle-accurate energy measurement 

system on a printed circuit board with discrete components 
as shown in Fig. 7. First, we tested it with a simple inverter 
with large load capacitance. Two load capacitors used in 
this experiment are 430pF respectively: one is connected to 
ground and the other is to supply line. And the clock 
frequency we used is 625kHz, which is slow enough to 
satisfy the settling time constraints. 

From the measured data, we calculated the load 
capacitance and the consumed energy for the three models. 
Experimental results are summarized in Table III. Just like 
the simulation results, the error in model 3 was much 
smaller than those in the other models. Note that the error of 
energy in Table III is the same with that of CL because we 
use the energy calculated from CLVDD

2 as a reference. 
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TABLE I 

EXPERIMENTAL RESULT: % ERROR VS. CM. 
 
% error 

Model 1 Model 2 Model 3 CM  
[nF] 

CL Energy CL Energy CL Energy
3.9 - -10.0 8.2 8.2 -1.5 -1.5 
5.3 - -6.1 7.7 7.7 0.2 0.2 
6.8 - -5.3 5.4 5.4 -0.5 -0.5 
8.2 - -4.5 4.9 4.9 -0.3 -0.3 
10 - -3.8 3.5 3.5 -0.5 -0.5 
22 - -2.6 1.4 1.4 -0.5 -0.5 
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Fig. 7. A prototype PCB for cycle-accurate energy measurement  

 

5. CONCLUSION 
Cycle-accurate energy measurement is useful for energy 

optimization in both the embedded software development 
and low-power SOC design. For energy measurement, 
correct circuit modeling and analysis are essential. 
Therefore, in this paper we described three energy models 
that can be used for cycle-accurate energy measurement 
systems and derived their energy equations for a clock edge. 

After comparing their errors through the simulations and 
experiments for an inverter, we found that simple load 
capacitance model to ground is not good enough for energy 
analysis. Instead, we should separate the capacitance to 
ground and that to supply for accurate energy analysis in 
implementing an accurate joulemeter. We also concluded 
that model 3, which is the most accurate, is suitable for 
cycle-accurate energy measurement systems. 

 
References 

 
[1]  Naehyuck Chang, Kwan-Ho Kim, and Hyung Gyu Lee, 

“Cycle-accurate energy consumption measurement and 
analysis: case study of ARM7TDMI,” Proceedings of 
International Symposium on Low Power Electronics 
and Design, pp. 185-190, July 2000. 

[2]  Davide Sarta, Dario Trifone, and Giuseppe Ascia, “A 
data dependent approach to instruction level power 
estimation,” Proceedings of IEEE Alessandro Volta 
Memorial Workshop on Low-Power Design, pp. 182-
190, 1999. 

[3]  R. Yu Chen, R. M. Owens, M. J. Irwin, and R. S. 
Bajwa, “Validation of an architectural level power 

analysis technique,” Proceedings of 35th Design 
Automation Conference, pp. 242-245, June 1998. 



European Summer School on Embedded Systems, Sweden, 2003 24

Event-Driven Energy Characterization 
Frank Bellosa 

  
Abstract—Embedded hardware monitors in the form of event 
counters have proven to offer valuable information in the field 
of performance analysis. We will demonstrate that counter 
values can also reveal the power-specific characteristics of a 
thread. A recurrent analysis of the thread-specific energy and 
performance profile allows the operating system an adjustment 
of the power consumption to the behavioral changes of the 
application. The adjustment can be done with respect to the 
demands of individual applications, users or services.  

The lecture gives two examples for OS-directed power 
management on the level of threads: 

An energy-aware scheduling policy for non-real-time 
operating systems is proposed which benefits from event 
counters. By exploiting the information from these counters, the 
scheduler determines the appropriate clock frequency for each 
individual thread according to the performance requirements. 
This adaptive clock scaling is accomplished by the operating 
system without any application support. Energy measurements 
of a low-power architecture under variable load show the 
advantage of the proposed approach. 

Another use case for event-driven energy characterization is 
dynamic thermal management. The lecture describes a model to 
determine the energy consumption of individual threads and to 
estimate the temperature of a high-power processor without the 
need for measurement.  

This power and thermal model is combined with the 
well-known facility of resource containers to throttle the 
execution of individual tasks according to their energy-specific 
characteristics and the thermal requirements of the system.  

Experiments show that a given temperature limit for the 
CPU will not be exceeded while tasks are scheduled according 
to their attached resource containers. 
 

Index Terms — Operating Systems, scheduling, power  
management, frequency scaling,  thermal management 

I. INTRODUCTION 

To meet the insatiable demand for high performance 
hardware, components with increased gate count and 

clock frequency were developed. The improvements in 
manufacturing processes could not keep the power increase 
at a reasonable level. With the emergence of portable devices 
and the thermal problems of high power processors we are 
suddenly facing a rising awareness for the topic of energy 
management. 

This lecture contributes to this awareness and presents a 
new approach in system software: the on-line evaluation of 
counters that register performance- and energy-critical events. 
We will show that there is not only a correlation between 
events and performance but also between events and power 
consumption. By exploiting these counters the operating 
system has the complete knowledge 
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� where the energy has been consumed, 
� where the time has been spent, and 
� who has been responsible for the use of energy. 

According to the individual demands of each application, 
power management can find a trade-off between energy 
consumption, energy efficiency and quality of service 
demands. To fulfill this task an operating system has a variety 
of options for the activation and configuration of 
energy-critical hardware components. Not only the time of 
activation but also the degree of activation (e.g., the clock 
speed of a processor) can be controlled. 
The next sections describe the benefit of event driven energy 
characterization for improving the energy efficiency of 
processors with variable clock speed and for dynamic 
thermal management of high performance processors. 

II. PROCESS CRUISE CONTROL 
Performance and energy consumption at variable speeds 

are two characteristics which are correlated, but the degree of 
correlation depends on the use of performance- and 
energy-critical hardware components. Only if the operating 
system knows the specific usage patterns of each of the 
managed execution entities (threads or processes), it can find 
the best energy/performance trade-off and select the right 
speed of execution [4]. 

A. The Policy Model 
Our approach to find the patterns is the on-line evaluation 

of event-counters [8]. For a specific architecture we have to 
find a set of countable events that characterize the behaviour 
of a thread concerning performance and energy consumption 
when the thread is executed at various clock frequencies. The 
rates at which these events can happen at a certain clock 
frequency span a multidimensional space which describes all 
the potential patterns a thread could exhibit. 

For each point in the space we can find the proper clock 
frequency that minimizes the energy consumption for a given 
performance requirement. 

We are facing the challenge to partition this space into 
domains with equal clock frequency and to describe these 
partitions (frequency domains) in a way that the scheduler of 
the operating system can determine the clock speed of a 
specific thread by a fast mapping from event rates to clock 
frequencies. The optimal speeds for the various event rates 
and, consequently, the resulting partitions depend on the 
restriction in performance loss. The current set of partitions 
defines the model policy. 
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 Figure 1: Process Cruise Control loop 
 

A scheduler implementing Process Cruise Control adapts 
the clock speed when switching from one thread to another. 
The new frequency is determined by a periodic evaluation of 
the event rates in the latest history of the thread. Therefore the 
scheduler has to find the frequency domain that matches all 
the event rates of the thread. We saw that while the energy 
specific characteristics of a single thread change only slowly 
over time, the characteristics of concurrently running threads 
alter frequently and show a wide variation. For a single 
thread it is sufficient to analyze the behaviour of this thread at 
each context switch. Our approach respects the variation in 
behaviour by adapting the clock speed at each thread switch 
according to the characteristics of this thread. This 
guarantees an optimal speed adaptation. 

The data flow in figure 1 shows the relation of the Process 
Cruise Control model to a car cruise control or any other 
controlled system. Sampled event rates along with 
corresponding execution speeds run into the model policy. 

An optimal speed prognosis is made and applied to the 
application. Again, the new CPU speed is fed into the model 
along with newly measured event rates closing the loop of 
control. 

To summarize, our approach can be outlined as follows:  
� Determine the correlation between the rates of different 

events and both performance and energy consumption. 
� Identify the lowest possible clock frequency (the optimal 

speed) for a certain combination of event rates under an 
user-specified upper bound for performance degradation. 
� On each task-switch, scale the clock frequency according 

to the pre-computed optimal speed for the thread specific 
event rates. 

B.  XScale Frequency Domains 
The Intel XScale 80200 processor used in an Intel 

IQ80310 evaluation board implements one clock and two 
event counters. Under these restrictions, the selection of the 
following events is recommended: 
� The memory requests per clock cycle clearly indicate the 

degree of memory use. The higher the rate of memory 
requests the more the energy performance will benefit from 
a reduction in clock speed as the processor does not waste 
energy for memory stall cycles. 
� The instructions per clock cycle indicate the sensitivity for 

a performance loss due to speed reduction. The lower the 
rate of executed instructions is the less the performance of 
a thread will suffer from a reduction in clock speed. 

Cache misses as an indicator for energy consumption can 
not be used because several event counters for all types of 
energy-relevant cache events are not available on the target 
architecture. Furthermore several counters for different 
cache events would have to be monitored in parallel. 
Therefore we used the counter for memory requests because 
they showed the best correlation to energy consumption. 

event
rates

model policyapplication
current

CPU speed

set new
CPU speed

To span the space of both event rates we constructed 
micro benchmarks producing various event rates. For each 
clock speed, we determined the event rates for each of these 
benchmarks. The next step is to find the minimal clock speed 
which can be tolerated for given performance requirements. 

For our tests we chose 10% as an acceptable performance 
loss. The last step is to partition the two-dimensional space 
into frequency domains. 
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Figure 2: XScale frequency domains for Intel IQ80310 

 
We chose a simple approach with matrices that define the 

frequency domains (for an example see figure 2). The 
dimensions of the matrix are the event rates, the percentage 
of instructions per cycle, ranging from 0% to 100%, and the 
percentage of memory requests per cycle, ranging from 0% to 
3% (this is the maximum value achievable by artificial micro 
benchmarks). A simple matrix look-up operation yields the 
optimal clock speed. 

C. Measurements 
To show the benefits of event-driven clock scaling we 

measured the energy consumption and performance of five 
well known applications to find the optimal clock speed 
according to external energy measurements and to compare 
the optimal frequency with the results of process cruise 
control. We ran these five applications at all possible clock 
frequencies to determine the energy consumption, 
performance and clock speed according to an allowed penalty 
of 10% performance loss. 
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We could prove that it is possible to come very close to the 

optimal clock frequency by an on-line evaluation of event 
counters. For three applications process cruise control 
determined the optimal clock speed. One application (djpeg) 
is scheduled with a speed that is just one step to low. The 
runtime behavior of the postscript interpreter is influenced by 
the content of the postscript file to convert. Therefore the 
frequency switching pattern of the process run depends on 
the content and structure of the input file and varies between 
400 MHz and 600 MHz. 

For the Intel IQ80310 system energy savings of 15% are 
possible without severe performance impact. If we tolerated a 
higher performance degradation, the energy efficiency could 
be improved further. 

D. Limitations 
The selection of countable events was done to support 

performance profiling and not energy profiling. Several 
events which differ substantially in their energy consumption 
cannot be differentiated. An example are read and write 
memory requests which differ in their energy characteristics. 

The qualitative characterization of Cruise Control using 
just two counters was sufficient for best-effort optimization 
of the energy consumption, however it is inadequate for 
quantitative guarantees which require the sampling of many 
more energy-critical events. 

III. DYNAMIC THERMAL MANAGEMENT 
Control-theoretic techniques have proven to manage the 

heat dissipation and temperature starting from the level of 
functional blocks within the processor up to the level of 
complete systems, so that a thermal emergency will never be 
reached [7]. However application-, user- or service-specific 
requirements had to be neglected. The reason is not so much a 
lack of fast acting thermal response mechanisms but missing 
on-line information about the originator of a specific 
hardware activation and the amount of energy consumed by 
that activity. 

In this lecture, we present an event-driven energy-esti-
mation model that employs event-monitoring counters to 
determine on-the-fly the actual power consumption and who 
has used the power in the system. With the specification of 
the cooling system (thermal resistance and capacitance), the 
temperature can be estimated without the need for 
measurement and used to trigger task-specific throttling. The 
event-driven power and thermal model is combined with the 
facility of resource containers [1] to throttle the execution of 
individual tasks according to their energy-specific 
characteristics, their service requirements and the thermal 

demands of the system. We call this operating system 
abstraction Energy Containers. Additionally we present a 
CPU scheduler which identifies and penalizes “hot” 
processes by reducing their time slices. 

process cruise control: application optimal speed 

clock scaling energy savings 

find | grep 400 MHz 400 MHz 15 % 

gzip 466 MHz 466 MHz 10 % 

djpeg 600 MHz 533 MHz 8 % 

factor  600 MHz 600 MHz 4 % 

ghostscript  400MHz – 600 MHz 5 % 

Two target application spaces benefit from dynamic 
thermal management: in the server market, cooling facilities 
play a significant role in the overall power consumption and 
costs. Furthermore, cooling facilities are often 
overprovisioned in order to cope with a cooling unit failure. 
In the laptop market, dynamic thermal management could 
make fans obsolete or at least limit the power consumption 

used for cooling and, as a consequence, achieve longer 
battery lifetime. 

A. Event-Driven Energy Estimation 
The increasing complexity of modern processors (super-

scalar architecture, out of order execution, branch pre-
diction, ...) demands a more elaborate procedure to estimate 
on-the-fly the power consumption. While it was sufficient for 
former architectures like Pentium II to calculate the 
percentage of CPU activity [6], we registered a wide 
variation of the active power consumption between 30 W and 
51 W for the P4 architecture running a compute intensive 
task. We measured the power and energy consumption of a 
set of test programs structured in three groups (see bars in 
figure 3): 

 

 
Figure 3: Measured and estimated power consumption 
 
� ALU: programs which operate entirely on registers using 

ALU instructions like addc, bswap, xor, ... 
� MEM: programs which operate on registers and memory 

(including L1/L2 caches) 
� Micro benchmarks which perform various algorithms 

(checksum, factor, heron, SHA-1, RIPEMD-160, ...). 
Because there are high-power tasks that need about 70% 

more power than low-power tasks, CPU cycles are no longer 
a clear indicator for energy consumption. 

The next step is to use more processor-internal information 
provided by the performance counters on-line. Modern 
processors feature much more performance counters than 
their predecessors. In particular, the Pentium 4 architecture 
provides 18 performance counters which can be used 
simultaneously. 
Our approach to energy estimation is to correlate a 
processor-internal event to an amount of energy. As events 



European Summer School on Embedded Systems, Sweden, 2003 27

being monitored correspond to specific activities, this 
correlation has linear characteristics. Therefore, we select 
several events which can be counted simultaneously and use 
a linear combination of these event counts to estimate the 
processor's energy consumption. 

The event selection was done manually. For each set of 
events, test programs were run and their consumption 
recorded. The data gained from such a test consists of: 
� Energy consumption for m processes: 

( )m
T eeee ,,, 21 Κ=  

� n performance counter values for each of the m processes: 
[ ]j,iaA =  (1≤i≤m, 1≤ j≤ n) 

The problem is to find a vector ( n21
T x,,x,xx Κ= ) with 

2e-xA •  minimal and 0e-xA ¡Ý•  so that an 

under-estimation of the energy will not be accepted. 
The following table shows the final set of events, their 

weights (energy consumption), the maximum event rate, and 
the maximum power contribution of a specific event. We 
found quite promising correlations between energy 
consumption and integer ALU operations, load-/store 
operations and cache-references.  
event weight 

[nJ] 
maximum rate 
(events per 
cycle) 

power contribution
@2GHz[Watt] 

time stamp counter 6.17 1.0000 12.33
unhalted cycles 7.12 1.0000 14.24
uop queue write 4.75 2.8430 26.99
retired branches 0.56 0.4738 0.53
mispred branches 340.46 0.0024 1.62
mem retired 1.73 1.1083 3.84
ld miss1L retired 13.55 0.2548 6.91

For complex floating point instructions, MMX, SSE, and 
SSE2 operations our quest for a set of events failed because 
of a lack of meaningful events. Although these internal 
events are known and are used in INTEL’s architectural-level 
power simulator ALPS [5], they cannot be counted with the 
performance monitoring infrastructure of the Pentium 4. 
Therefore we focused on integer applications to demonstrate 
the viability of our approach. A further restriction is the fact 
that first- and second-level cache misses cannot be counted 
simultaneously, although both are highly relevant events for 
energy estimation. Most applications show a low 2nd-level 
cache miss rate, so we decided to ignore the power 
contribution of 2nd-level cache misses. For some memory 
intensive applications this can lead to an underestimation of 
energy consumption of up to 20%. 

B. Energy Containers 
To manage energy as a first class resource [9] we apply the 

abstraction of resource containers. In contrast to accounting 
to processes or threads, this mechanism considers resource 
consumption on kernel-level as well as resources used by 
server processes working on behalf of clients. Energy 
Containers are a specialized form of resource containers that 
can account energy accurately and with respect to 
client-server relations. When a machine is running under 
energy pressure, processes are throttled according to the 
limits of the energy containers. Energy accounted to an 
energy container is also accounted to its parent container. 

Hence, the root container indicates the total energy con-
sumption of the system. 

The operating system stops all activities that do not have 
enough energy in their energy container and enters 
low-power states to reduce power dissipation. By putting the 
CPU into a low-power state (e.g., HLT-state) for a short 
duration of time, it is possible to modulate the processor 
power consumption. Further potential throttling mechanisms 
are discussed in [3]. 
The energy containers form a hierarchical structure, so that 
one container affects all containers of the sub-tree. The 
top-level resource container controls any energy consuming 
activity in the complete system. By changing the amount of 
energy in this container, system-wide power consumption 
can be managed according to thermal requirements. 

C. From Energy to Temperature 
With the processor's energy input known, we are able to 
estimate the processor temperature by looking at the thermal 
characteristics of the heat sink. The heat sink's energy input 
consists only of the energy consumed by the processor. The 
energy output of the heat sink is primarily due to convection 
(see figure 4).  For details of the thermal model see [2]. 

 
Figure 4: Thermal model 
 
Energy output by heat radiation was not considered because 
the temperature is quit low (< 70º Celsius) and the aluminium 
surface has a low radiation emitting factor. In addition to that, 
leakage power influences the total power consumption. 
Though this effect is temperature dependent, it shows only 
little variation for the temperature ranges of our experiments 
(30º–60º celsius) and is therefore treated as constant. 

Our approach to temperature control is to compute an 
energy limit for each time-slice for the whole computer (= 
root container), based on the current estimated temperature 
and the temperature limit. By limiting the root container’s 
power consumption, the change in the processor’s 
temperature will never result in an overrun of the critical 
temperature. 

 Small errors in the temperature estimation mechanism or 
errors due to changing ambient temperature will accumulate 
over time. We measured an error of 3º–5º C over a period of 
24 hours. In order to prevent such deviations the estimated 
temperature is periodically adjusted to the measured 
temperature. For this re-calibration a period of 10 to 20 
minutes is sufficient. 

In order to examine the effects of energy- or tempera-
ture-aware process scheduling, we modified the allotment 
strategy for CPU time of the Linux scheduler. We imple-
mented a scheduler which computes time slices according to 
the relative power consumption of the process compared to 
the power consumption of the root container. This relation 
reflects the contribution of the process to the current power 
dissipation and, furthermore, to the current temperature level 
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of the CPU. Additionally, the priority computation—the 
decision which process will run next—is based on the 
relative power consumption. With this approach “hot” 
processes are disadvantaged by the scheduler. 

To sum up, we are able to identify hot processes using 
energy containers. We present two means to deal with them: 
first, limiting the power consumption of the attached 
containers automatically throttles hot processes as they spend 
their power budget faster than the others. Second, a 
power-based process scheduler can allot longer time slices to 
energy-efficient processes. While the second approach does 
not waste CPU time, throttling is needed to facilitate thermal 
management. 

D. Evaluation 
The effect of throttling can be illustrated with a web server 

accepting requests from two different classes of clients. 
When a critical temperature limit of 50º Celsius is reached, 
client #1 should be preferred and should get a share of 80% of 
the allowed total power, while client #2 is just allowed to 
consume 20% of the remaining power. Figure 5 shows the 
power consumption of the free running apache tasks working 
on behalf of the two classes of clients before and after 
reaching the predefined limit of 50º Celsius. The root 
container reflects the sum of both client containers plus the 
power consumption of the halted CPU accounted to the idle 
thread.  
 

 
Figure  5: Throttling at 50º according to energy shares 
 

Reading of the event-monitoring counters in a Linux 2.5 is 
done in the timer interrupt (1000 times per second) or when a 
task is blocking. The context switching times with energy 
container support is increased by 49% (5.9 µs) due to 
algorithmic overhead and the time for reading the event 
counters. However for a typical scenario like kernel 
compiling we registered an overall performance loss of less 
than 1% (the time a kernel compile run needs on the original 
kernel compared to our modified kernel). 

Estimating the temperature takes about 5 µs while setting 
new limits to the root container requires 12. The overhead for 
temperature estimation can be neglected because this 
procedure is typically executed 1-10 times per second. 
Furthermore, the overhead is by orders of magnitude smaller 
compared to reading the temperature sensors of the 
motherboard (which takes about 5.5 ms). 

E. Conclusion 
Event-monitoring counters are the adequate source of 

information for on-the-fly energy characterization. 
Restricting our validation to integer applications we could 
demonstrate the benefit of performance monitoring counters 
for finding the appropriate clock frequency, for an estimation 
of energy consumption, and for managing the processor 
temperature. We expect thread-specific throttling and speed 
settings in combination with event-driven energy profiling to 
become an essential element of future operating systems for 
power-sensitive devices. 
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Abstract—Energy is an increasingly important system 

resource in battery-powered mobile computing platforms. The 
Milly Watt Project at Duke University advocates managing 
energy as a first-class operating system resource. Our initial 
focus has been on the operating system design without 
mandating that applications must become energy-aware in 
order to benefit. In our ECOSystem framework, energy use is 
represented by the Currentcy Model. This abstraction provides 
a powerful mechanism to formulate energy goals and to unify 
resource management policies across competing applications 
and multiple device components with very different power 
characteristics.  The ECOSystem prototype demonstrates how 
the processor, disk, and wireless network interface of a laptop 
computer can be managed together to achieve a target battery 
lifetime.  Although not yet incorporated into the ECOSystem 
framework, we also consider techniques for managing other 
important system devices, namely main memory and the 
display. 

 
Index Terms—operating systems, battery lifetime, mobile 

computing devices, energy management. 
 

I. INTRODUCTION 

ENERGY is an increasingly important system resource in 
battery-powered mobile computing platforms, from 
laptops to tiny embedded sensor nodes. The Milly Watt 

Project has advocated that energy be explicitly treated as a 
first-class operating system managed resource [1]. Energy 
has a system-wide impact on the computing platform and the 
operating system is traditionally responsible for the 
system-wide management of resource supply and demand. 
Our challenge has been to explore what the OS can do to 
unify the management of a diverse set of resources under an 
umbrella of energy, achieve specified energy-related goals, 
and not require all applications to become energy-aware in 
order to derive benefits.  Related work on application 
adaptation (e.g., [2]) is valuable and complementary to our 
approach. There has been considerable work on managing 
the energy use of individual devices, for example, CPU 
voltage scaling, disk spindown policies, and energy-aware 
networking. Our work is distinguished by its system-wide 
treatment of energy as a first-class resource. 
 In this short paper, we describe our ECOSystem design 

that elevates energy to a central place in the resource 
management of the system [3, 4].  We describe the Currentcy 
Model 1  that captures the power characteristics of device 
components and provides an energy abstraction for allocation 
and accounting. The ECOSystem prototype provides 
experimental evidence of the effectiveness of our approach.  
Although not yet incorporated into the ECOSystem 
framework, we also present techniques for managing main 
memory and the display.  
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II. THE ECOSYSTEM FRAMEWORK 

A. The Currentcy Model 
The key feature of our model is the use of a common 

unit— currentcy—for energy accounting and allocation 
across a variety of hardware components and tasks. 
Currentcy becomes the basis for characterizing the power 
requirements and gaining access to any of the managed 
hardware resources. It is the mechanism for establishing a 
particular level of power consumption and for sharing the 
available energy among competing tasks. 

The target battery lifetime and our battery model are used 
to determine an appropriate level of current and this is 
translated into an amount of currentcy that can be made 
available during each epoch of time. This currentcy 
allocation is distributed to the competing tasks according to 
their specified proportional shares. Each task uses its 
currentcy allowance to gain access to devices. Each device 
has a pricing policy for deducting currentcy that reflects its 
current power mode and transitions. The calibrated power 
model embedded in the system tracks the power state 
transitions for each managed device and allows accurate 

Figure 1 Currentcy Flow. Target battery lifetime determines overall 
currentcy allocation for an epoch (1), task shares determine per-task 
allocations (2), and device accounting policies  deduct currentcy from task 
budgets (3). 

 
 
1 Currentcy is a coined term, combining the concepts of current (i.e., amps) 
and currency (i.e., $). 



European Summer School on Embedded Systems, Sweden, 2003 
 

30

accounting to the tasks responsible for the device activity. 

B. ECOSystem Prototype  
The ECOSystem (Energy Centric Operating System) 

prototype is a modified RedHat Linux version 2.4.0-test9 
running on an IBM ThinkPad T20 laptop. This platform has a 
655MHz PIII processor and we assume an active power 
consumption of 15.55W. The disk is an IBM Travelstar that 
we model in ECOSystem with costs of 1.65mJ per block 
access and 6000mJ for both spinup and spindown, and with 
progressive costs/timeouts for levels of idle power states. The 
wireless network is an Orinoco Silver PC card supporting 
IEEE 802.11b. It has three power modes: Doze (0.045W), 
Receive (0.925W) and Transmit (1.425W). All other devices 
contribute to the base power consumption, measured to be 
13W for the platform. There is a simple user interface to set 
the target battery lifetime and set task shares. There is a new 
kernel thread kenrgd that wakes up periodically and 
distributes currentcy appropriately. 

C. Exploration of the Policy Space 
The Currentcy Model framework and the ECOSystem 

prototype serve as a testbed for exploring the range of 
policies that can be expressed in terms of currentcy. Without 
some abstraction like currentcy, there is no language in which 
to explicitly formulate desired energy-related behaviors and 
solutions. 

Our initial, basic policies are simply pay-as-you-go [3]. A 
task can gain access to a managed device as long as it has 
currentcy to pay for the request. Consider processor 
scheduling as an example: Ready-to-run tasks with currentcy 
remaining can be scheduled for a timeslice. When there are 
no tasks with any currentcy left, even though they may be 
otherwise runnable, the processor is halted until the next 
epoch’s allocation. Without assuming adaptation by the 
application, this seems a reasonable way to throttle back 
service to meet the energy goal. Using feedback from a smart 
battery interface, the allocations can be adjusted to correct for 
modeling errors.  I/O requests that cause disk activity result 
in currentcy being deducted from the responsible task with 
the cost of spinning up and down the disk shared by all tasks using 
the disk during the period between spinup and spindown.  

Subsequent policies [4] have been designed to address 
more elaborate behaviors and solve some performance 
problems that arise in these simple policies. We consider four 
new goals: 1) reducing residual battery capacity at the end of 
the targeted battery lifetime when it is no longer needed, 2) 
dynamic tracking of the energy needs of competing 
applications for more effective energy sharing, 3) reducing 
response time variation caused by limited energy availability, 
and 4) energy efficient disk management.  We have 
developed a currentcy conserving allocation policy to 
reclaim unspent energy by adapting to energy consumption 
patterns which are made observable by the currentcy 
abstraction. We have developed a currentcy-based 
scheduling policy that recognizes the global relevance of 
energy consumption anywhere in the system on the 
scheduling decision, resulting in more robust proportional 
sharing of energy.  We further enhance that scheduling policy 

to pace the energy consumption, thus reducing response time 
variation. Finally, we demonstrate how to shape disk access 
patterns to amortize the energy costs of spinup/spindown 
across multiple requests and thereby reduce the average 
energy used per request. We also show the energy and 
performance benefits of aggressive prefetching while the 
disk is already spinning. 

                                                                                                  
 

D. Experimental Results 
To investigate the impact of energy accounting 

inaccuracies, we use a CPU-intensive microbenchmark, but 
deliberately introduce an accounting error for the CPU power 
consumption (14W instead of the measured 15.55W). Each 
experiment with different target lifetimes is run until the 
battery is depleted. Figure 2 shows the target battery lifetime 
on the x-axis and the achieved battery lifetime on the y-axis. 
One curve demonstrates the behavior of the system without 
correction, in this case continuously missing the target 
battery lifetime by approximately 10%. Finally, another 
curve on the graph shows that with our periodic corrections, 
we are able to achieve the target despite the deliberately 
introduced error. We conclude that ECOSystem is successful 
at managing the battery lifetime. 

Currentcy conserving allocation allows the system to 
redistribute currentcy allocations from tasks that have more 
than they need to tasks that can use more.  The problem arises 
when tasks that are entitled to large currentcy allocations but 

are unable to consume their entire allocations (e.g., during 
think time) essentially throw away their unspent currentcy. 
To evaluate the benefits of currentcy conservation, we use a 
workload consisting of a gqview image viewer and ijpeg. 
Gqview is set to autobrowse mode where it continuously 
loads each of 12 images in a directory with a 10 second 
“think time” pause between each image. The computationally 
intensive ijpeg is run in a loop to continuously encode and 
decode an image residing in memory. The overall currentcy 
allocation is equivalent to 12000mW with 8000mw for 
gqview and 4000mW for ijpeg.  With its think time, gqview 
can only use an average of 7000mW whereas the 
computationally intensive ijpeg can easily consume up to 
15.5W in the processor.   

Figure 2 Achieving a target battery lifetime. With feedback from 
the smart battery, the achieved battery lifetime matches the target 
lifetime in spite of accounting errors.  
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Figure 3 shows the power consumption in each epoch over 
a 100 second time interval. This shows that when gqview is 
idle (i.e., during “think” time with zero power consumption), 
ijpeg can consume maximum CPU power. However, when 
gqview is active, ijpeg is limited to its 4000mW allocation.  
There is little energy capacity remaining when the battery 
lifetime is reached (less than 1%).  
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respond to observable memory access patterns. We have 
explored controller policies that are based on the idle time 
between runs of accesses (which we refer to as gaps) and 
threshold values to trigger transitions [5]. Figure 4 illustrates 
a policy that transitions between active and powerdown 
modes. While the memory has outstanding requests, the 
memory chip stays active. Upon the completion of those 
requests, the chip automatically goes to standby. When the 
idle time exceeds a threshold (e.g., gap i), the chip transitions 
into powerdown and stays there until the start of the next 
access (the end of the gap). For gaps shorter than the 
threshold (e.g., gap j), the memory remains in standby.  

Our results, based on simulation and analysis, have 
Figure 3 Currentcy conserving allocation.  The three horizontal lines
represent (from top to bottom) the total allocation, the allocation for
gqview, and the allocation for ijpeg.  At point A, gqview is active, so
ijpeg is limited to its allocation.  At point B, gqview is in its think time, so
ijpeg can benefit from its unused currentcy. 
. Summary 
ECOSystem continues to provide a productive 

nvironment for investigating unified energy management. 
ur results so far have shown that the currentcy model is a 
owerful framework for expressing energy management 
olicies and that our currentcy-based policies, by being able 
o capture aspects of global energy use, can provide more 
oherency to system-wide energy management. We plan to 
ncorporate more components into the explicitly managed set 
f devices and experiment with other energy-related 
roblems. 

III. ENERGY MANAGEMENT FOR MEMORY 

. Power-Aware DRAM Technology 
In addition to components that our ECOSystem prototype 

an manage on existing laptop platforms, the Milly Watt 
roup has considered emerging technologies that have not 
et become widely integrated into products. With the recent 
ntroduction of DRAM chips that allow transitioning 
etween power states (e.g., Rambus RDRAM and Intel 
obile-RAM), there are opportunities to consider the role of 

he operating system in the energy management of main 
emory. First, we introduce the hardware characteristics we 

ssume. 
Power-aware memory chips can transition into states that 

onsume less power but introduce additional latency to 
ransition back into the active state in order to be accessed. 
he lower the power consumption associated with a 
articular state, the higher the latency to service a new 
emory request.  
The memory controller can exploit these states by 

mplementing dynamic power state transition policies that 
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Figure 4 Memory access behavior.  This shows the relationship of 
thresholds, gaps, and state transitions in a 2-state memory controller 
policy. 
plored how to determine the best threshold values [6, 7] 
ven the gap distribution from a particular workload. We 
ve found that in many cases, a good static threshold policy 
to transition immediately (i.e., a threshold equal to zero). 
We have also investigated the synergy between 
wer-aware memory and dynamic voltage scaling [8]. We 
ve shown that the interaction between these two 
chnologies affects both memory controller policies and 
heduling policies.  

 The Role of the OS: Power-Aware Page Allocation 
Given dynamic memory controllers managing the power 
tes of the memory chip, we next consider how the 
erating system can facilitate better energy efficiency. The 
rtual to physical page mapping can be tailored to cluster 
ges into the fewest number of chips or with pages of 
ilar access patterns or activity levels.  

Our study of page placement policies [5] assumes the 
aracteristics of Rambus DRAM – the power states as well 
 the high bandwidth possible from a single chip.  This 
ature allows pages to reside within a single chip rather than 
 interleaved across chips. In this context, sequential first 
uch page allocation in conjunction with memory controller 
licies that dynamically adjust the power mode of each 
dividual chip independently produces dramatic simulation 
sults.  For a set of memory traces from popular productivity 
plications and from SPEC benchmarks, we have found 
provements of 80-99% in an energy*delay metric over 
ditional full-powered memory devices. Related work [9] 
oposes that the OS do the transitions at a context switch. 
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IV. DISPLAY MANAGEMENT 

A. The FaceOff Design 
The display is another major consumer of power in a 

typical battery-powered device. The display exists solely for 
the purpose of user interaction and therefore it is only 
necessary when someone is looking at it. There are many 
times when a user may turn her attention away from the 
computer display, perhaps to answer a phone call or to focus 
on some other distraction. On the other hand the conventional 
display power management scheme that is based on a timeout 
from a lack of user input events may be too aggressive for 
some applications. A user reading an electronic book or 
examining a web page with complex content might experience the 
annoying behavior of the display timing out. 

Based on the simple intuitive idea that the display is not 
needed if no one is looking at it, we evaluate our power 
management method, called FaceOff, that uses a web cam 
mounted to the display of a laptop as a sensor [10]. The 
camera periodically captures images and a face detection 
algorithm determines the presence or absence of a user 
looking at the display. The display is turned off and back on 
based on the results of the face detection. Detecting an area of 
skin color in the image has proved adequate for our purposes. 

B. Prototype and Preliminary Results  
We have built the FaceOff prototype on an IBM T21 

Thinkpad running Red Hat Linux. The camera is a color 
Logitech QuickCam 3000 web cam that connects via USB to 
the laptop with an average measured power consumption of 
1.5W. The display power states are defined in the ACPI 
specification and supported by both the laptop hardware and 
the operating system. On this laptop, the display consumes 
approximately 8.5W. In the future, FaceOff will be integrated 
into ECOSystem. 

Preliminary experiments with our prototype have been 
done to determine whether this method can produce a 
measurable reduction of energy consumption in the system 
even after accounting for the added computing energy costs 
for the face detection algorithm and the energy consumed by 
the camera. The results are encouraging.  The addition of a 
very low power motion sensor is proposed to avoid overhead 
during long user absences.  Future work will study the user’s 
experience with FaceOff. 

V. CONCLUSION 
ECOSystem, power-aware page allocation, and FaceOff 

span the typical components of a mobile computing platform. 
Our goal is to take a system-wide view and show that 
unifying resource management in terms of energy 
management is a promising approach. 
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Modeling and Optimization of Embedded Systems
using Constraint Programming

Krzysztof Kuchcinski

Abstract— In this paper we briefly discuss embedded computer
systems and related design problems. We propose to use con-
straint programming methods to solve many of these problems
in a way that is elegant, flexible and efficient at the same time.
First, we briefly introduce finite domain constraints and then
give a very simple scheduling and functional units assignment
example taken from high-level synthesis area. We then provide a
short list of other selected applications for our approach together
with related references. Finally, we conclude our discussion by
pointing out several advantages of our approach.

Index Terms— Embedded systems, high-level synthesis, system
synthesis, constraint programming.

I. INTRODUCTION

EMBEDDED computer systems typically perform specific
functions, such as process control, digital signal pro-

cessing, image processing or multimedia applications. They
are usually specified by communicating concurrent processes
and implemented in software and hardware in a distributed
heterogeneous environment. The software is executed on a
processor or several processors while hardware is usually
provided as specialized ASICs. The communication channels
are implemented by buses, point-to-point links or shared
memories.

An important part of distributed embedded system design
space exploration is partitioning of the system specification
into processors, ASICs and communication channels as well
as mapping and scheduling of different system functions
on available resources. Possible system implementations are
supposed to meet specified performance while providing a cost
efficient system architecture. Several other constraints, such as
power consumption or fault-tolerance, might be also consid-
ered. The design space exploration usually takes into account
possible system structures, different design constraint as well
as the execution profile of the system together with parameter
estimation and tries to find different design alternatives.

Different modeling and optimization approaches have been
proposed for embedded systems. The most common approach
is based on different kind of graph-based models. The system
functionality is modeled using graphs or more complex for-
malism, such as Petri nets. The optimization and design space
exploration phase is based on different heuristics which are
applied for specific design problems.

Integer Linear Programming (ILP) or Mixed Integer Linear
Programming (MILP) based approaches are also considered.
These methods produce optimal solutions while suffering

The author is with the Department of Computer Science, Lund University,
Lund, Sweden (e-mail: krzysztof.kuchcinski@cs.lth.se).

usually from long execution times and practical limitation on
the size of the problem. The MILP method requires a careful
formalization of the problem as a set of linear inequalities.
Usually, two types of variables are used; system parameter
variables, such as timing variables, and binary variables. While
the system variables represent real values assigned to system
parameters, the binary variables are introduced to represent
implementation decisions regarding the system configuration.
The number of the binary variables and the related inequalities
tends to be very large, even for moderate size problems, which
results in long execution times for finding optimal solutions.

In this paper, a new method for embedded system model-
ing and optimization is presented. This method is based on
constraints solving techniques [1]. A system is specified by a
set of constraints over the finite domain of integers. The con-
straints are given as inequalities and specialized combinatorial
constraints, and specify system constraints as well as resource
constraints. The constraint solving techniques are then used
to find different solutions, optimal or suboptimal ones, which
satisfy given constraints and optimize a given cost function. In
our case, in addition to constraint consistency techniques we
use a branch and bound algorithm with depth-first-search or
partial-depth-first-search methods to find a system implemen-
tation. The prototype constraint programming system, JaCoP,
has been implemented in Java (see, for example [2]) and tested
on many examples. This paper summarize our previous studies
and related results which has been published.

Our approach uses extensively constraint programming to
address different embedded systems design problems ranging
from partitioning to scheduling and memory assignment. We
make an extensive use of finite domain constraints without
limiting them to linear equations and inequalities. We also
combine application constraints and resource constraints and
propose a new constraint representation for different design
problems. Finally, we use constraints for design space explo-
ration and design optimization. The optimization minimizes
an explicitly given cost function while satisfying constraints
set.

The design flow of our approach is depicted in Figure 1. The
constraints are extracted from a design specification as well
as defined by a designer. Optimization criteria, if needed, are
also defined as constraints. All defined finite domain variables
(FDVs) and constraints are then placed in a store that is later
used by a solver to find a solution. The solver uses constraint
consistency and entailment (satisfiability) methods to keep the
store consistent while searching for a solution. Search methods
find an assignment to FDVs that satisfies all constraints
imposed on these variables. The solver offers a number of
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FD variables
and constraints

FD variables and con-
straints generated from
design specification

Design-specific FD
variables and constraints

FD solver (JaCoP)

Solution

FD variable and con-
straints defining opti-
mization criteria
(optionally)

- FD variables and con-
straints

- constraints consis-
tency and entailment,

- search methods (opti-
mal and heuristics).

User-specific
search methods
and optimization
heuristics

Fig. 1. The general structure of our constraint-driven scheduling and resource
assignment system.

general purpose search methods and optimization algorithms
but a user can still define his own methods and heuristics.
Since we keep the same representation for all constraints we
have a unified framework that makes it possible to integrate
different algorithms for enforcing constraint consistency and
checking their entailment as well as different search methods.

The rest of this paper is organized as follows. Section II
introduces finite domain constraints. These constraints are later
used in section III to illustrate how a simple design problem
can be modeled and used for optimization. We also point
out other applications of constraint programming published
in our previous papers. Finally, the conclusions are presented
in section V.

II. FINITE DOMAIN CONSTRAINTS

Finite domain constraints are used in our approach to
specify different properties and restrictions imposed on the
specified design. We first introduce a constraints satisfaction
problem (CSP) for finite domain constraints and then present
our formulation of the digital system modeling in terms of
these constraints.

CSP is a 3-tuple S = (V,D, C) where
V = {x1, x2, . . . , xn} is a finite set of variables, also

called finite domain variables (FDVs),
D = {D1,D2, . . . ,Dn} is a finite set of domains, and
C is a set of constraints restricting the values that the

variables can simultaneously take.
For each variable xi, a finite set Di ∈ P(Z) \ ∅ of possible

values constitutes its domain, called a finite domain (FD). For
example, the specification T :: {1..10} defines FDV T , which
can have values 1, 2, . . . , and 10 while the specification R ::
{23, 56} defines FDV R, which can have a value of either 23
or 56.

A constraint c(x1, x2, . . . , xn) ∈ C between variables of
V is a subset of the Cartesian product D1 × D2 × . . . × Dn
that specifies which values of the variables are compatible
with each other. In practice, the constraints are defined by
equations, inequalities, combinatorial constraints, or programs.
We use this convenient method to define constraints. For
example, an inequality T1 + D1 ≤ T2 defines a constraint
on three FDVs T1, D1 and T2.

Each constraint can be in one of three states: satisfied,
not satisfied or in a state that cannot yet determine whether

TABLE I
DIFFERENT STATES OF CONSTRAINT X < Y

X :: 1..5, Y :: 6..10 X < Y satisfied
X :: 6..10, Y :: 1..5 X < Y not satisfied
X :: 1..10, Y :: 1..10 X < Y ‘don’t know’

after consistency enforcement
X :: 1..9, Y :: 2..10

the constraint is satisfied or not (‘don’t know’ state). If
the constraint is in the ‘don’t know’ state the consistency
enforcement for this constraint can be applied. A particular
program that implements a consistency method is also called
a propagator since it propagates changes in FDVs to domains
of all FDVs, involved in a given constraint, by narrowing their
domains. Combinatorial constraints are usually implemented
using several propagators that consider different aspects of
their consistency. Table I illustrates different states of con-
straint X < Y , for example.

A solution s to a CSP S, denoted by S |= s, is an
assignment to all variables V , such that it satisfies all the
constraints. There usually exist many solutions that satisfy
the defined constraints. They have different quality, which is
defined by a related cost function. In most design problems, we
are interested in optimal solutions that minimize or maximize
this cost function. An optimal solution s to a CSP S is a
solution (S |= s) which minimizes or maximizes a value v
assigned to a selected variable xi.

The standard method to find a solution to a CSP is to
systematically assign FDVs with values from their domains.
After each assignment the consistency of all constraints that
contain changed FDVs is carried out. The process finishes
when each variable has a value. If during the assignment an
empty domain for a FDV is detected the process fails and
backtracking is initiated. This is usually implemented as a
depth-first-search method and the optimization uses some kind
of branch-and-bound algorithm.

The efficiency of constraint programming methods is im-
proved by using combinatorial constraints. These are con-
straints which encapsulate a particular problem and offer more
efficient propagation methods than collection of primitive con-
straints. This is achieved by implementing algorithms known
from operation research, mathematics, geometry, etc. For
discussion on combinatorial constraints for scheduling see, for
example [3]. Combinatorial constraints, such as cumulative
and diff2 constraints, are used heavily in our approach.

The diff2 constraint, for example, defines restriction on
placement of 2-dimensional rectangles. It takes as an argument
a list of such rectangles and assures that they do not overlap.
In our approach, we use the diff2 constraint mainly for
definition of resource assignment constraints. In this case, a
rectangle represents a task.

III. MODELING WITH CONSTRAINTS

In this section we will present simple constraint program-
ming formulation of a scheduling problem taken from high-
level synthesis. This formulation is based on well-known data-
flow graph (DFG) representations.
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(c) A generated schedule for 1 adder and 1 multiplier

T1+D1 ≤ T6, T6+D6 ≤ T9, T2+D2 ≤ T7,
T3+D3 ≤ T8, T4+D4 ≤ T8, T8+D8 ≤ T10,
T5+D5 ≤ T10,

for each i
for each j > i

(Ti+Di ≤ Tj ∨ Tj+Dj ≤ Ti ∨ Ri ≠ Rj)
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o6 o7 o8

o9 o10

(b) Scheduling constraints

adder multiplier

Fig. 2. A simple data flow graph, scheduling constraints and its possible
schedule.

Assume that we have a set of partially ordered operations or
tasks. We use the terms operation or task in a general sense.
They represent an atomic computation such as addition or
multiplication in HLS or a specific algorithm such as discrete
cosine transform in system-level synthesis. The partial order
is usually represented using DFG as depicted in Figure III.a.

We first define FDVs specifically for this problem and later
define resource assignment and scheduling requirements as
finite domain constraints. For each operation, oi, we define
three FDVs, Ti, Di and Ri which represent the start time
of the operation, the operation’s delay and the resource used
for its execution, respectively. Figure III.b depicts constraints
defined for scheduling the DFG. First, operation precedence
constraints for operations o1, o2, . . . , o10 are defined as
inequalities. After that constraints on resource sharing are
defined. They prohibit resource sharing at the same control
step and are defined using three disjunctive constraints for
each possible combination of operations.

A simple schedule for this example, which uses one adder
and one multiplier (both with one clock delay), is depicted in
Figure III.c. This schedule is found using a standard solving
method provided by constraint programming. This method
finds a solution to the imposed constraint by systematic
assignment of values to FDVs. Consistency of all constraints is
enforced after each assignment. This prunes domains of FDVs
and reduces the size of the search space. Combination of the
FDVs assignment and branch-and-bound techniques provides
standard optimization method for constraint programming.

The example can be further improved by replacing all
disjunctive constraints constraints imposed in two for each
loops by single diff2 constraint [2].

IV. ADVANCED MODELING ISSUES

Various assumptions on tasks and scheduling methods
can produce different scheduling constraints. Our formulation
makes it possible to easily model multicycle operations, chain-
ing or pipelined components in HLS. Algorithmic pipelining
can also be modeled and solved efficiently [2].

HLS with conditional behaviors creates new challenges for
optimization. It is difficult since it introduces new optimization
opportunities by exploiting conditional resource sharing and
speculative execution. Our methods provide a way to model
multicycle operations and chaining together with conditional

resource sharing and speculative execution. We can assign
both functional units and registers while making possible to
conditionally share these components [4].

Register assignment traditionally requires careful analysis
since registers can be shared between different variables.
This assignment is decided based on the lifetime analysis
of variables. The lifetime analysis, usually performed after
scheduling, determines a time interval when a variable is
valid and needs to occupy a register. In our approach, the
lifetimes of variables can be modeled using rectangles (diff2
constraint) that span on time axes during define-use time of
variables [2]. This makes the modeling very easy and clear as
well as introduces opportunity to make scheduling and register
assignment simultaneously.

A solution of the imposed constraints provides a feasi-
ble schedule which fulfills all requirements (i.e., imposed
constraints). Optimization can try to minimize different de-
sign parameters, such as the number of time steps, cost of
used resources, power consumption, register/memory usage
or a combination of these. In addition to standard constraint
programming optimization methods, based on branch-and-
bound principle, one can develop heuristic methods for specific
design problems.

Constraint programming environment offers a flexible envi-
ronment for solving different design problems. For example,
it is possible to handle different scheduling problems while
providing good performance. This is achieved mainly by
efficient use of combinatorial constraints. These constraints
provide efficient algorithms for narrowing domains of FDVs.
More discussion on applying specific combinatorial scheduling
and resource constraints for embedded system design problems
can be found in [2], [4]–[8].

Our approach has been evaluated using both commercial
solvers [9], [10] as well as a constraint programming li-
brary developed specially for our purpose [2]. This con-
straint programming library, called JaCoP (Java Constraint
Programming environment), offers a set of constraints and
search methods for problems found in embedded system
design.

Different extensions to model task graphs and related system
scheduling and assignment constraints has been studied and
included in our formulation [8]. Our approach can handle these
design problems and offers new modeling opportunities. For
example, constraint programming can be used for design space
exploration and examination of different parameters, such as
execution time, cost, memory consumption, and energy (see,
for example [11], [12]). In [13], an algorithm which examines
execution time and energy consumption of a given application,
while considering a parameterized memory architecture, is
presented. This algorithm produces Pareto trade-off points
representing different multi-objective execution options for the
whole application.

Constraints can be used to narrow design space by making
partial decisions. This idea is exploited for task clustering
problem and presented in [14]. Instead of clustering tasks, it is
proposed to add additional constraints on task assignment and
achieve reduction of design space. This approach can handle
non-linear clusters which traditional clustering cannot because
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of deadlock problems.

V. CONCLUSION

In this paper, we have briefly presented the method for
embedded system modeling and design. Our method uses
finite domain constraints to model such systems and related
constraint solving techniques to find a final system imple-
mentation. The presented approach makes it possible to mix
different types of constraints in a single model and use
different search methods as well as different optimization
techniques. Both complete and heuristic search methods are
possible and therefore this approach is feasible in practice for
large design problems that cannot be solved exactly. Optimal
solutions can be found when using complete search methods
while the search space might be artificially cut for heuristic
search techniques.

Our approach, based on CP techniques, for system modeling
and design has several advantages that can be summarized as
follows:
• Constraints can be used to formalize both a system model

and non-functional requirements of different types. The
final set of constraints specifies uniformly all require-
ments on an implementation.

• A set of constraints can be easily extended with new con-
straints to accommodate new requirements on a design
without changing related synthesis algorithms.

• Different constraint solving techniques, heuristics and
complete optimization methods, can be used to solve the
constraint model of the system.

• The use of constraints improves the general quality of
a design process by providing a way to control all con-
straints in the same environment and assuring fulfillment
of all constraints.

• It provides a unifying framework for different constraint
consistency algorithms which, by narrowing domains of
finite domain variables, contribute to a solution satisfying
all constraints.

The experimental results, published in different papers,
prove usability of CP approach. It is competitive to both
(M)ILP approaches and domain specific heuristics. It usually
can provide good solutions in a reasonable time. On the other

hand CP offers possibility to incorporate well known heuris-
tics. It is interesting approach since for the same model we
can use optimal methods, meta-heuristics or domain specific
heuristics.

Concluding, the CP approach to embedded systems design
provides an attractive alternative to both domain specific
heuristics and optimal methods based on (M)ILP.
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Embedded Systems Computer Architecture 
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Jakob Engblom 

  
Abstract—Embedded systems are computer systems used as 

components in other systems. It is a very broad field encom-
passing a large number of very different requirements, and the 
computer architecture of embedded systems reflects this 
variation by a large degree of specialization to application 
areas.  
 

Index Terms— Embedded Systems, Computer Architecture 
 

I. INTRODUCTION 

Embedded systems are computer systems used as compo-
nents in other systems. It is a very broad field encom-
passing a large number of very different requirements, 

and the computer architecture of embedded systems reflects 
this variation.  

By their nature, embedded systems are special-purpose 
systems. In general, compared to a desktop or server machine, 
the computer employed in an embedded system will address a 
rather narrow, well-known, and fixed application. This 
makes it possible to specialize the computer architecture to 
address this particular application. 

The performance demands of the system are usually 
well-defined at the design stage, and they are not likely to 
change over the lifetime of the system. This means that the 
performance and capabilities of an embedded system are 
targeted to the needs of the application. Extra performance or 
extra features over and above the particular needs of the 
application are a waste, not a feature. Sufficient performance 
is indeed sufficient. This is why billions of old 8-bit 
processors are still sold every year into the embedded market 
– for many tasks, they offer an acceptable solution.  

There are three factors that need to be balanced to deter-
mine the perfect computer base for an embedded system. The 
performance has to be sufficient. The cost has to be 
minimized. The power consumption (and heat production) 
has to be within design bounds. It is hard to satisfy all three 
goals simultaneously. Low power and low price also means 
low performance. Higher performance usually brings with it 
higher power consumption. Getting high performance cheap 
is always difficult. Sometimes, systems will need to be 
redesigned or specifications changed to accommodate the 
available processing power. Your mobile phone cannot 
currently have 3D graphics that can compete with a desktop 
PC, due to power and size constraints.  

The best balance of power, performance, and cost is 
usually found in computer architectures specialized towards 

a certain task. Barring a huge difference in production 
volumes, a general-purpose machine will always cost more 
and use more power than a special-purpose machine for the 
same problem. This is what gives the embedded systems 
space its unique diversity and room for innovation. 
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One consequence of the attractiveness of specialized 
processing is that a system will often have multiple 
processors, each specializing in a particular type of task. A 
common distinction is between two styles of processing: 
control plane and data plane. The control plane is the part of 
a system that makes decisions and controls its behavior; it is 
usually dominated by decision making and data lookup. For 
example, in a telephone switch, this includes setting up the 
circuit for a phone call. The data plane, on the other hand, is 
the part of the system that is in charge of processing and 
shuffling data around; it is dominated by repetitive data 
movement and computations. In the phone switch example, 
this is the part that actually transports the sound stream from 
sender to receiver. Once the control plane has set up a call, 
the data plane will take over and do the work as long as the 
call is connected. This model, splitting control decisions and 
data is quite common, even though it obviously does not 
cover all embedded systems. 

A final property of embedded systems that is often 
overlooked is the longevity of the systems. Many embedded 
systems, especially in the military and aerospace fields, have 
very long lifetimes, often reaching into decades. This makes 
future parts and tools availability a big issue in the design 
phase, as longevity has to be planned for.  

II. EXAMPLES 
To give an idea for the wide span of systems that can be 

called embedded, we will go through some examples.  
An advanced toy like the Lego Mindstorms robotics con-

struction kit contains a fairly simple processor: an 8-bit 
Hitachi H8 processor with 32k of ROM and 32k of RAM 
provides the brains for this quite sophisticated system. This 
offers a cheap and effective solution for creating a very fun 
smart toy.  

A typical (non-smartphone) GSM phone contains a 
number of processors. An 8-bit processor might take care of 
the user interface, games, etc., while a 16-bit DSP provides 
the processing power necessary for digital voice encoding 
and decoding. Apart from these main processors, the 
Bluetooth unit in the phone contains an embedded 32-bit 
RISC processor used to process the communications protocol, 
as does the IR port. For smartphones that integrate more 
functions, 32-bit main processors are becoming necessary. 
So what we have is a small portable multiprocessor system. 

Modern cars from manufacturers like Volvo, BMW, or 
Mercedes contain up to a hundred embedded processors. 
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Some are powerful 32-bit processors used in engine control 
and similar compute-intensive tasks, while most are simpler 
16-bit and 8-bit processors used to control various functions 
around the car (windows, locks, ACC, ABS brakes, etc.). The 
processors communicate with each other using buses like 
CAN, LIN, and FlexRay. Cars are extremely heterogeneous 
distributed systems. Since cost control is of essence for 
mass-production items like cars, each electronic unit is 
cost-minimized, even at the expense of a somewhat higher 
software development cost (since development costs are 
one-time expenses, while per-unit costs are incurred for each 
car produced). The processing power in cars is located where 
things need to happen; centralization is not an option.   

Telephone systems contain a large number of embedded 
systems with varying computational needs and styles. For 
example, mobile phone base stations are computation-inten-
sive digital signal processing systems. Such systems contain 
huge numbers of 32-bit or floating-point DSP processors to 
encode and decode radio signals and maintain the 
connections to the mobile phones. It is a very parallelizable 
system: each active phone requires the same processing of 
independent data, giving thousands of independent 
computation threads to spread across the DSP processors. 
They offer an almost perfect parallel workload. Several 
startups have tried to address this market with heavily 
parallel architectures.  

Enterprise networking equipment like switches, routers 
and storage controllers make up another class of embedded 
systems. They are often quite similar to regular computers, 
containing one or a few 32-bit or 64-bit RISC processors, and 
running an operating system like Linux. However, the 
architecture is optimized to the movement of large amounts 
of data through the machine, using special line cards to take 
care of moving data while the main processor is only rarely 
involved. For the highest-capacity systems, custom CPU 
architectures are often employed, since regular processors are 
not well-suited to the task of packet processing.   

Large military systems like radar stations and combat ships 
require enormous amounts of processing power, and here one 
can find regular multiprocessor servers working as embedded 
systems; albeit in special military-hardened cases. Even a 
Sun server can be considered an embedded system in the 
right circumstances! Often, military systems have tight space 
requirements, as ever more computing power is retrofitted to 
designs intended for far fewer computers.  

Space-based systems offer another extreme: they need to 
employ special radiation-hardened cores and seldom enjoy 
the luxury of high clock frequencies or 32-bit processors.  

III. THE MARKET 
Embedded processors make up about 98% of all 

processors shipped (by number). Of about eight billion 
processors manufactured each year, only around 200 million 
find their way into desktops and servers. Looking at the 
overall semiconductor market, processors only make up 
about 2% of the numbers of parts sold, but about 30% of the 
revenue. So processors are clearly the highest margin part of 
the market to be in. 

In the processor market, while 4-bit and 8-bit processors 
make up about 70% of the numbers, they only contribute a 

tiny faction of the money. 32-bit and 64-bit processors 
(embedded or not) get more than 65% of the overall 
processor revenue, even though they are less than 10% of the 
numbers. Within the 32/64-bit category, desktops and servers 
takes almost all the money (50% of all processor revenue), 
thanks to the much higher price of server and desktop 
processors (usually hundreds of dollars apiece) compared to 
embedded processors (maybe tens of dollars, often less) [1]. 

So while embedded processors are dominant by numbers, 
we can see that it is very different on the revenue side. But 
32-bit embedded processors are still a healthy and rapidly 
growing market that keeps attracting newcomers. ARM 
(www.arm.com), today’s most common 32-bit architecture, 
is produced in about 600 million units per year.  

ARM is a good example of a business model peculiar to 
the embedded world, the licensable processor house. ARM 
designs processor cores and licenses them to other companies 
who then create products containing the ARM cores (combi-
ning the core with various devices and memories to create 
sellable chip); ARM does not produce any chips of its own. 
This business model is also used by MIPS (www.mips.com), 
ARC (www.arc.com), Tensilica (www.tensilica.com), and 
others.  

IV. PRODUCT CATEGORIES 
The embedded processor market defines itself around a 

number of product categories, vaguely defined and featuring 
extensive overlap, but nevertheless they help organize and 
understand the market place.  

A. Microprocessors 
The classic microprocessor is a chip that contains just a 

processor, nowadays usually with integrated caches and 
sometimes memory controller. This is your SPARC,  Pentium, 
and PowerPC processor found in regular office computers. 
Standalone processors are sometimes found in embedded 
systems, especially when lots of processing power is needed.  

B. Microcontrollers 
A microcontroller is the traditional embedded processing 

part. It encompasses not only the processor core, but also a 
number of peripheral devices like timers, serial ports, A/D 
converters, and network interfaces, along with some amount 
of program and data memory. The goal is to reduce the 
number of external chips needed, in order to minimize cost. 
Most microcontrollers are based on 8-bit or 16-bit processing 
cores, with a few kilobytes of data RAM and up to half a 
megabyte of ROM or FLASH memory for code. Typical 
microcontrollers are the Atmel AVR (www.atmel.com) and 
Microchip PIC (www.microchip.com) families.  

C. ASIP/ASSP 
Recently, the term application-specific instruction set 

processors (ASIP) or application-specific standard parts 
(ASSP) have come into use to denote 
“super-microcontrollers”. These chips take the level of 
integration on a single chip to new heights, based on the 
enormous number of transistors available in 130nm or 
smaller silicon processes. They are also 
“application-specific” in the sense that they are quite 
narrowly targeted to particular applications, and aim to 
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replace the traditional development of custom hardware. 
Multiple cores and 32-bit processors are common in 
ASIP/ASSPs.  

One good example are the Texas Instruments 
(www.ti.com) OMAP chips, which integrate an ARM core 
with a DSP core, memories, LCD and keyboard drivers, and 
other devices to put most of the logic of a mobile phone onto 
a single chip. 

Infineon (www.infineon.com) has a family of chips built 
around the C167 core that are very popular in automotive 
applications.  The C167 chips feature multiple on-chip CAN 
controllers, waveform generators, A/D and D/A converters, 
and many advanced timers.  

Sometimes, ASIP/ASSP chips are billed as 
System-on-a-Chip (SoC) solutions. The term “SoC” has been 
getting very popular in recent years to denote 
highly-integrated chips that encompass all parts of a 
complete system, especially in the context of ASIC design 
(see below).   

One particular class of ASIP/ASSPs are the network 
processing units (NPU). NPUs are chips designed 
specifically for networking applications, and include both 
control-plane and data-plane components. IBM’s 
(www.ibm.com) NP chips and Intel’s (www.intel.com) IPX 
are quite typical, combining a standard processor core with a 
large number of semi-programmable data pumps.  

D. ASIC 
Application-Specific Integrated Circuits (ASICs), are the 

ultimate embedded processing devices. ASICs are fully 
custom chips designed by the end user for the needs of a 
particular application. They can contain control logic, 
processing cores, memories, devices, buses, and whatever 
else an application might need.  

Designing an ASIC is a very expensive process, and you 
will need large volumes or very special needs for it to be a 
viable proposition. As the number of gates that can be fit on a 
chip increases, ASIC design becomes ever more complex. 
The economics of ASICs are like classic printing: you have a 
high fixed setup cost to create the set of masks used to print 
the ASICs, but once the setup is done, the cost per unit is 
small. The more units you create, the lower the per-item cost 
will be. 

One way to speed the design is to buy complex 
components from intellectual property (IP) providers. Most 
standard parts of an ASIC can be bought, from the simplest 
serial ports to processor cores. Processor cores (discussed 
briefly above) are the largest part of the IP business, since 
processors are the most complex part to design in-house (not 
to mention the need to create support tools like assemblers 
and compilers).  

In some cases, ASICs include full-blown home-made 
special-purpose processors. A classic example is Ericsson’s  
(www.ericsson.com) APZ processor, used in the AXE series 
of digital phone switches. It is a very specialized architecture 
designed for the single application of phone switches. 
Another example is Cisco’s (www.cisco.com) Toaster series 
of switch processors; standard processors cannot process 
packets fast enough for high-end parts, so a special 
architecture was needed. None of these are available outside 

the respective companies, making them ASICs and not 
microprocessors.  

E. FPGAs 
Field-Programmable Gate Arrays, FPGAs, are “soft 

hardware”. They are hardware chips whose function can be 
change by updating the contents of configuration memories. 
FPGAs are built from cells, small units implementing a small 
piece of logic controlled by configuration date. The cells are 
connected with a programmable interconnect to form 
complete circuits.   

Compared to ASICs, FPGAs implement the same function 
in a much less efficient manner. Due to the obvious overhead 
in the implementation, FPGAs clock lower, exhibit higher 
power consumption, and contain fewer available logic gates. 
They also cost more per unit. But they are reprogrammable, 
and there is no setup cost like ASICs. This makes FPGAs 
more flexible and cheaper to design and work with.  

FPGAs have always been popular as prototyping and 
validation tools: hardware designs can be validated by 
creating an FPGA and testing it, which is much faster and 
cheaper compared to creating a version of an ASIC.  

In recent years, as costs for ASICs have increased 
drastically (startup costs are hitting millions of dollars for 
130 nm and 90nm processes), FPGAs have become an 
alternative to ASICs in production units, especially for 
low-volume products. Currently, experts estimate that at 
volumes below hundreds of thousands of chips, FPGAs are 
more economical than ASICs. FPGAs also offer the 
possibility to fix bugs in the field by updating the FPGA 
programming.   

Leaders in the FPGA field are Xilinx (www.xilinx.com) 
and Altera (www.altera.com). Since FPGAs (like all 
hardware logic) are best at parallel processing tasks with 
fixed functionality, some products combine regular processor 
cores with FPGA fabrics. The processor core takes care of 
unpredictable processing, while the FPGA part is used to 
accelerate processing suited to hardware implementation.  

V. COMPUTER ARCHITECTURAL CHARACTERISTICS 
Embedded computer architecture is much more diverse 

than general purpose desktop architectures. While it is to 
some extent true that technology trickles down from the 
PC/server market to embedded, there are many unique 
innovations occurring in the embedded market.  

A. Instruction Sets 
One peculiarity of the embedded market is that old 

architectures never die. Even in 2004, there will be billions of 
8051s, Z80, and PIC chips sold: all 8-bit machines with 
instruction sets dating back to the 1970s. Also, the embedded 
market has given a second life to RISC architectures like 
MIPS that have faded from the general-purpose computer 
market. Furthermore, instruction set design goals and 
trade-offs are somewhat particular.  

Code size is an important factor in most embedded designs, 
and instruction sets are designed and extended with code size 
in mind. Fairly typically, the NEC V850 (www.nec.com) 
architecture uses 16-, 32-, 48-bit, and 64-bit instructions to 
encode a RISC-style instruction set. The 32-bit ARM and 
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MIPS architecture have been extended with reduced 16-bit 
instruction sets in order to reduce the code size. Instructions 
that perform a lot of work, like loading multiple values from 
the stack, are popular to reduce code size.  

Instruction sets are also extended with instructions to 
accelerate particular processing tasks. For example, 
Motorola’s (www.motorola.com) 68300 processors have a 
special table lookup and interpolate instruction to accelerate 
engine control tasks.  

Of particular note are the DSP (Digital Signal Processing) 
instruction sets. DSP processors are specialized to 
performing data-plane processing, designed to take 
advantage of the regular structure of most interesting 
program loops, and with special instructions for common 
tasks (for example, FIR filters can be implemented with a 
single instruction on a TI C65).  

The most extreme example of application-adapted 
instructtion sets are offered by the configurable processors. 
Tensilica and Arc are the leaders in this field, where 
processor cores are customized by selecting which particular 
instructions to include in a particular configuration. It is also 
possible for the user to create new instructions to accelerate 
particular tasks.  

B. Memory Systems 
Embedded systems often feature quite complex memory 

systems. Caches are normally quite simple, featuring 
single-level instruction and data caches. However, the caches 
are often complemented with tightly-coupled memories 
(TCM), fast on-chip memories that are under programmer 
control and not automatically managed by the cache system. 
Compared to caches, TCMs are more predictable (good for 
real-time systems) and use less power (thanks to reduced 
complexity).  For IP cores, the size of caches and TCMs is 
usually configurable.  

Memory is preferably kept on-chip to reduce power 
consumption and product cost: adding external memory 
chips is fairly expensive both in terms of production cost and 
power consumption. Usually, code is kept in ROM or 
FLASH memory on-chip, with a much smaller RAM 
memory for storage of variables and stacks (most embedded 
systems follow the classic “Harvard” design of separating 
code and data physically). EEPROM or FLASH memory is 
used to keep persistent data when the system is powered off. 
High-end systems require off-chip memories: even today, it 
is hard to fit more than a few megabytes of memory on-chip.  

On 8-bit and 16-bit architectures, pointers are limited in 
size. To accommodate larger memories, there is usually a 
hierarchy of memory areas and pointer types. There might be 
a zero-page memory which is addressed using an 8-bit 
pointer, with a “near” memory with 16-bit pointers, and 
various forms of “far” memory with 24- or 32-bit pointers. 
This leads to a programming model where the programmer 
needs to be aware of the allocation of variables to memory in 
order to efficient programs.  

C. Pipelines 
Pipelines in embedded processors tend to be simpler than 

their desktop counterparts, since the goal is to provide ade-
quate performance with minimal cost and power consump-

tion.  For example, the ARM926 core requires up to 0.9 
mW/Mhz; while the Pentium 4 uses about 35 mW/Mhz. The 
cost to go from acceptable to maximum performance can be 
very high!  

8-bit and 16-bit processors are usually not pipelined at all, 
while 32-bit processors use everything from the simple 
3-stage pipeline of the ARM7 to complex multiple-issue 
out-of-order pipelines on 64-bit MIPS systems. Currently, 
most 32-bit machines have moderately complex pipelines 
with 5 to 7 stages and strict in-order issue. Every generation 
of embedded processor cores tend to add a few more features 
in order to add processing power, but it is always done within 
the constraints posed by cost, size, and power consumption.   

Since the tasks requiring the most processing power are 
usually well-known, they can be more efficiently solved by 
using hardware accelerators or special processors instead of a 
faster general-purpose processor. This leads to the classic 
RISC-DSP split of processing in mobile phones, and the use 
of special acceleration hardware for tasks like MPEG 
decoding.  

There are also some truly extreme designs in the embedded 
field. Xelerated’s (www.xelerated.com) network processors 
use a pipeline more than 1000 stages deep to efficiently rout 
and filter network packets. Texas Instruments are 
successfully selling eight-wide VLIW DSP processors for 
customers requiring very high performance signal 
processing.   

VI. SUMMARY 
This talk has given a quick overview of the embedded 

computer architecture field. I have tried to give a feeling for 
the broadness of the embedded systems field and the wide 
range of particular computer designs that have been created 
to correspond to the many peculiar needs of the various 
end-user applications.  

The main fact to remember is this: there is no typical 
embedded system, and any computer architecture feature 
ever invented is bound to have a valid application somewhere 
in the embedded systems field.  
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AbsInt Angewandte Informatik GmbH
Saarbr¨ucken, Germany

kaestner@absint.com

Abstract— This article gives an overview of the field of compi-
lation for embedded processors. First, typical characterisitics of
embedded processors are summarized that have to be taken into
account in order to generate high-quality machine code. A lecture
concept is outlined which starts by introducing the necessary ba-
sics of compiler technology, then details the specific requirements
of compilation for embedded processors and concludes with an
overview of recent research in this field. The lecture was held
in the Embedded Systems Schummer School ESSES 2003. The
article concludes with a literature survey that can serve as a
starting point for further research in this area.

Index Terms— Compilation, Code Generation, Embedded Pro-
cessors, Retargetability, Code Compaction, Postpass Optimiza-
tion.

I. I NTRODUCTION

EMBEDDED systems are increasingly becoming a fixed
part of everyday’s life. Already today, the vast majority

of all microprocessors sold are used in embedded systems;
application fields comprise healthcare technology, telecom-
munication, automotive and avionics, multimedia applications,
etc. The main requirement imposed to embedded systems is
high efficiency: high performance must come at low cost and
at low power consumption. This has led to the development
of irregular hardware architectures specially designed for real-
time applications and digital signal processing.

The architectural irregularity of many embedded processors
imposes new challenges to the code generation task. In the
area of the classical general-purpose processors, compiler
technology has reached a high level of maturity. However, for
irregular architectures, the code quality achieved by traditional
high-level language compilers is often far from satisfactory
[1], [2]. Generating efficient code for irregular architectures
requires highly optimizing techniques that have to be aware
of specific hardware features of the target processor. The code
generation process can be subdivided into several subtasks
most of which are NP-complete problems: code selection,
register allocation, instruction scheduling, register assignment
and functional unit binding. In classical approaches they are
addressed in separate phases by heuristic algorithms. Since
these phases are interdependent, decisions made in one phase
impose constraints to the subsequently addressed phases. This
can lead to a suboptimal combination of suboptimal partial
solutions resulting in a very poor code quality – especially
for irregular architectures [1]. The shortcomings of available
compilers have resulted in many embedded applications being
developed in assembly language, or at least in part. Here,
search-based techniques allowing to model the interactions
of code generation phases in an exact way, or combinations

of search-based techniques with standard heuristic approaches
can lead to substantially better code quality [3], [4].

Due to the growing complexity of embedded applications
and the shrinking design cycles of embedded products the
usage of high-level programming languages is becoming in-
creasingly imperative. Thus there is an urgent need forretar-
getablecode generation and optimization techniques that can
be quickly adapted to different target architectures, e.g. by de-
riving machine-specific properties from a dedicated hardware
description. At the same time these techniques must be able
to produce high-quality code for the modeled architectures.

Many of today’s microprocessors use instruction-level par-
allelism to achieve high performance. They typically have
multiple execution units and provide multiple issue slots
(EPIC, VLIW) or deep pipelining (superscalar architectures).
However, since the amount of parallelism inherent in programs
tends to be small [5], it is a problem to keep the available
execution units busy. For architectures with static instruction-
level parallelism this problem is especially virulent, since
if not enough parallelism is available the issue slots of the
long instruction words are filled with nops. For embedded
processors this means a waste of program memory and energy.
Techniques to exploit the available instruction-level paral-
lelism play an important role in compilation for embedded
processors.

While the traditional metrics for compiler quality was
the execution speed of the generated code, the mass scale
embedded market has caused two other metrics to come to
importance: code size and power consumption. One of the
most dominant factors in system cost is the die size, in
which memory plays an important role. Reducing memory
consumption directly translates to reducing system cost and, at
the same time, to lowering power consumption. For efficiently
reducing code size cross-file optimizations are required [6]
which can eliminate redundancies and unused functionality
over entire applications. At the same time, they must be able
to take advantage of individual hardware characteristics of the
target processor.

To summarize, in order to generate efficient code for
embedded processors, the following challenges have to be
met: exploiting the available instruction-level parallelism of
the target processor, efficiently modeling irregular hardware
restrictions during code generation, addressing the phase-
coupling problem, achieving retargetability, and supporting
small code size and low power consumption as alternative code
generation goals.

In the follwing, a lecture concept is described which tries to
impart the basics of compiler technology required to grasp the
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specifics of embedded compilation and also addresses recent
research in this field. The lecture was held in the Embedded
Systems Schummer School ESSES 2003 with a time frame of
six hours ([?]).

II. A L ECTURE ONEMBEDDED COMPILATION

The lecture is introduced by an overview of the struc-
ture of an optimizing compiler is given. The compiler front
end transforms the high-level language input program in an
intermediate representation suitable for code generation. It
consists of the phases lexical analysis, syntactical analysis
and semantic analysis. The middle end performs efficiency-
increasing transformations of the intermediate representation,
often erroneously termedmachine-independent optimizations.
The compiler backend is concerned with generating the ma-
chine code for the target processor. Code generation phases
are code selection, register allocation, instruction scheduling
and functional unit binding. The phase coupling problem is
the result of the inderdependences between all these phases
which mostly are NP-complete problems by themselves.

The second part of the lecture addresses the specific code
generation problem for embedded processors and explains
the motivation for the development of specialized hardware
architectures.

Program representations play an important role in code
generation. Many compiler phases look at the input program
from different views, each of which usually is mapped to
a representation of its own. An important concept is to
distinguish between high-level intermediate representations
describing the input program from a view close to source
level, and the low-level representations used to incorporate
machine-specific characteristics. The most prominent program
representations are syntax trees, (inter-procedural) control flow
graphs, control dependence graphs, data dependence graphs,
register interference graphs and the SSA form.

The discussion of program representations is followed by a
brief overview of standard code generation techniques. Reg-
ister allocation usually is done by graph coloring algorithms.
Instruction scheduling techniques can be classified as local
acyclic vs. global acyclic vs. global cyclic approaches. The
lecture focuses on list scheduling as a standard local acyclic
technique, on trace scheduling and superblock scheduling as
global acyclic approaches. The task of code selection can
be described by regular tree automata accepting words of
regular tree grammars. From this theory, generating a code
selector can be formalized as generating a tree automaton for
the underlying machine grammar. Examples of current code
selector generators are given.

The next part focuses on retargetable compilation. The
term retargetability is explained, and an overview of current
research on retargetability is given. As an example of a
retargetable code generation system the PROPAN framework
[3], [4] is presented. At the heart of each retargetable system
there is an underlying architecture description language. Archi-
tecture description languages can be categorized as structural,
behavioral, or mixed-level languages. The design philosophies
of these different classes are explained, and the hardware de-

scription language of the PROPAN system, TDL, is presented
as an example.

In the remainder of the lecture, advanced code generation
topics are addressed. The basic idea of software pipelining as
the most prominent cyclic scheduling technique is explained
using iterative modulo scheduling as example algorithm. Sub-
sequently, an algorithm to exploit SIMD-style instructions
is presented where long registers are loaded with multiple
short data values which are simultaneously operated on [31].
Phase coupling problems exist between code selection and
register allocation, code selection and instruction scheduling,
as well as between register allocation and instruction schedul-
ing. Examples for each scenario are given, and integer pro-
gramming techniques are presented which address the phase-
coupling problem between instruction scheduling and register
assignment. The importance of code size as alternative quality
metrics is illustrated by an industrial case study: a demo of
the commercial postpass optimizer aiPop [55] is given and
its structure and algorithms are explained. The last part of the
lecture is concerned with program analyses as a prerequisite of
most compiler transformations and as stand-alone applications,
e.g. , to give static runtime guarantees for real-time systems.

III. L ITERATURE OVERVIEW

In the following an overview of relevant literature for the
different topics is given. This survey in no way is complete;
it is intended to offer a starting point for further research in
the area of embedded compilation.

A. Compiler Design

Text books about compiler construction providing a compre-
hensive survey of the field are [7], [8], [9], [10]. Publications
focusing on the different backend phases are summarized in
the following.

1) Code Selection:The basic idea of code selector gen-
erators can be formalised by the theory of tree parsing and
tree automata [11], [8]. The instruction set of the target
machine is described by a regular tree grammar. The derivation
tree of an expression tree describes a semantically equivalent
sequence of machine operations. Cost annotations to the gram-
mar rules permit to locally select a cheapest derivation tree.
Early implementations based on [12], [13] used LR-parsing
techniques driven by a specification of the target machine by
a context-free grammar. The code selector was generated by
a parser generator. The limitation was that the code selection
for ambiguous instruction sets could not be modelled con-
veniently. A solution of this problem is to combine pattern
matching algorithms with dynamic programming to determine
locally optimal operation sequences [14], [15] or extend the
pattern matcher to directly selecting locally optimal operation
sequences [16]. Examples for contemporary code generators
are BEG [17], Twig [18], iburg [19], and OLIVE [20].

2) Register Allocation:Typically, register allocation is per-
formed by graph colouring algorithms. Selecting registers is
mapped to the problem of finding a� coloring in the so-
called register interference graph. Since for� � � this is
an NP-complete problem, usually registers are allocated in a
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greedy fashion and heuristics are used in the case that no�

colouring can be found. [21] introduces the concept of spill
code, [22] suggests splitting life ranges. While the algorithms
of [21], [22] are restricted to basic block level, global regis-
ter allocation algorithms exceed basic block boundaries and
take the control flow structure of the program into account.
Examples of global register allocation algorithms based on
heuristics are the packing algorithm of [23], the probabilistic
register allocation of [24] and the optimistic graph colouring
approach of Briggs et al. [25], [26].

3) Instruction Scheduling and Parallelization:List schedul-
ing [27] is a widely used local acyclic scheduling algorithm.
An algorithm for global acyclic instruction scheduling is
Fisher’strace scheduling[28]. The basic idea of this approach
is to schedule the operations of consecutive basic blocks jointly
in order to increase the available parallelism. The restriction
of acyclic techniques is that operations can never be moved
across loop back edges. Software pipelining aims at restruc-
turing loops so that operations from different loop iterations
can be executed in parallel [29], [30]. In [31] an algorithm
to exploit SIMD-style instructions is presented where long
registers are loaded with multiple short data values which are
simultaneously operated on.

B. Architecture Description Languages

Hardware description languages are used for a variety of
application areas: for architectural synthesis, hardware simu-
lation, code generation and program analysis. In consequence,
a large number of different hardware description formalisms
has been developed. In the area of processor modeling and
simulating, widely used languages are VHDL [32] and Verilog
[33]; approaches used for code generation are ISPS [34],
MARIL [35], the SALTO language [36], SLED [37], and
nML [38]. Recent developments are ISDL [39], EXPRESSION

[40], and��RTL [41]. LISA [42] aims at generating cycle-
accurate simulators for architectures with complex pipelines.
TDL [43] has been designed with the goal to generate machine-
dependent postpass optimizers and analyzers from a concise
specification of the target processor. TDL is assembly-oriented
and provides a generic modeling of irregular hardware con-
straints that are typical for many embedded processors.

C. Retargetable Compilation and Optimization

In the area of code generation for general-purpose pro-
cessors there are numerous retargetable systems, e.g. PO
[44] and its descendentsvpo [45] and gcc [46], lcc
[47], MARION [35], SUIF [48] or Trimaran [49]. In these
approaches, retargeting is mainly based on specifications that
encapsulate machine-specific information required to drive the
code selection. Assembly- or executable-based transformations
are not supported.

Retargetable code generation and optimization systems for
irregular architectures, mostly digital signal processors are
RECORD [2], CBC [50], CHESS [51], Flexware [52], SPAM

[53], or Express [40]. The hardware description mechanisms
of these systems typically comprise more detailed information,
normally in a mixed structural/behavioral way. However, they

do not support transformations on assembly- or executable
code. Retargetable systems explicitly designed to work at
assembly level are the SALTO system [36] and the PROPAN

framework [3], [4].

D. Postpass Optimizers

Compiler transformations are usually based on high-level
program representations. In contrast, postpass optimizations
operate on machine programs, i.e. assembly or object files
[6]. An early postpass optimization system is the Portable
Optimizer PO [44]. Squeeze++ [54] is a link-time binary
rewriter for the Alpha architecture; Diablo [6] a retargetable
framework for link-time optimizations. PROPAN [3], [4] is a
retargetable postpass optimization framework for embedded
processors supporting irregular hardware features which is
based on search-based code optimization techniques. aiPop
[55], [6] is a commercial assembly-based postpass optimizer.
It is a retargetable framwork partially built on the PROPAN
system and is available for the Infineon C16x / ST10 and HC08
processor families.

E. Program Analysis

A comprehensive survey of program analysis is given in
[56]. Cousot and Cousot [57] describe a general framework for
static program analyses calledabstract interpretation. Based
on the concepts of abstract interpretation, the PAG system
[58] has been developed with automatically generates program
anlyzers from an abstract specification of the analysis to be
performed. In [59] a static cache analysis is presented which is
a component in a framework to compute worst-case execution
time guarantees for real-time systems [60] by static analyses.

REFERENCES

[1] V. Zivojnovic, J. Velarde, C. Schl¨ager, and H. Meyr, “DSPSTONE: A
DSP-Oriented Benchmarking Methodology,” inProceedings of the Inter-
national Conference on Signal Processing Applications and Technology,
1994.

[2] R. Leupers,Retargetable Code Generation for Digital Signal Processors.
Kluwer Academic Publishers, 1997.
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Full-System Simulation 
(Extended Abstract)  

Jakob Engblom 

  
Abstract—Full-System Simulation is a technology where the 

hardware of a computer system is simulated at such a level of 
detail that the complete real software stack can be executed. It 
has wide applicability in the development and research of 
computer systems, especially embedded systems. This talk gives 
an overview of the full-system simulation and some examples of 
its industrial and academic applications.  
 

I. INTRODUCTION 

SIMULATION is a method of scientific and engineering 
inquiry that is based on the idea of building a model of a 

system, and then performing experiments on this model. 
Provided that the model has a good fidelity to the system 
being modeled, the results from the simulation experiments 
can be used to predict the behavior of the real system.   

Simulation is used in all fields of science and engineering. 
For example, modern cars are virtually crash tested in 
computer simulation in order to build safer cars. Weather 
forecasts are prepared by simulating the evolution of current 
weather patterns into the future.  

Computers can also be used to simulate computer systems. 
This introspective application of computers is incredibly 
useful, across all fields of computer hardware and software 
development, from initial architecture, through software 
development, to end-of-life maintenance.  

A key concept is full-system simulation, meaning models 
that encompass all of a computer system. Including the 
processor core, its peripheral devices, memories, and 
network connections. With such technology, it is possible to 
simulate a whole computer system with its complete software 
stack, which opens up new possibilities in the field of 
computer-system simulation [1][2][3][4]. 

Full-system simulation has not been feasible until recently, 
thanks to two long-term technology trends. One is the fact 
that cheap PCs have become as fast as any other computer 
system; it used to be that in order to simulate a large server 
you needed a large server, but this is no longer the case [2]. 
The other trend is that simulation technology has improved 
the efficiency of simulation by orders of magnitude. The net 
result is that the simulation cost per hour of target time has 
come down by four orders of magnitude over the past 25 
years [1]! 

II. FULL-SYSTEM SIMULATION 
The idea behind full-system simulation is very simple: 

model the behavior of the hardware of a system at a sufficient 
level of detail that all the real software can run (Figure 1); at a 
level of abstraction appropriate to simulating complete 
systems containing multiple processors and machines, 
potentially connected across simulated networks.  

 
Manuscript received January 31, 2004.  
Jakob Engblom is a Business Development Manager at Virtutech 

(http://www.virtutech.com) and an adjunct professor at Uppsala University 
(http://user.it.uu.se/~jakob). Contact him at jakob@virtutech.com. 

A. Scope and Abstraction 
The size of the system (i.e. the scope) that can be simulated 

depends on the level of abstraction chosen in the model. The 
more detailed the model is, the smaller the simulated system 
has to be. For full-system simulation, the most appropriate 
abstraction is the instruction set and control register level. 
This level has the advantage of being the best documented 
and most stable layer in a system.  

Working at this level makes it possible to simulate 
networks of hundreds of simulated machines using a few tens 
of host machines. Using a more detailed model, like the RTL 
level simulations common in hardware design, would 
decrease the simulation speed to an unusable level. Going to 
higher levels of abstraction, like operating system APIs, 
would lose too much information about the system to make it 
useful. Also, maintaining an API-level simulation is very 
expensive since it is a much broader and faster-changing 
interface compared to the instruction set level.  

B. Processor 
In most cases, the most complex part of a computer system 

is the main processor core(s). Instruction processing also uses 
most of the execution time of the simulation, and thus, 
creating a fast model of the instruction set is key to good 
simulation performance. The current state of the art allows 
instruction set simulation to reach speeds in the hundreds of 
million of instructions per second, which is sufficient to 
execute large real-life workloads. 
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Fig. 1.  Full-System Simulation is based on simulating the hardware while 
running all the real software of a system, with sufficient speed to execute real
workloads.  
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often, and more computation work is required for the same 
result.  

Of course, it is possible to create hybrids between the two 
extremes. One quite common approach is to let most of a 
system work at the transaction level, modeling only a small 
part of the system at the bit level. This offers an efficient way 
to drive a detailed model of a device with real traffic from a 
full system. At the point where the transaction level and the 
bit level meet, special conversion code is inserted. The 
conversion is quite simple, since most of the information 
needed to create bit-level signals is contained in the 
transactions. Usually, only detailed timing needs to be added 
in the form of a clock signal.  

One should note that transaction-oriented modeling is 
enabled by the trend towards more abstract and less 
timing-dependent device interfaces. As noted in [5], in the 
1970s, software and hardware often depended on precise 
timing to function together. Thanks to the trend that 
Fig. 2.  This screenshot shows Virtutech Simics presenting all the 
model-specific registers of a Pentium 4 to the diagnostic program wcpuid. The
clock frequency meter is THGClock, which measures the speed of the CPU
clock using timers. This also gives a consistent result.  
In order to run all the software of a system, the processor 
odel must implement both the user-level and 

upervisor-level interfaces of the processors, as well as the 
emory-management unit and various low-level machine 

egisters. Anything that can be seen from the software has to 
e modeled. Figure 2 gives an indication of the level of detail 
equired when modeling processors of the x86 line.  

Another important consideration is that the results of all 
nstructions have to be bit-exact. A difference in computation 
esults compared to a real machine is not acceptable. 

For most systems, it is reasonable to use a fairly simplistic 
odel of instruction timing, typically one cycle per 

nstruction. If necessary, this model can be extended with 
ore precise timing. For example, just adding the timing of 

he cache system provides a fairly useful timing model for 
ost embedded systems, and computer architecture 

esearchers will often create complete microarchitectural 
odels of a processor. However, the more detail that is added, 

he slower the simulation will run. 

C. Devices 
The defining difference between full-system simulation 

nd traditional instruction-set simulation is the modeling of 
evices. Device models are necessary in order to get 
eaningful software to run on the simulator. Timers, network 

nterfaces, PCI bridges, SCSI interfaces, graphics devices, 
erial ports: there is a large number of different devices which 
re present in a computer system that must be modeled.  

Device models can be either transaction-oriented or bit 
evel. A transaction-oriented model handles each interaction 
typically, a write to or read from the interface registers of the 
evices by a processor) to a device as a unit: the device is 
resented with a request, computes the reply, and returns it in 
 single function call. This is a very efficient model.  

A bit-level model instead models the actual bit patterns 
raveling over buses and pins in the computer. Instead of a 
ingle transaction, each cycle on the bus is played out. The 
evice model will read the address and data lines, wait for 
ome cycles, and then put its reply on the bus connecting it to 
he CPU. This style of modeling results in much lower per-
ormance, since the simulation needs to switch context more 

processors, devices, and buses are developed separately, 
software interfaces to hardware are becoming more abstract, 
thus enabling efficient device modeling.  

D. Software 
The key goal of full-system simulation is to let the 

simulator run all the real software of a system, from firmware 
and devices drivers, the operating system, to databases, 
middleware, and application programs. That the complete 
software stack is used in the simulation enables many 
exciting applications, as detailed in Section III.  

Note that the user-level applications often can be executed 
on less complete simulators using API-level simulation of the 
operating system, but as workloads become more dependent 
on the operating system, such simulation will start to miss 
important effects [3].  

E. Stimuli  
Given that a good model of the hardware exists, and that 

the software stack is available and runs on this model, we 
need to find a way to provide stimuli to the system. Good 
stimuli are crucial to obtaining sensible results from the 
simulation, results that are relevant in the real world.  

In some cases, just executing the software is a sufficient 
source of stimuli. This is the case, for example, when porting 
operating systems. Just doing a boot of the system provides a 
good way to check the correct function of the software being 
investigated. No external input is needed in this process. 

For interactive systems, the simulation can rely on 
mapping the simulated user interface devices (screens, 
keyboards, mice, touch screens, etc.) to real devices.  

Models of networked systems can include full machine 
models of both sender and receivers, or they can be interfaced 
to real networks. Abstract load generators can also be 
employed to generate traffic without using full machines. 

When it comes to executing benchmarks like SPEC or 
TPC in the simulation, we might get performance issues if a 
detailed microarchitectural model is used. Especially 
processor design and computer architecture research is 
problematic, since these tasks by nature require very detailed 
processor models to be used. In such cases, we can use 
sampled execution or scaled workloads in order to get 
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acceptable simulation times [2][3]. 

III. HANDY FEATURES OF SIMULATION 
Since simulation is “just software”, it offers many advan-

tages compared to a real machine: 
1) Configurability. Any machine configuration can be used, 

unconstrained by available physical hardware.  
2) Controllability. The execution of the simulation can be 

controlled arbitrarily, disturbed, stopped, and started.  
3) Determinism. A simulation is completely deterministic 

[1] (provided it is properly programmed).  
4) Globally synchronous. Multiple processors, multiple 

devices, multiple machines in a network: all can be 
stopped instantly in a simulation, and a global snapshot 
of the state inspected.  

5) Checkpointing. The state of the simulation can be written 
to disk and restored in an instant.  

6) Availability. Creating a new machine is just a matter of 
copying the setup. There is no need to procure hardware 
prototypes or development boards.  

7) Inspectability. The complete state of the simulated mac-
hine can be investigated without disturbing the 
execution.  

8) Sandboxing. The simulation environment offers a 
perfect sandbox, out of which no code or data can escape 
unless explicitly allowed.  

So we see that in many ways, simulation is really better 
than the real thing! 

IV. INDUSTRIAL USE OF FULL-SYSTEM SIMULATION 

A. Computer Architecture 
Detailed simulation of processors has been a mainstay of 

computer architecture research and development for the past 
few decades [3]. Mainstream use is still simulation of single 
processors with none or few peripheral devices. However, as 
computer systems become more complex, including multiple 
processors and sophisticated peripherals, the scope of 
simulation has to expand apace. Many interesting workloads 
(like transaction processing and web servers) also feature 
significant amounts of operating system interaction. Thus, 
full-system simulation is becoming increasingly important.  

B. Computer System Development 
Full-system simulation is also used in the development of 

computer systems, not just components. By using full-system 
simulation, designers of complex computer systems such as 
servers, flight controllers, or network routers can build 
virtual prototypes. Virtual prototypes are used to model and 
analyze the system configuration, making it possible to create 
a more efficient overall system. 

Furthermore, the virtual prototypes are used by software 
teams to get an early start on software development for the 
new system. As illustrated in Figure 3, the software teams can 
start working long before hardware is available (even in 
prototype form). This allows critical tasks like device driver 
and firmware development, and operating system bring-up to 
proceed in parallel with the hardware development, which 
can save many months of time to market for a moderately 
complex system. The need to program a computer before the 

system is completed was foreseen already in 1946 by Alan 
Turing [6], so it is really an old need that can finally be 
satisfied in a reasonable way thanks to full-system 
simulation.  

A good example of the value of virtual prototyping is 
AMD’s AMD64 architecture. When the processors and 
systems were finally launched in hardware form in 2003, 
operating systems like Linux and Windows were already 
running on the processors. This was thanks to a seeding 
program using full-system simulation which had been going 
on since 2001, giving AMD a much broader software support 
at launch than would otherwise have been possible.  

C. Hardware/Software Cosimulation 
Full-system simulation is also used in cosimulation, where 

some part of a system (a device, a processor, or maybe a bus 
controller) is simulated in detail at the RTL level. By simu-
lating as much as possible of the system at a higher level of 
abstraction, simulation speed is greatly increased compared 
to simulation of a whole system at the RTL level.  

Note that the slowest simulated component of a system 
will determine the overall simulation speed. However, if the 
slowest component is clocked at a lower rate than other parts 
(like a 100 Mhz bus connected to 1000 Mhz processors), the 
impact can be minimized. Intelligent and minimalist choices 
of what to simulate in detail is crucial to obtaining good 
overall simulation performance.    

With increased speed, bigger software runs can be made. 
Thanks to the completeness of the simulated systems, 
co-simulation can include the effects of operating systems. 
Overall, this means that more realistic simulations can be 
performed, which increases the value of the co-simulation.  

D. Network Research and Development 
By allowing real operating systems and workloads to run 

on the simulated machines, full-system simulation opens up 
new vistas of network research. Today, most network 
simulations focus on the behavior of the network, while 
modeling the network nodes as simple synthetic traffic 
generators. Using full-system simulation, it is possible to 
replace synthetic traffic with real traffic. To model a 
client-server scenario, both the client and server machines are 
simulated, and real interactive sessions played out between 
them. This makes it possible to investigate the interaction 
between applications, servers, and the network. And all parts 
of the equation can be changed arbitrarily. The effect of 
optimizations to network stacks, device drivers, and actual 
network interface hardware can be investigated in detail in a 
simulated environment.  

Networks in simulation are also much easier to trace and 
inspect than real networks. Every packet sent is available for 
inspection, without affecting the functionality of the system. 
Disturbances and faults can be injected into a system with 
ease and precision, since there is no need to actually disturb 
physical links.  

An interesting special case is the testing of large network 
configurations. In most cases, building a very large test 
network is prohibitively expensive. Here, full-system simu-
lation allows hundreds of network nodes to be simulated 
using a handful of standard PCs or server machines. This 
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leads to very large cost savings, as well as an increase in 
product quality and developer productivity thanks to better 
testing, easier setup and reconfiguration, and troubleshooting 
abilities.  

E. Software Development 
Simulators are being used in software development, for a 

number of different purposes. As discussed above, virtual 
prototypes are used to develop low-level software for new 
systems. Once the hardware is stable and no longer in the 
prototype stage, the simulation model really becomes virtual 
hardware. Such virtual hardware behaves identically to the 
real hardware, and is used as hardware replacements.  

By making the hardware virtual, replication of the 
hardware becomes easy and very cheap. This means that 
more developers can be given direct access to the hardware in 
question, without the expense of buying or manufacturing 
extra target systems. Especially for expensive custom hard-
ware systems, this gives great savings.  

Virtual hardware comes with all the benefits of simulation: 
by using the checkpointing, determinism, and inspection 
abilities, software bugs are easier to repeat and fix.  

For low-level software like interrupt handlers and 
operating systems, simulation offers a superior debugging 
environment. Hardware accesses can be accurately traced, 
the state of components, like configuration registers and 
processor TLBs can be inspected, and interrupt handlers can 
be single-stepped. All of which is impossible on a real 
machine.  

F. Fault Injection  
Simulation affords the user complete control over the 

simulated system, which makes fault-injection testing very 
effective and efficient. Thanks to the controllability, faults 
can be injected at any point in a system: processor register, 
device registers, memory contents, bus traffic, network 
packets: everything is available for transient or permanent 
modification. Thanks to the control over timing, injected 
faults can be precisely repeated, which allows for regression 
testing in the presence of faults. 

G. Legacy System Support 
Long-lived computer systems used in commercial and 

aerospace applications have a tendency to far outlive the 
commercial lifespan of their components. This creates 
problems for the developers maintaining the software base: 

development boards will break, and replacements will be 
impossible to buy. To solve this problem, full-system 
simulation is used to create virtual development boards with 
a far greater lifespan than the hardware. A virtual model can 
easily be ported to run on successive generations of 
development workstations, irrespective of the hardware 
availability of the actual target systems. 

V. SUMMARY 
This extended abstract has given a quick overview of 

full-systems simulation technology, the ideas behind it, and 
its industrial and academic application areas. Full-system 
simulation is an old idea whose time has finally come, thanks 
to the prevalence of cheap and powerful computers, and a 
maturation of the technology.  
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Abstract—This tutorial discusses Linux/SimOS as a platform 

for simulating embedded system.  Linux/SimOS is a Linux 
operating system port to a complete machine simulator SimOS. 
We demonstrate how Linux/SimOS is capable of capturing all 
aspects of communication performance of embedded systems 
that includes the effects of the kernel, device driver, and 
network interface.  These results will help understand how the 
protocols work, identify key areas of interests, and suggest 
possible opportunities for improvement not only in the protocol 
stack but also in terms of hardware support.  Based on this, we 
also explore one possible solution, called cache coherence-based 
data transfer, to improve the data transfer time between the 
host memory and network interface.  The second part of the 
tutorial discusses wireless networking requirements for 
embedded systems.   In particular, we focus on medium access 
control for wireless LANs and mobile ad hoc networks. 
 

Index Terms—High-speed communication, network interface, 
network protocol, complete system simulation, mobile ad-hoc 
networks, medium access control. 
 

I. INTRODUCTION 

Today’s communication systems are complex embedded 
systems.  Whether they are high-speed network 
interfaces connected to a system area network or smart 

nodes in a sensor network, these devices typically contain a 
microprocessor and a network interface and communicate 
with other embedded devices or to larger networks.  Detailed 
performance analysis of a communication system is often 
difficult because it is dependent not only on the processor 
speed but also on the communication protocol and its 
interaction with the kernel, device driver, network interface, 
and the communication medium.  Therefore, these 
interactions must be properly captured to understand how the 
protocols work, identify key areas of interests, and suggest 
possible opportunities for improvement not only in the 
protocol stack but also in terms of hardware support. 
 The area of communications and networking for 
embedded system is very broad in scope.  However, this 
tutorial concentrates on the critical path of communication, 
mainly transport layer to link layer functionalities to 
understand and evaluate the software and hardware 
interactions that affect the communication performance of 
embedded systems.  In particular, we show how Linux/SimOS 
[12], which is a Linux operating system port to a complete 
machine simulator SimOS [3], can be used as an extremely 

effective and flexible open-source simulation environment 
for studying all aspects of embedded systems performance, 
especially evaluating communication protocols and network 
interfaces.  Such a study will help understand how 
communications work, identify key areas of interests, and 
suggest possible opportunities for improvement not only in 
the protocol stack but also in terms of hardware support.  
Based on the analysis using Linux/SimOS, we will also 
explore one possible solution, called cache coherence-based 
data transfer, to improve the communication performance.  
Finally, wireless networking is becoming increasingly 
important to embedded systems as market needs drive 
devices towards increased connectivity with higher 
bandwidth.  Therefore, we will discuss various medium 
access control (MAC) techniques for wireless networks, in 
particular mobile ad hoc networks (MANETs). 
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II. LINUX/SIMOS 

A. Linux/SimOS Interface 
Figure 1 shows the structure of Linux/SimOS.  An 

x86-based Linux machine serves as the host for running the 
simulation environment.  SimOS runs as a target machine on 
the host, which consists of simulated models of CPU, 
memory, timer, and various I/O devices (such as Disk, 
Console, and Ethernet NIC).  On top of the target machine, 
Linux kernel version 2.3 for MIPS runs as the target 
operating system.  

SimOS [3] supports two execution-driven, cycle-accurate 
CPU models: Mipsy and MSX.  Mipsy models a simple 
pipeline similar to MIPS R4000, while MSX models a 
superscalar, dynamically scheduled pipeline similar to MIPS 
R10000.  The CPU models support the execution of the MIPS 
instruction set.  SimOS also models the behavior of I/O 
devices by performing DMA operations to/from the memory 
and interrupting the CPU when I/O requests complete.  

SimOS provides several I/O device models, which 
includes console, SCSI disk, Ethernet NIC, and a timer.  
These devices provide the interface between the simulator 
and the real world.  The console model allows a user to read 
messages from and type in commands into the simulated 
machine’s console.  The SimOS NIC model enables a 
simulated machine to communicate with other simulated 
machines or real machines through the Ethernet.  By 
allocating an IP address for the simulated machine, it can act 
as an Internet node, such as a Web browser or a Web server.  
SimOS uses the host machine’s file system to provide the 
functionality of a hard disk, maintaining the disk’s contents 
in a file on the host machine.  Reads and writes to the 
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simulated disk become reads and writes to this file, and DMA 
transfers require simply copying data from the file into the 
portion of the simulator’s address space representing the 
target machine’s main memory. 

Most of the major modifications that were necessary to 
port Linux to SimOS were done on the I/O device drivers for 
Linux.  These include timer, console, SCSI disk, kernel 
bootloader, Ethernet NIC, and EtherSim, which is used to 
perform network simulation.  

 
B. Simulation Study of UDP/IP and M-VIA 
In order to demonstrate the capabilities of Linux/SimOS, 

the performance analysis of UDP/IP and M-VIA [5] was 
performed.  The CPU model employed was Mipsy with 32 
Kbyte L1 instruction and data caches with 1 cycle hit latency, 
and 1 Mbyte L2 cache with 10 cycle hit latency.  The main 
memory was configured to have 32 Mbyte with hit latency of 
100 cycles, and DMA on the Ethernet NIC model was set to 
have a transfer rate of 240 Mbytes/sec.  The results were 
obtained using SimOS’s data collection mechanism, which 
uses a set of annotation routines written in Tcl [3].  

The UDP/IP performance was evaluated by directly 
sending messages through the legacy protocol stack in 
Linux/SimOS.  For M-VIA, some modifications were 
necessary to the source code and the driver to make it 
compatible with the MIPS-based processor model and the 
Ethernet NIC of Linux/SimOS.  

The performance study focused on the latency (in cycles) 
to perform send/receive.  These simulations were run with a 
fixed MTU size of 1,500 bytes with varying message sizes.  
The total cycle times required to perform send as a function 
of message size are shown in Figure 2, where each message 
size has a pair of bar graphs for M-VIA (left) and UDP/IP 
(right).  For sake of brevity, only the send results are shown.  
These results represent only the latency measurement of 
major operations directly related to sending messages and do 
not include the time needed to set up socket communication 
for UDP/IP and memory region registration for M-VIA.  
These results also do not include the effects of MAC and 

physical layer operations.   
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The results in Figure 2 clearly show the advantage of using 
low-latency, user-level messaging, especially for small 
messages.  For message sizes less than the MTU size, the 
improvement factors for M-VIA send latencies over UDP/IP 
are 11~14.1.  For message sizes greater than the MTU size, 
the improvement factors for M-VIA send latencies over 
UDP/IP are 4.2~6.3.  

Figure 2 also show the latencies for the various layers 
available for each protocol.  This allows us to observe how 
much time is spent at each layer of the protocol and how each 
layer contributes to the final result.  The latencies for UDP/IP 
were broken into layers associated with APPL, UDP, IP, DEV, 
and DMA.  APPL includes the time required to initiate send 
and receive and perform socket operations.  UDP and IP are 
times for executing UDP and IP protocols, respectively.  DEV 
represents the device driver and includes all the operations 
between IP and host-side DMA, including DMA interrupt 
handling.  Finally, DMA represents the time to DMA data 
between host memory and NIC buffers.  

Similarly, the latencies for M-VIA were broken into layers 
associated with APPL, TRANS, DEV, and DMA.  APPL 
represents the time required to initiate VI provider library 
functions, VipPostSend() [6].  This involves creating a 
descriptor in the registered memory and then adding the 
descriptor to the send/receive queue.  The transport layer then 
performs virtual-to-physical/physical-to-virtual address 
translation and fragmentation/de-fragmentation. Therefore, 
TRANS represents the time spent on the transport layer, but 
also includes part of the device driver, mainly DMA setup.  
Again, DMA represents the time to DMA data between host 
memory and NIC buffers.  

For UDP/IP send shown in Figure 2, APPL and UDP 
remain relatively constant.  However, IP and DEV dominate 
as the message size grows.  In particular, IP layer increases 
significantly as a function of messages size.  This is because 
IP handles both packet fragmentation and data copying from 
user space to socket buffer.  Therefore, IP portion increases 
substantially for messages greater than the MTU size.  In 
addition, DMA also takes a significant portion of the latency 
for message size over 4 Kbytes.  For M-VIA send, latencies 
are relatively evenly spread among APPL, TRANS, and DEV 
for message size up to 1 Kbyte.  However, as message size 
increases beyond 1 Kbytes, DMA takes up most of the latency 
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and increases rapidly.  TRANS and DEV also increase 
significantly for message sizes larger than 1 Kbytes due to 
fragmentation and interrupt handling, respectively.   

For DEV and DMA layers, both UDP/IP and M-VIA 
protocols show similar results.  This is because M-VIA uses a 
same type of device driver to communicate with the Ethernet 
NIC model.  The primary function of the DEV layer is to set 
up NIC’s DMA and receive interrupts from NIC.  As can be 
seen, the latency of DEV remains relatively constant for 
message size up to 1 K bytes, but increases significantly 
when the messages are larger than the MTU size.  DMA also 
varies linearly with the message size.  This is consistent since 
DMA initiation and interrupt handling are already reflected 
in the DEV layer; therefore, DMA transfer time is dependent 
only on the message size. 

 

C. Reducing Communication Latency 
Based on the aforementioned analysis of communication 

protocols, it is obvious that the data transfer time between the 
host memory and network interface constitutes a significant 
portion of the overall communication latency.  Therefore, this 
section explores a new data transfer mechanism to reduce this 
performance gap.  The approach called Cache-Coherent 
Data Transfer (CC-DT) [13] is a special hardware structure 
that efficiently transfers data between the host and NI using 
the underlying cache coherence protocol.  The CC-DT 
mechanism improves the performance by performing data 
transfer completely in hardware.  Therefore, unlike DMA or 
CNI [10], there is no additional software overhead involved 
in data transfer and the memory bus bandwidth is efficiently 
efficient used since data transfers are done in cache block 
units.  The proposed CC-DT together with an off-kernel VIA, 
called SonicVIA, was modeled and implemented as a NI 
module on Linux/SimOS.  This allows us to capture all 
aspects of the communication performance, including the 
effects of the application, network protocol, and network 
interface. 

Figure 3 illustrates the critical difference between a normal 
DMA transfer and CC-DT.  As can be seen, there is a time 
interval between when the user process writes data to the user 
buffer (T2) and when data is DMA from the user buffer to NI 

buffer (T5).  Since this time accounts for a significant portion 
of the overall latency, the primary motivation of CC-DT is to 
overlap the execution of the user data writes and the DMA 
transfer of data to NI buffer to reduce the overall latency for 
message send/receive. CC-DT efficiently transfers data 
between the user buffer in the registered memory region and 
NI buffer allocated in NI local memory.  This is 
accomplished by a special cache controller in NI that detects 
any accesses to the registered memory region, and maintains 
data coherence between the two associated buffers (see [13] 
for details). 
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 The total execution times required to perform a send+receive 
between two users as function of message size is shown in 
Figure 4.  For each message size, there are three bar graphs 
representing the execution times of CC-DT (left), C-DMA 
(middle), and DMA (right).  As can be see in the figure, the 
CC-DT mechanism results in much better performance 
compared to DMA and C-DMA [11].  The CC-DT-based NI 
attains 9% to 43 % reduction in the user-to-user messaging 
latency compared to the C-DMA-based NI.  More 
importantly, the performance improvement becomes more 
significant as message size increases. 
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In order to gain a better understanding of the performance 
improvement, Figure 4 also shows the total execution times 
subdivided into three most significant sections in user-to-user 
communication: User Data, DMA, and Transport. The User 
Data section is the time required for the user program to write 
a message to the user buffer.  The DMA section includes the 
time for DMA setup, DMA operations, and handling 
interrupts after DMA operations complete.  The Transport 
section represents the time required to run the network 
protocol to service the user send/receive requests.  

The breakdown view of the total execution time in Figure 
4 clearly shows how significantly each section affects the 
overall latency and increases as data size grows.  In particular, 
the amount of time spent on the DMA section depends on the 
underlying data transfer mechanism.  The DMA sections for 
C-DMA are smaller than the ones for DMA.  This is because 
C-DMA engines support cache-to-cache transfer so that the 
user data and descriptor can be moved directly from the cache 
memory on host processor.  In contrast, DMA engines 
require two steps to move the user data from the cache 
memory: The user data in the cache memory has to be first 
flushed to the host memory and then moved to the NI buffer.  
Notice that there is no DMA section for CC-DT because the 
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user data is transferred at the same time the user application 
writes to the user buffer.  The User Data section increase with 
the message size, but are the same for all the data transfer 
mechanisms.  As the message size increases beyond the MTU 
size, the Transport sections start to grow.  This is due to the 
fact that the network protocol performs fragmentation and 
de-fragmentation.  Again, the Transport sections do not vary 
with the underlying data transfer mechanism because all 
three methods were implemented on a common platform, i.e., 
SONIC-VIA.  These results clearly show that the CC-DT 
approach significantly reduce the communication latency 
virtually eliminating the entire DMA section. 

 

III. MAC MECHANISMS FOR MANETS 
Mobile devices coupled with wireless network interfaces 

will become an essential part of future computing 
environment.  However, wireless LAN and mobile ad hoc 
networks (MANETs) suffer from collisions and interference 
due to the broadcast nature of radio communication and thus 
require special medium access control (MAC) protocols.  
These protocols employ control packets to avoid such 
collisions but the control packets themselves and packet 
retransmissions due to collisions reduce the available channel 
bandwidth for successful packet transmissions.  At one 
extreme, aggressive collision control schemes can eliminate 
the retransmission overhead but at the cost of large control 
overhead.  At the other extreme, the lack of control over 
collisions offers zero control overhead but it may need to 
expense large amount of channel bandwidth for 
retransmissions. Therefore, this section highlights various 
mechanisms that balance the abovementioned two overheads 
to enhance the channel utilization in the presence of 
increased chance of collisions. 

MAC mechanisms can be broadly classified as temporal 
and spatial approaches depending on their focus of 
optimization on the channel bandwidth.  The temporal 
approaches attempt to better utilize the channel along the 
time dimension, while the spatial approaches try to find more 
chances of spatial reuse without significantly increasing the 
chance of collisions.   

Temporal techniques consist of: 
• Optimizing Distributed Coordination Function (DCF) 

parameters, such as when RTS/CTS should be used as 
function of message size or collision probability. 

• Improving the backoff algorithm by (1) properly 
adjusting the contention window (CW) size to reduce 
collisions, (2) different treatment of new and lost 
nodes for fairness, and (3) dynamic tuning of CW to 
minimize collision probability. 

Spatial techniques consist of: 
• Use of busy tones on separate channels to solve the 

exposed terminal problem and the hidden node 
problem due to mobility. 

• Transmission power control to reduce interference 
range radially 

• Directional antenna to reduce interference range 
angularly.  
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Abstract— Genetic algorithms have been the subject of numer-
ous investigations in the last decades, and they have been proven
to solve different search and optimization problems successfully.
By imitating and applying the principles of natural selection,
they are able to evolve solutions to real-world problems. One of
these real-world problems is the automated design of embedded
computing systems.

In this extended abstract, we will first briefly discuss the
general theory of genetic algorithms and then demonstrate their
applicability in the context of system-level design. In partic-
ular two hard optimization problems are addressed: activity
scheduling and application mapping of heterogeneous distributed
systems. Particularly, we will focus on multi-mode systems that
contain dynamically voltage-scalable processing elements. The
optimizations are carried out towards the fulfillment of multiple
design objectives, such as timing behavior, area requirements,
and power consumption.

I. I NTRODUCTION

The complexity of embedded systems has increased dra-
matically over the last decades. While initial systems offered
restricted functionality that could be realized through “simple”
application-specific circuitry (e.g., pocket calculators, digital
watches, etc.), nowadays portable computing systems have to
provide workstation-like performance at low energy consump-
tion in order to carried out computational-expensive multi-
media applications over long battery-life times (for example,
portable DVD players, MP3 players, cellular phones, PDAs,
and so on). Along with the increasing complexity comes a
tense market pressure that has resulted in shrinking product life
cycles and shortening time-to-market windows. Both trends,
the increasing complexity to due feature richness and the
shortening time-to-market times, have resulted in the need for
sophisticated design automation tools. Automating the system-
level design of embedded computing systems is a difficult task
that requires solving several subproblems, such as component
allocation, multi-processor scheduling, and application map-
ping. Since some of these problems belong to the class of
NP-hard problems, optimal solution often can not be obtained
for realistic problem instances. Therefore, effective heuristic
techniques are essential to yield good (not necessarily optimal)
synthesis results in relatively short optimization times. One
general heuristic optimization technique, which can be used
for a wide range of different problems, is given by the class
of genetic algorithms (GAs).

In this paper, we will briefly outline how genetic algo-
rithms can be used for system-level synthesis, considering, in
particular, architectures that contain dynamic voltage-scalable
components.

II. B RIEF INTRODUCTION TOGENETIC ALGORITHMS

Before going into details of the genetic algorithm-based
system-level synthesis technique, we will first introduce some
fundamental knowledge regarding genetic algorithms and their
functionality.

Genetic algorithms have been first introduced by Holland
[5]. By imitating the principles of natural selection and evo-
lution on a population of solution candidates, they are able
to optimize solutions to real-world problems. Each solution
candidate (individual) of the problem to be solved is rep-
resented as a string (chromosome). Each solution is further
associated with a fitness which represents the solution quality.
Based on this fitness, the individual solutions are ranked.
Within each iteration (generation), the algorithm performs
a probabilistic selection upon the ranked individuals (the
higher the rank, the higher the chance of being selected) and
gives them the opportunity to reproduce by means of mating
(crossover) with other individuals of the population pool. This
reproduction results in new individuals (offsprings) that inherit
certain properties and features from the parent individuals, thus
increasing the probability to have higher solution quality. The
produced offsprings replace individuals of lower fitness, which
die out. Nevertheless, new individuals are not only produced
through crossover operations, but also by randomly changing
(mutation) genes of chromosomes, occasionally. This provides
an additional possibility to enter unexplored regions in the
search space. The GA evolves until a certain stop criterion is
fulfilled. For example, a maximum number of generations have
been excepted or improved individuals have not been food
over a certain amount of generations, and so on. Fig. 1 shows
this functionality of genetic algorithms in graphical form. For
further readings, the interested reader is referred to excellent
textbooks on this subject [2], [6].

III. SYSTEM-LEVEL SYNTHESIS

Modern embedded systems are often implemented as
heterogeneous, distributed architectures. The required
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Fig. 1. Principles of genetic algorithm

functionality is implemented via software that runs on
programmable components (e.g., general-purpose processors
and DSPs) and via hardware (e.g., ASICs and FPGAs).
Two important problems that need to be solved during the
system-level synthesis are mapping and scheduling:
Application mapping: Functional fragments (tasks) of the
system specification have to be uniquely assigned to the
individual components of the architecture. Furthermore,
communications between tasks mapped to different
components need to be assigned to communication links.
Activity scheduling: An execution order and the exact
start times of tasks and communications have to obtained,
considering task interdependencies.

Certainly, the optimization of these two problems has to be
performed towards multiple objectives which are possibility
competing. These objectives include energy dissipation, timing
behavior (fulfillment of deadlines), and area/memory require-
ments. For instance, executing a certain function in software
is often less energy-efficient and more time consuming than
implementing the same task in hardware. The purpose of
the genetic algorithm-based synthesis approach presented in
Section V is to solve these problems efficiently.

IV. PRELIMINARIES

In this section, we outline the used specification models and
formulate the problem at hand.

A. System Specification

The abstract specification model we consider here is based
on a combination of finite state machines and task graphs, used
to capture the interaction between different operational modes
as well as the functionality of each individual mode. We refer
to this model as operational mode state machine (OMSM). The
following section explains this model, using the smart phone
example shown in Fig. 2. This smart phone combines three
different functionalities within one device: a GSM phone, a
digital camera, and an MP3-player.

1) Top-level Finite State Machine: We consider that an
application is given as a directed, cyclic graphΥ(Ω, Θ), which
represents a finite state machine. Within this top-level model,
each nodeO ∈ Ω refers to an operational mode and each
edge T ∈ Θ specifies a transition between two modes. If
the system undergoes a change from modeOx to modeOy,
with x �= y, the transition timetmax
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Fig. 2. Operational mode state machine and individual task graph specifica-
tion

transition edgeT = (Ox, Oy) has to be met. At any given time
there is only one active mode, i.e., the modes are mutually
exclusive. Fig. 2(a) exemplifies the operational mode state
machine for a smart phone example with eight different modes.
An activation scenario could look like this: When switched
on, the phone initializes intoNetwork Search mode. Upon
finding a network, the phone changes intoRadio Link Control
(RLC) mode. In this mode it maintains the connection to
the network by handling cell handovers, radio link failure
responses, and adaptive RF power control. An incoming phone
call necessitates to switch intoGSM codec + RLC mode. This
mode is responsible for speech encoding and decoding while
maintaining network connectivity. Similarly, the remaining
modes have different functions and are activated upon mode
change events. Such events originate upon user requests (e.g.
MP3-player activation) or are initiated by the system itself
(e.g. loss of network–switch back intonetwork search mode).

Based on the observation that many multi-mode systems
spend their operational timenot evenly in each of the modes,
we assume that for each operational modeO its execution
probabilityΨO is given, i.e., we know what percentage of the
operational time the device spends in each mode. For instance,
in accordance to Fig. 2(a), the smart phone stays 74% of this
operational time inRadio Link Control (RLC) mode, 9% inGSM
codec + RLC mode, and 1% inNetwork Search mode. The
left over 16% of the operation time are associated with the
remaining modes.

2) Functional Specification of Individual Modes: The func-
tional specification of each modeO ∈ Ω in the top-level
finite state machine is expressed by a task graphGO

S (T , C);
see Fig. 2(b). Here, each nodeτ ∈ T represents a task,
an atomic unit of functionality that needs to be executed
without preemption. We consider a coarse level of granularity
where tasks refer to functions such as Huffman decoders, de-
quantizers, FFTs, IDCTs, etc. Therefore, each task is further
associated with a task typeη ∈ ΓO. A distinctive feature
of multi-mode systems is that task type setsΓO of different
modesO ∈ Ω can intersect, i.e., tasks of identical type can
share the same hardware resource. Of course, resource sharing
is also possible for multiple tasks of identical type which are
found in a single mode, however, due to task communalities
among different modes the chances to share resources are
increased. Edgesγ ∈ C in the task graph refer to precedence
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constraints and data dependencies between the computational
tasks, i.e., if two tasks,τi and τj , are connected by an edge,
then taskτi must have finished and transfered its data to task
τj , beforeτj can be executed. A feasible implementation needs
to obey all timing constraints and precedence relations.

B. Architectural Model

Our system-level synthesis approach targets distributed ar-
chitectures that possibly consist of several heterogeneous pro-
cessing elements (PEs), such as general purpose processors
(GPPs), ASIPs, ASICs, and FPGAs. These components are
connected through an infrastructure of communication links
(CLs). Since each task might have multiple implementation
alternatives, it can be potentially mapped onto several different
PEs that are capable to perform this type of task. However,
if a task is mapped to a hardware component, i.e., ASIC
or FPGA, a core for this task type needs to be allocated,
involving the usage of area. Tasks assigned to GPPs or ASIPs
(software tasks) need to be sequentialized whilst the tasks
mapped onto FPGAs and ASICs (hardware tasks) can be
performed in parallel if the necessary resources (cores) are
not already engaged. However, contention between two or
more tasks assigned to the same hardware core necessitates
a sequential execution order, similar to software tasks.

Further, PEs might feature dynamic voltage scaling to en-
able a tradeoff between power consumption and performance
which can be exploited during run-time. For such PEs a
voltage schedule needs to be derived, additionally to a timing
schedule [4], [7]. To implement a multi-mode application
captured as OMSM, the tasks and communications of all
operational modes need to be mapped onto the architecture,
and a validschedule for these activitiesε ∈ (A = T ∪ C)
needs to be constructed. Further, for tasks mapped to DVS
enabled components an energy reducing voltage schedule has
to be determined. Hence, an implementation candidate can be
expressed through four functions which need to be derived for
each operational modeO ∈ Ω: MO

τ : T → π, MO
γ : C → λ,

SO
ε : A → R

+
0 , and V O

τ : TDV S → Vπ, where MO
τ and

MO
γ denote task and communication mapping, respectively.

Activity start times are specified by the scheduling function
SO

ε , while V O
τ defines the voltage schedule for all tasks

τ ∈ TDV S mapped to DVS-PEs, whereVπ is the set of
the possible discrete supply voltages of PEπ. Clearly, the
mappings as well as the corresponding schedules are defined
for every mode separately, i.e., during the change from mode
Ox to modeOy, the execution of activities found in modeOx

are finished, and the activities of modeOy are activated.

V. SYSTEM-LEVEL SYNTHESIS BASED ONGAS

In this section, atwo-step synthesis approach is introduced.
We will first outline an activity scheduling technique, which is
then combined with communication mapping. This is followed
by a multi-mode task mapping approach.

A. Activity Scheduling

In heterogeneous multiprocessor architectures that contain
voltage-scalable components, the execution order of tasks and

communications has not only an influence on the timing
behavior but also on the energy-efficiency of the system.

The scheduling technique described here is based on genetic
list scheduling approaches [3], which combine fast construc-
tive list scheduling with the optimization power of genetic
algorithms. Classical list scheduling techniques build an exe-
cution order step-by-step. This is done by maintaining a list of
tasks that are ready to execute, and in each step the task with
the highest priority value will be selected for execution. After
such a task has been scheduled, the ready list will be updated
by removing the scheduled task and adding new tasks that have
become ready. The critical issue of list scheduling approaches
is hence the assignment of priorities to the tasks that will lead
to a good scheduling solution. Many sophisticated algorithms
for this purpose have been proposed [1]. Nevertheless, genetic
list scheduling goes a different way. Instead of building one
schedule using a single priority assignment, they construct
and evaluate several schedules by assigning priorities that
are subject to optimization. This is achieved by encoding the
priorities into a priority string, as shown in Fig. 3.

The goal of the ge-
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Fig. 3. Priority string

netic algorithm is then
to evolve a priority
string that leads to a
schedule that satisfies
the imposed deadlines
and minimizes the en-
ergy consumption.

B. Combined Scheduling and Communication Mapping

For communication intensive applications, data transmis-
sions have to be mapped adequately onto the available commu-
nication links, due to their impact on the overall system perfor-
mance and energy dissipation. One important decision that we
have taken in this regard, was the separation of communication
mapping from the task mapping. The example given in Fig. 4
highlights the reason behind this decision. As we can observe,
simply combining the task and communication mapping with a
single mapping string that will be optimized by a GA is likely
to produce infeasible offspring. For instance, the mapping
string in Fig. 4(b) represents a valid assignment of tasks
and communication to the components. However, performing
a crossover with a second string might result in the string
of Fig. 4(c), in which the task mapping of tasksτ1 and τ2

has been changed. Nevertheless, this task mapping renders
the communication mapping impossible: the communication
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Fig. 4. Combined optimization of task and communication mapping
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between tasksτ0 (PE0) andτ1 (PE2) is assigned to link CL1;
however CL1 does not connect PE0 and PE2.

To overcome this problem, a combined scheduling and
communication mapping string is introduce, as given in Fig. 5.
We can see that this representation consists of two parts:
a) the priorities for tasks and communications and b) the
communication mapping. Using this string it becomes possible
to use a genetic algorithm to simultaneously optimize the
execution order as well as the communication mapping. Of
course, in multi-mode systems this combined optimization has
to be performed on the tasks and communications of each
mode, in order to yield valid schedules and communication
mappings.

C. Multi-Mode Task Mapping

Moving a step higher in the optimization hierarchy, it is
necessary to assign the tasks of the system specification to
the individual processing elements in the system. We employ
the following task mapping string to enable the optimization
through a genetic algorithm. Fig. 6 shows the task map-
ping string for multi-mode systems. As we can observe,
this mapping string is subdivided into mapping strings, each
corresponding to the tasks of an operational mode (two in the
figure). Each gene in the strings assigns uniquely a task to a
processing element. Needless to say, only after a task mapping
has been established, the combined communication mapping
and scheduling optimization can be carried out. Therefore,
during the optimization run of the task mapping it is necessary
to run the optimization of the scheduling and communication
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mapping, in order to evaluate the evolving task mappings.

VI. SYNTHESIS RESULTS

The presented synthesis techniques have been extensively
tested using several generated benchmarks as well as a realistic
smart-phone specification [8]. However, in the following we
restrict ourselves to outline solely the influence of mode
execution probabilities on the energy-efficiency of the system.
Fig. 7 shows the average power consumption of a two mode
systems over different activation times. The three lines corre-
spond to three different optimization runs for certain execution
probabilities. As expected, it is important that the real-usage
of the devices is close to the execution probability that has
been used during the optimization.

VII. C ONCLUSION

We have outlined in this extended abstract how genetic algo-
rithms can be applied to system-level synthesis. In particular,
we have concentrated on task and communication mapping
as well as on scheduling techniques. One main advantage of
using generalized optimization techniques for the synthesis is
their easy extensibility towards multiple design objectives.
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Predictability of Real-Time Software on 
Commodity Platforms 

Jane W. S. Liu, Fellow, IEEE

I. BACKGROUND 

This lecture focuses on means to make real-time
applications predictable when they run on general-purpose
operating systems. The past two decades have ushered in
tremendous advances in real-time technology. Today, there
are well-founded architectural principles, design guidelines
and best implementation practices for most real-time 
applications. All modern operating systems provide sufficient
real-time support, including means for static configuration of
real-time components on multiple processors, non-paged
memory for time-critical code and data, prioritization of 
activities based on their required response times, end-to-end
priority tracking across layers and components, prioritized
access to resources, and some form of priority inversion
control. There are also methods and tools with which a 
developer can determine with acceptable accuracy worst-case
execution times of time-critical components and validate
rigorously the schedulability of the components and the 
system as a whole. These advances have enabled event-driven
time-critical applications to be as provable responsive as time-
driven applications. The lecture starts by reviewing these
results; further details can be found in the incomplete list of
general references [1-5].

The second part of this lecture discusses the gaps between
many assumptions of real-time workload and system models
and real-life applications and platforms. The gaps are often
wide and unbridgeable. An example is the common
assumptions underlying many studies on multiprocessor
scheduling: Jobs (threads) can be dispatched dynamically
from a common priority queue for all processors, and a newly
ready higher priority job preempts the lowest priority job in
the system. For the sake of scalability and performance,
modern operating systems use a queue per processor. Because 
preempting the lowest priority job in the system as a rule can
lead to high cache misses and cascaded context swaps, the
kernel makes no attempt to locate and preempt the lowest 
priority job when dispatching a higher priority job. It is
difficult to implement algorithms based on an invalid system
model. Moreover, the gain in schedulable utilization through
dynamic dispatching is likely to be offset by loss in effective
utilization due to higher overhead.

Jane W. S. Liu is with the OS Core Technology Group, Windows
Division, Microsoft Corporation, Redmond, WA 98052, USA
(email: janeliu@microsoft.com).

II. OPEN SYSTEM AND RESOURCE RESERVATION 

The third part of this lecture talks about state-of-art supports
for real-time applications on open platforms. A common
assumption underlying existing real-time techniques and
standards is that the system is closed. This assumption is by
and large valid until recently. In the past, embedded and real-
time applications, ranging from avionics and flight
management, medical instrumentation, process control,
intelligent manufacturing, and C3I, ran exclusively on
dedicated, closed platforms. Resource demands and real-time
requirements of all applications in the system are known. This
knowledge makes it possible to control their resource
contentions coherently and to predict their timing behavior
accurately.

In recent years, rapid growth in diversity and pervasiveness 
of embedded and real-time applications has increased the
pressure on reducing their costs and has shortened the time for
their deployment and upgrade. A consequence is the growing
trend to build such applications from components and run
them on open platforms. The open-system approach has many
advantages: Widely available tools and building blocks can
significantly lower development and deployment cost and
time; hardware and kernel abstractions enable the use of a
wider variety of devices and configurations; and the burden of
keeping pace with advances in hardware and software
technologies is off-loaded to platform developers.

An open environment contains independently developed
system and application components. The lack of information
on their resource demands and inability to control their
behavior make it impossible to ensure predictability of time-
critical components in open systems without some form of 
reservation.

Resource reservation was first proposed by C. Mercer as a 
way to ensure the quality of services of multimedia
applications [6]. Subsequently, the concept has been refined
and extended to support real-time guarantees (e.g., [7-9]) and
resource sharing (e.g., [10].) Several experimental and
commercial prototypes (e.g., [7, 11, and 12]) have
demonstrated that resource reservation is feasible and
effective. By providing each time-critical component with
timing isolation and protecting it from ill effects of resource
contention, resource reservation makes it possible to test,
verify and tune the timing behavior of the component without
regard to how other components in the system are scheduled.
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III. PROCESSOR TIME GUARANTEE 

 By far, processor reservation is the most mature compared
with reservation mechanisms for other types of time-shared
resources. A processor reserve is a fractional bandwidth of a
processor. When there is a reserve (P, B) with period P and
budget B (B < P) on a processor, the system commits to
deliver B units of time of that processor to the reserve every 
period. Thus, the reserve is guaranteed the fraction B/P of the
processor bandwidth. Since the budget of each period is
delivered by the end of the period, the period P is its latency
guarantee. Once admitted and created, threads (and processes)
can be put in the reserve, meaning that they share the
processor time allocated to the reserve.

There are many ways to support processor reserves. A 
common alternative is to put processor reserves in 
middleware and user levels. This is the approach taken by
Resource Kernels, RK/NT and Linux/RT [11] and by Aurema
resource manager [12]. Portability is a major advantage of this
alternative. However, compared with kernel-level reserves,
middleware- and user-level processor reserves generally have
higher overhead. More importantly, a middleware- or user-
level reserve mechanism cannot efficiently support small
latency (1-5 ms) guarantee and sub-millisecond budget
granularity required by some applications.

For this reason, processor reserves are provided by the
kernel in a future version of Microsoft Windows. Unlike the
Illinois prototype [7], which provides completion time
guarantee, the reserve mechanism is designed to provide
bandwidth-latency guarantee to both sporadic and periodic
executions of threads from real-time and general-purpose
applications. Conceptually, a reserve (P, B) can be thought of
as a constant utilization server. At each replenishment time,
the reserve is given its budget B, and its deadline is set at 
current time plus P so that the instantaneous utilization of the
reserve is equal to its bandwidth. A reserve is eligible for
scheduling when it has budget and at least one thread in it is
ready to run. When a reserve has no ready-to-run thread, its 
budget is reclaimed and made available to threads running
without reserves. Eligible reserves are scheduled on the
earliest-deadline-first (EDF) basis. Whenever a reserve is
scheduled, the highest priority thread among threads in the
reserve runs, regardless its priority relative to priorities of
threads not in the reserve. Thus, the reserve protects threads in
it from conflicting prioritization of threads outside the reserve.
The system monitors the processor time consumed by threads
in the reserve and stops scheduling the reserve (and hence
threads in it) when the threads exhaust the reserve budget. The
reserve becomes eligible for scheduling again when the
system replenishes its budget at its deadline.

One may question why not replenish and schedule
processor reserves according to the total bandwidth server
(TBS) algorithm instead of constant utilization server. It is 
well known that TBS and its many variants yield better
average response time and naturally allow exhausted reserves
to share background processor time left unused by reserves.
TBS would be a better choice if every thread in the system

runs in some reserve. On an open platform, most applications,
drivers and system components do not use reserves. Their
threads run without reserves. If reserves were scheduled
according to the TBS algorithm, run-away threads in some
reserve would starve these threads. Soft reserves (i.e., reserves
that are allowed to compete for background time after they
exhausted their budgets) need to be scheduled in the
background of threads without reserves. 

IV. DISK BANDWIDTH RESERVATION 

Despite of numerous studies on real-time disk scheduling,
algorithms suitable for disk bandwidth reservation in an open
platform are yet to be found in literature. Most real-time disk
scheduling algorithms are variants of EDF or least slack time
(LST) algorithms.  Their primary goal is to maximize
schedulable utilization of real-time requests; keeping
throughput high is secondary. An example is the EDF-scan
algorithm. According to this algorithm, in each seek, the R/W
head moves in the direction of the request with the earliest 
deadline, but stops to pick up requests along the way to that
request for as long as the request has slack or the current time
is within a window of some threshold length. A potential
advantage of the algorithm is a higher schedulable real-time
bandwidth. However, it is not clear whether this advantage is
in fact realizable when one takes into account the extra 
amount of seek time that may incur, and the extra seek time is
wasted. In general, priority-based algorithms do not work well
when the server (in this case the R/W head) must walk from 
request to request. Starvation is also a problem and must be
dealt with. Algorithms that use slack information have the
additional burden of slack computation. The computation can 
be complicated especially since the disk scheduler in an open
platform must work for all types of disks and volume
configurations (e.g., striped and mirrored).

Weighted-round-robin (WRR)-scan offers a more
practical solution. WRR-scan algorithm is a combination of
scan, WRR and time-token algorithms. It was motivated by
the following observations:

1. Similar to processor reserve, each disk reservation (P,
N) is specified by period P and number N of data
blocks per period: A user of the reservation can read
or write N blocks of data every period of length P by
the end of the period. A stream of requests with a 
reservation behaves like a periodic task.

2. The problem of scheduling periodic requests in midst
of interactive and paging requests resembles the
problem of scheduling periodic message
transmissions in midst of aperiodic messages in a
FDDI network. A timed-scan algorithm similar to the
FDDI time-token protocol may work better than
priority-based algorithms.

3. Unlike stations on a network, however, the disk
scheduler has global knowledge of all outstanding
requests during each scan. This knowledge allows
the use of a centralized scheme similar to the WRR
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scheme, which is used for scheduling periodic and
aperiodic messages in packet-switched networks.

WRR-scan works like a standard scan algorithm: The R/W 
head starts from one end of the disk, seeks across the disk
towards the other end, serves selected requests along the way
until it reaches the furthermost selected request, and then 
returns to the starting end and does the next scan. The
algorithm differs from the standard scan only in its choices of
requests to service and how much of each request to service 
during each scan. WRR-scan resembles the WRR scheme in 
the sense that it is rate-based. It also divides time into rounds
and allocates to each periodic request stream a number of 
slots per round, where a slot is the time required to access a 
block of data. Like the timed-token protocol, WRR-scan
algorithm also must set aside “walking time”, the time taken
by the R/W head to move from request to request and across
the disk.

The WRR-scan algorithm assumes that a new reservation
is admitted only if it passes an acceptance test. The test is 
similar to the kind used for WRR algorithm: A new
reservation (P, N) can be admitted only if within the P/R
rounds in each of its period, where R the maximum round
length, there are enough unreserved slots to meet its demand.

To explain the algorithm with the aid of an example,
suppose that the parameters of a disk are as follows:

1. The minimum amount of data to be transferred is a
block of 64kb. The transfer time of the block plus
nominal seek and rotational latencies is 10 ms.

2. The chosen round length R is 200 ms. In other
words, each round has at most 20 slots. 

3. The degenerate round-trip seek time (walking time)
of the disk is 50 ms. Hence 5 slots per round may be 
wasted in the worst case when requests serviced in 
the round are scattered across the disk. This time
can be used opportunistically for background
requests if during any scan, the actual seek time
among all outstanding requests is smaller than 50
ms.

4. Three slots in each round are set aside to ensure
acceptable response time for interactive requests.
Therefore, only 12 slots out of each 200 ms round 
are available for requests with reservations. 

5. The disk is divided into zones based on locations of
requests with reservations. 

 Suppose that there is a reservation (300, 3) when a new
reservation (500, 10) is subjected to acceptance test. (500, 10)
is acceptable because within each period of length 500, there
are 2 rounds. The demand of (500, 10) can be met because the
number of unreserved slots per round is larger than 5. After
(500, 10) is admitted, 8 out of 12 slots of every round are
reserved1. In the worst case, (200, 3) and (500, 10) are at the

first zone and last zone of the disk, respectively. So, five slots
are used just to shuttle the arm between them. The number of
slots available for interactive and background requests is at
least 7 per round. (Note that one out of 5 rounds, (500, 10) has
no pending transfer, and there are 12 slots available for
interactive and background requests in that round.)  These 
slots can be distributed among pending interactive and
background requests according to any strategy.

1 Note that the scheduler over commits slots for both reservations. A 
seemingly better alternative is to keep track the actual number of 
slots required by each reservation in each round. For this purpose,
the scheduler would need to maintain a table of reserved slots in 
individual rounds. The length of the table is the least common

multiples of all possible periods. The additional memory required to
hold the table is usually not a serious problem. More seriously, starts 
of rounds would have to be aligned with the starts of their periods if 
the scheduler were to take advantage of the additional slots in some 
rounds. This requirement would make scheduling and control
considerably more complex and less robust.

The example illustrates that WRR-scan gives the scheduler
good control over tradeoff between average response time and 
throughput of interactive and paging requests and total
bandwidth made available to reservations. The amount of
slack that is available for interactive and paging requests in 
each round can be easily determined from the slots, locations
and pending flags of the requests with reservations.

VI. FUTURE WORK

A great deal of work remains to be done so that the 
predictability of real-time applications on open platforms can
be assured. The last part of the lecture discusses examples of 
missing sciences and technology.

An obvious missing piece is platform support for network
bandwidth and latency guarantees. Literatures offer numerous
real-time communication algorithms and protocols that can be
used to support network bandwidth reservation and qualify-
of-service management. Many prototype protocol stacks
provide bandwidth and latency guarantees. The fragmented
results are yet to be integrated into widely used platforms and
networks and their effectiveness for common applications and
scenarios thoroughly evaluated.

A frequently asked question from application developers is
“how do we know the amount of processor bandwidth to
reserve”. This question points to another example of missing
techniques. Existing worst-case execution time analysis 
methods and tools cannot provide answer to this question. A
component (e.g., an audio engine, a Kalman filter) in an open
system may run on hundreds of different computers, different
versions of operating systems, and depending on the runtime
environment, makes use of different libraries, etc. At different
times, hyper-threading may be on or off, and a variety of
workload may run on other logical processors. Clearly, a 
static profile of the resource demands of a component is not
useful. Dynamic runtime profiling and calibration can provide
data on resource demands. The problem is not that there are 
no tools for this purpose. Rather, it is the lack of sound
principles and experiment methods based on which tools can 
be built.
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Elements of Real Time Systems 
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Lecture 1:   Elements of Research  
 
The entrance to graduate school marks a critical phase of transition for most graduate students from absorbing 
knowledge to creating knowledge. This lecture provides useful advices on how to position R&D strategically; 
how to identify and formulate high impact problems; and how to communicate ideas and results effectively.   
  
Lecture 2:  Generalized Rate Monotonic Scheduling    
 
GRMS was designed to support the resource management of real time control systems, which consists of mostly 
periodic tasks with a small percentage of aperiodic events. GRMS has now been supported by most Real Time 
Operating Systems and open standards in real time computing. This lecture provides a tutorial on this subject for 
students who are new to real time computing field. This lecture begins with a review of characteristics of real 
time systems that set them apart from general purpose computing systems. It reviews the basic real time 
scheduling topics of schedulability tests for periodic tasks, synchronization of real time tasks, and the handling of 
aperiodic events.  
 
References 
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Lecture 3:  Queueing Theory Based Network Server Performance Control  
 
Controlling the performance of a network server is a challenging problem in soft real time applications. This 
lecture presents a queuing model based feedback control approach to keep the timing performance of a network 
server close to the specification. The queueing predictor based feed forward control keeps the system in the 
neighborhood of the performance set point, independent of workload changes. This allows us to develop a linear 
controller to fine tune the performance by suppressing not only the approximation errors in the queueing model 
but also the transients that cannot be reduced by queueing model based tuning. Together, queueing theory and 
feedback control theory a synergistic approach to control the performance of networked information servers.  
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Applications Symposium, 2003. 
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Lecture 4:   Dependable Upgrade of Control Software  
 
How to improve the reliability and availability of complex software systems is a serious challenge as software 
assumes an increasingly larger role in the critical functions of our society.  It is a widely held belief that using 
diversity in software systems will improve system reliability. However, is it true? This lecture investigates the 
relationship between software complexity, reliability, degree of diversity and available resource for software 
development. Based on the result of this analysis, we present a forward recovery approach based on the idea of 
“using simplicity to control complexity”.  We show that this is an effective approach that can be applied 
systematically to software for automatic control systems.  
 
References 
 
Sha, L., “Using Simplicity to Control Complexity”, IEEE Software, July-August, 2001. 
 
Sha, L., “Upgrading real-time control software in the field”. Proceedings of the IEEE 91(7): 1131-1140 (2003) 

http://www.informatik.uni-trier.de/~ley/db/journals/pieee/pieee91.html


European Summer School on Embedded Systems, Sweden, 2003 63

The Timing Behavior of Embedded Systems: 
Specification, Prediction, and Checking  

Alan Shaw  

  
Abstract—The survey is based primarily on my 2001 

textbook, emphasizing methods to describe, analyze, measure, 
and predict the timing properties of embedded software. Topics 
include extended state machine and logic techniques for 
specification; schema and optimization approaches to 
prediction; and programming language and operating system 
facilities for checking and controlling timing behaviors.  
 

Index Terms—Execution time prediction, real-time systems, 
real-time software, timing analysis, timing specifications  
 

I. INTRODUCTION 

AN essential determinant of the correctness of any 
embedded system is its timing behavior. This behavior 

is measured not only by meeting performance or speed 
requirements, but often also by satisfying more complex, 
usually deterministic, constraints or assertions involving 
time.  

We survey many of the models and techniques that have 
been used to deal with timing problems, starting with 
specification methods and working through to software 
support [1]. Most of the content appears in my textbook [2].  

The first part gives a brief overview of embedded and 
real-time systems and a discussion of computer time and 
clocks [3]. In the following section, we outline several of the 
principal specification methods for describing requirements 
and designs, with emphasis on state machines, regular 
expressions, and real-time logic [4]. The next topic is how to 
predict the execution times of programs, using both timing 
schema and optimization approaches [5].  The final part is 
concerned with facilities in programming languages and 
operating systems that monitor and control time [6].   

 

II. EMBEDDED SYSTEMS AND COMPUTER TIME  
Software for embedded and real-time systems differs from 

conventional software in a number of significant ways, such 
as the importance of clocks and timing constraints, physical 
concurrency, reliability and fault tolerance, testing and 
certification, and stand-alone operation. The main scheme for 
modeling and implementing programs is the process model 
developed for operating systems. Two kinds of processes are 
defined to handle the application area: periodic processes and 
sporadic processes, the latter corresponding to interrupt- or 

event-driven processes.  
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Alan Shaw is with the Department of Computer Science and Engineering, 

University of Washington, Seattle, WA 98195 USA (phone:206-543-9298; 
fax: 206-543-2969; e-mail: shaw@cs.washington.edu). 

Computer time and clocks are employed for a wide variety 
of purposes. Examples are time-stamping the occurrence of 
events to indicate causality (e.g., for message sends and 
receives), measuring the time between events (e.g., for 
deadlines), unique naming of objects, computing keys in 
cryptography, synchronizing activities, and precisely 
measuring distance and position (e.g., GPS). Computer time 
should have certain properties relative to ideal or standard 
time. These include correctness, bounded drift, monotonicity, 
and chronoscopicity (bounded 2nd derivative of the clock 
function).  

Clock servers provide computer users a number of basic 
services related to time. Typical offerings are absolute 
(calendar) clock times, stopwatch or relative time, clock reset 
and clock set. To maintain desirable clock properties, clocks 
need to be synchronized with standard or other clocks. This 
may occur through a centralized standard, such as GPS, or 
via a distributed method whereby a number of clocks achieve 
internal synchronization by passing clock timestamps to one 
another.  

 

III. SPECIFICATION METHODS  
Formalisms for describing the behavior of systems can be 

classified as either imperative or declarative. In the first case, 
the methods are operational or executable, and directly 
generate behaviors. These include state machine and 
programming language notations.  Declarative techniques, on 
the other hand, specify properties that behaviors must satisfy. 
Examples are axiomatic methods and logics.   

The most interesting and difficult problems are concerned 
with concurrency and time. As typical solutions, we present  
useful extensions of state machines, regular expressions, and 
predicate logic.  

Communicating real-time state machines (CRSMs) are an 
extension of state machines for a distributed real-time 
environment. Machines communicate (perform I/O with each 
other) over unidirectional channels through one-to-one 
message passing following Hoare’s CSP model. Each state 
transition, denoted by a guarded command, has associated 
time bounds that define the best and worst case execution 
times for the transition.  For I/O commands, the time bounds 
represent the window during which I/O can occur. 
Corresponding to each CRSM is a clock machine, a simple 
CRSM that  delivers real-time to its host on request and 
allows timeouts to be easily described.   

CRSMs are universal machines, and admit to simulation 
and verification software. Transitions occur on an 
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earliest-time first basis, with ties handled 
non-deterministically. Example systems that have been 
specified and simulated (or implemented) include: alarm 
clocks with ringing times and reset; mouse clickers with 
single click, double click, and object selection features; 
railway crossing control; traffic light control with emergency 
operations; and a commercial defibrillator.  

A more declarative technique is the flow expression 
scheme, an extension of regular expressions with an 
interleaved model of concurrency. A shuffle operator and its 
closure are added to express the interleaving of symbols; 
restrictions on interleaving are described employing 
operators that are similar to binary semaphores. The result is 
a universal notation. The method has been used to specify 
ordering and causality properties, for example a “send” event 
must precede a “receive”. Time is included by including 
discrete clock tick events in descriptions.  

The addition of an event-occurrence function to predicate 
logic has produced a powerful notation called real-time logic 
(RTL). This partial function maps instances of event classes 
into time.  RTL has been used to describe a wide variety of 
safety properties of systems, such as deadlines or “two planes 
must maintain a given separation distance from each other”.  
It has also been implemented in run-time checkers where 
RTL expressions are evaluated at critical points to assure that 
constraints are met.     

  

IV. PREDICTING EXECUTION TIMES 
Determining the best and worst case execution times of a 

program before running it is not only a basic requirement for 
real-time and embedded systems but also a fundamental 
problem in computer science. While theoretically unsolvable 
in the general case, the problem can still be handled for many 
practical situations.  

The difficulty is to achieve bounds that are both tight and 
safe, where a bound is tight if there exists an actual execution 
that is close to it and a bound is safe if there do not exist 
executions outside of it. It is also desirable to produce bounds 
that take into account or are independent of a variety of 
possible hardware or architectural interferences and 
complexities, such as interrupts and caching; and bounds that 
work under a variety of operating systems and compilers, and 
in the presence of competing programs. After a brief 
discussion of the two most practical, widely-used, but 
ultimately flawed approaches, measurement and simulation, 
we describe two promising methods: program analysis 
through timing schema and prediction through optimization 
techniques.  

Correctly measuring the execution time of a particular 
program with its data in a given environment is not as easy as 
it appears, especially in embedded systems where computer 
components are closely coupled with other systems and I/O. 
It is also difficult, and often impractical, to find, run, and 
measure the best or worst case executions. Prediction by 
measurement also assumes that failure costs, for example, 
missing a deadline, are not catastrophic, and thus does not 
work well with safety-critical systems. Simulation avoids 
some, but not all, of these problems. In addition, one has to be 
careful to ensure that the results are practical despite the 

inevitable abstractions that are made. Nevertheless, a 
combination of these two approaches, particularly for 
components or small systems, has proven successful. 

      The Timing schema method is based on program 
analysis at the source language level. It is assumed that best 
and worst case execution bounds are available for each basic 
or atomic component of the programming language, taking 
the compiler and machine architecture into account; the 
granularity or definition of an atomic component could be as 
large as a basic block or as small as a lexical item in the 
language. The timing costs of control constructs, for example, 
conditional testing and branching, are included. These times 
can be found, for example, by measurement.  

 Safe, but not necessarily tight, bounds on execution times 
are first obtained through a static analysis of the program 
structure.  For example, a safe estimate of the worst case time 
is obtained by computing the longest path through the 
program. Much of this can be accomplished automatically. 
However, user input and verification is required for bounding 
the number of executions of loops.  

Tighter estimates result when larger granularity atomic 
components are used and when a more dynamic analysis is 
superimposed. In the latter case, extended regular 
expressions have been employed successfully to describe 
contextual restrictions on program paths.  It is also possible to 
accurately incorporate many hardware interferences; for 
example, executions in the presence of interrupts can be 
analyzed provided that bounds on interrupt separation times 
and handling times are available. The ideas have been 
validated with software tools through a number of 
experiments that compare measured results with predictions 
for a representative sample of relatively small programs.  

Another attractive approach models timing prediction as 
an optimization problem.  Worst (or best) case execution time 
is expressed as the maximum (or minimum) of a function that 
is the sum of the product of the execution time of each block 
of the program and the number of times it is executed; the 
number of times each block is executed is unknown. The 
function is subject to a number of structural constraints which 
essentially conserve program flow, and contextual 
constraints, such as loop bounds and path restrictions, that 
have to be verified independently. These constraints can be 
written as linear inequalities involving the unknown 
variables. 

The result is a (potentially large) number of integer linear 
programming problems, each of which can be solved with a 
standard solver. The desired bound is computed by taking the 
maximum (or minimum) of all the solutions. This method has 
also been validated with many experiments. 

A difficult underlying issue for both methods is how to 
accurately include many of the speed-enhancing features of 
the underlying hardware architectures. Examples include 
data and instruction caches, pipelining, and translation 
lookaside buffers. Much work has been done exploring this 
problem, for example, also using optimization techniques, 
but general solutions remain elusive. It could very well be 
that in order to obtain deterministic predictability, one must 
sacrifice gains in average speed.  
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V. SOFWARE SUPPORT 
Many modern programming languages and operating 

systems provide basic and higher level features that allow the 
user to control and measure the timing behavior of software 
for embedded systems. These include clock servers as 
outlined in Section II, alarm clocks that generate timeout 
events at some future time, instructions to delay a task or 
thread for some specified time, and blocking synchronization 
and resource acquisition operations that provide timeouts. An 
important feature of these facilities is that they include 
bounds on the timing accuracy and overhead; for example, a 
delay operation might include a guarantee that the delayed 
task will appear on a ready list within a given number of time 
units after expiration.   Some research systems support 
higher-level specifications; a typical example is one that 
permits the direct declaration of a periodic process, including 
start time, period, and deadline.  

Two well-known languages with good timing constructs 
are Ada with its real-time annex and real-time Java. In both 
cases, the timing facilities are high resolution, high accuracy, 
and monotonic versions of the analogous objects of the hosts 
(standard Ada and Java). In addition, real-time Java offers a 
novel timing object called rational time that deals in 
frequencies. Both languages also permit better management 
of concurrency, for example, including priority inheritance 
protocols which allow more scheduling control and thus 
timing predictability.  

Many language features are directly implemented as 
operating systems interfaces or run-time utilities. Real-time 
versions of UNIX and the associated real-time extensions to 
the IEEE POSIX standard implement many of the mentioned 
clock facilities and define direct interfaces to programming 
languages.  
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Stochastic Analysis of Real-Time Systems
Kanghee Kim, Jos´e Luis Dı́az, Lucia Lo Bello, Jos´e Marı́a López,

Chang-Gun Lee, Daniel F. Garc´ıa, Sang Lyul Min, and Orazio Mirabella

Abstract— This paper describes an exact stochastic analysis for
general priority-driven periodic real-time systems. The proposed
analysis accurately computes the response time distribution of
each task in the system, thus making it possible to determine the
deadline miss probability of individual tasks, even for systems
with a maximum utilization factor greater than 1. The analysis is
uniformly applied to general priority-driven systems, including
fixed-priority systems (such as Rate Monotonic) and dynamic-
priority systems (such as Earliest Deadline First), and can
handle tasks with arbitrary relative deadlines and execution
time distributions. In the paper, we demonstrate the accuracy
of the analysis in comparison with other methods proposed in
the literature.

Index Terms— Real-time systems, Stochastic analysis, Priority-
driven scheduling, Periodic tasks

I. I NTRODUCTION

Most recent research on hard real-time systems has used
the periodic task model [1] in analyzing the schedulability of
a given task set where tasks are released periodically. Based
on this periodic task model, various schedulability analysis
methods for priority-driven systems have been developed to
provide a deterministic guarantee that all the instances, called
jobs, of every task in the system meet their deadlines, assum-
ing that every job in a task requires its worst case execution
time [1], [2], [3].

Although this deterministic timing guarantee is needed in
hard real-time systems, it is too stringent for soft real-time
applications that only require a probabilistic guarantee that the
deadline miss ratio of a task is below a given threshold. For
soft real-time applications, we need to relax the assumption
that every instance of a task requires the worst case execution
time in order to improve the system utilization.

Progress has recently been made in the analysis of real-time
systems under the stochastic assumption that jobs from a task
require variable execution times. Research in this area can be
categorized into two groups depending on the approach used to
facilitate the analysis. The methods in the first group introduce
a pessimistic or restrictive assumption to simplify the analysis.
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For example, the Stochastic Time Demand Analysis [4] tries
to compute an upper on the deadline miss probability of
each task assuming the worst-case combination of task release
times, called acritical instant. As another example, Real-
Time Queueing Theory [5], [6] has a restrive assumption that
the system to be analyzed should have an average system
utilization close to 1, calledheavy traffic conditions. On the
other hand, the analysis methods in the second group [7], [8]
assume areservation-based scheduling modelthat provides
isolation between tasks, and thus decompose the stochastic
analysis of an entire system into those ofn independent virtual
systems (n: the number of tasks).

In this paper, we describe an exact stochastic analysis that
does not introduce any worst-case or restrictive assumptions
into the analysis. The proposed analysis assumes neither a
critical instant nor heavy-traffic conditions, thus can give
an accurate deadline miss probability for each task in a
system with an arbitrary system utilization value. Moreover,
the analysis assumes general priority-driven scheduling, thus
can uniformly address both fixed-priority systems such as Rate
Monotonic [1] and Deadline Monotonic [9] and dynamic-
priority systems such as Earliest Deadline First [1]. It should
be noted that our analysis builds upon the Stochastic Time
Demand Analysis (STDA) in that we largely borrow the basic
techniques developed in the STDA.

The rest of the paper is organized as follows. In Section II,
we describe the system model, and in Section III, explain the
proposed analysis. In Section IV, we give experimental results
obtained by our analysis in comparison with STDA. Finally,
in Section V, we conclude the paper with directions for future
research.

II. SYSTEM MODEL

We assume a set ofn independent periodic tasks
�τ1� � � � �τn�, each taskτi (1 � i � n) being modeled by the
tuple �Ti �φi �Ci �Di�, whereTi is the period of the task,φi its
initial phase,Ci its execution time, andDi its relative deadline.
The execution timeCi is a discrete random variable with a
given probability mass function of a finite range, denoted
by fCi �t� � P�Ci � t�. The execution time distribution can
be given by a measurement-based analysis such as automatic
tracing analysis [10] or an analytical program analysis such as
probabilistic worst case execution time analysis [11]. Without
loss of generality, the phaseφ i of each taskτi is assumed to
be smaller thanTi . The relative deadlineDi can be smaller
than, equal to, or greater thanTi .

We define the system utilization as the total utilization of
all tasks in the system. Since the execution times of tasks are
varying, the minimumU min, averageŪ , and maximum system
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utilization Umax are defined as follows:

Umin�
n

∑
i�1

Cmin
i

Ti
� Ū �

n

∑
i�1

C̄i

Ti
� Umax�

n

∑
i�1

Cmax
i

Ti
�

In addition, we define a hyperperiod of the task set as a
period of lengthTH , which is equal to the least common
multiple of all the task periods.

Each task gives rise to an infinite sequence of jobs, whose
release times are deterministic. If we denote thejth job of task
τi by Ji� j , its release timeλi� j is equal toφi �� j�1�Ti. Each
job Ji� j requires an execution time, which is described by a
random variable following the given distributionfCi �t� for τi .
The execution time of a job is assumed to be independent of
other jobs of the same task and those of other tasks.

We assume job-level fixed-priority preemptive schedul-
ing [12]. This model covers both task-level fixed-priority
scheduling such as Rate Monotonic (RM) and Deadline Mono-
tonic (DM), and task-level dynamic-priority scheduling such
as Earliest Deadline First (EDF). We denote the priority of
job Jj by a priority valuep j . Note that a higher priority value
means a lower priority.

We obtain the deadline miss probabilityDMPi from the
response time distribution of taskτ i . We denote a random
variable describing the response time ofτ i by Ri and its
distribution by fRi �t�.

DMPi � P�Ri � Di��
∞

∑
t�Di�1

fRi �t�� (1)

III. STOCHASTIC ANALYSIS

The goal of the proposed analysis is to accurately compute
the deadline miss probability of every task in the system. To
compute the deadline miss probability, we have to compute the
response time distribution of the task towards which a response
time profile obtained in a real system converges. Thus, we
define the response time distribution of each task as follows:

Definition 1: The response time distributionfRi �t� of each
task τi is defined as the average of the stationary response
time distributions of all the jobsJi� j from τi in a steady-state
hyperperiod. Letmi be the number of jobs ofτ i released in
a hyperperiod, i.e.,mi � TH�Ti , and f

R�k�
i� j
�t� the response time

distribution of jobJ�k�i� j , i.e., the jth job of taskτi in the kth
hyperperiod. Then,

fRi �t� �
1
mi

mi

∑
j�1

lim
k�∞

f
R�k�

i� j
�t��

Thus, to compute the response time distribution of a taskτ i ,
we have to compute the stationary response time distributions
of all the jobs fromτi in a steady-state hyperperiod.

The response timeRj of a job Jj is determined by two
factors. One is the pending workload that delays the execution
of Jj , which is observed at its release timeλ j . We call this
pending workloadbacklog. The other is the workload of jobs
that may preemptJj , which are released afterJj . We call
this workload interference. Since both the backlog and the
interference forJj consist of jobs with a priority higher than
that of Jj , we elaborate the two terms topj-backlog and

Wpj �λ j � I �1�
pj I �2�

pj I �3�
pj

Rj

jobs with p� pj jobs with p� pj

λ j �Dj

� � �

λ j

Jj

Fig. 1. Factors affecting the response time of a job

pj-interference, respectively. Thus, the response timeRj of
Jj can be expressed by the following equation:

Rj �Wpj �Cj � Ipj (2)

whereWpj is the pj -backlog observed at timeλ j , Cj is the
execution time ofJj , and I pj is the pj -interference occurring
after timeλ j .

Therefore, the first step to compute the response time
distribution of Jj is to compute itspj -backlog distribution,
and the second step is to introduce the execution time distri-
bution ofJj and thepj -interference effect into thep j -backlog
distribution. This second step is rather easy, since we can reuse
the techniques introduced in STDA with no modification.

However, the first step is complex, since thep j -backlog
distribution should be computed when the system is in steady
state. This means that for every jobJj we have to compute
its pj -backlog distribution in thekth hyperperiod, assuming
that k� ∞. Thus, we need to consider the sequence of all
the preceding jobs for each single jobJ�k�j in hyperperiodk,
that are released with a priority higher than or equal to that of
J�k�j . In this case, the job sequence spans over all the preceding
hyperperiods 1, 2, ...,k�1, since thep j -backlog distribution of
J�k�j in hyperperiodk can be affected even by the jobs released
in the preceding hyperperiods whenU max is greater than 1.

In our analysis, however, we do not consider a separate
job sequence for each jobJ�k�j . Instead, we show that it is
possible to compute thepj -backlog distribution of a job from
that of another, thus reduce the computation of thep j -backlog

distributions of all the jobsJ�k�j in hyperperiodk to that
of a single job in the hyperperiod. This is based on the
observation that under job-level fixed-priority scheduling there
exist backlog dependenciesamong the jobs. For example, let
us consider the task set example shown in Figure 2(a). If we
assume that the task set is scheduled by EDF, we can easily
see that the backlogWp2 of J2 can directly be computed from
Wp1 while considering the execution time ofJ1. Likewise,
the backlogWp3 of J3 can also directly be computed from
Wp1. That is, along the backlog dependency tree shown in
Figure 2(c), we can compute thep j -backlog distributions of
all the other jobsJj from that of J1 (In the tree, the label
attached on each linkWpi �Wpj represents the jobs that should
be considered in computingfWpj

�t� from fWpi
�t�).

Then the remaining question is how to compute the
pj -backlog distribution for the root of the backlog dependency
tree. We address this problem by showing that the root is
always the backlog of aground job, which is defined as a
job Jj that has a lower priority than all the jobs precedingJ j .
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Fig. 2. An example of backlog dependency tree generation

This means that thepj -backlog of such a job is always equal
to the total backlog in the system observed at the same time,
called system backlog W, and thus it is possible to compute
its stationary distribution by Markov process modeling. That
is, we prove that the evoluation of the system backlog over
hyperperiods�W�1�

�W�2�
� � � � �W�k�

� � � � � as a Markov process,
derive a set of equilibrium equations, and solve them.

Therefore, the proposed analysis is summarized into the
following three steps: 1) compute the stationary system back-
log distribution of a ground job by Markov process modeling
(steady-state system backlog analysis), 2) compute the sta-
tionary pj -backlog distributions of all the other jobs using
backlog dependencies (p j-backlog analysis), and 3) construct
the stationary response time distributions of all the jobs by
introducing into each stationaryp j -backlog distribution the
execution time distribution of the jobJ j and thepj -interference
effect (pj -interference analysis). For more details on these
three steps, refer to [13].

IV. EXPERIMENTAL RESULTS

To evaluate the sensitivity of the proposed analysis to
the system utilization, we use five task sets with different
utilization values, as shown in Table I. All the task sets consist
of three tasks with the same periods, the same deadlines, and
null phases, thus result in the same backlog dependency tree
for any scheduling algorithm.

Table I summarizes the results of our analysis, including
the results obtained by STDA for the case of RM. This
table shows the deadline miss probability (DMP) for each
task and the average deadline miss ratio (DMR) and standard
deviation obtained from simulations. The average DMR is
obtained by averaging the deadline miss ratios measured from
100 simulation runs of each task set, performed during 5000
hyperperiods.

From Table I, we can see that our analysis results are almost
identical to the simulation results. For the case of STDA,
however, the analysis results get worse asŪ or Umax increases.
In the case ofτ3 in task setA, the DMP given by STDA

(39.3%) is more than four times the DMP given by our analysis
(9.4%).

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a stochastic analysis to
accurately compute the response time distributions of tasks
for general priority-driven periodic real-time systems. The
proposed analysis can be uniformly applied to general priority-
driven system including both fixed-priority systems such as
RM and DM, and dynamic-priority systems such as EDF,
thanks to the backlog dependency relations among all the
jobs in a hyperperiod. The experimental results have shown
that our analysis is highly accurate regardless of the system
utilization, while STDA is not. For future work, it should be
addressed how to reduce the computational complexity of the
analysis, which is known asO�n3m3� (n: the number of jobs
in a hyperperiod,m: the maximum length of the execution
time distributions), and whether it is possible to safely analyze
tasks that have variable interrelease times with our analysis by
modeling them as periodic tasks.
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The Synchronous Programming Paradigm

Nicolas Halbwachs and Pascal Raymond
Verimag/CNRS, Grenoble, France

I. THE APPLICATION DOMAIN

Synchronous programming was proposed in the early
eighties, as a paradigm for designing reactive systems.
Therefore, the application domain mainly consists of
computer systems performing real-time control over a
physical environment, like those encountered in indus-
trial control. These systems have to react to their environ-
ment at a speed which is determined by the environment
(i.e., the environment cannot wait). Apart from this
real-time behavior, these systems share some common
features:

• They are generally safety critical, since they influ-
ence a physical environment. So, it is a privileged
application domain for formal design and validation
methods.

• They involve concurrency, at several levels: (1) at
least, the concurrent execution of the system and
its environment must be taken into account; (2)
they are often implemented on distributed archi-
tectures, for fault tolerance, and/or because of the
geographical position of physical devices (sensors,
actuators); (3) it is often convenient to structure
them as sets of parallel processes (the classical
example is a digital watch, which involves a time-
keeper, an alarm manager, a stopwatch, . . . , all
considered as parallel processes) . This third kind
of concurrency is very important to decompose the
design of a reactive system; it has little, or nothing,
to do with an actual concurrent execution, at run-
time: the concurrent processes can be scheduled
and sequentialized at compile-time. This is why
this kind of concucurrency will be called logical
concurrency.

• They are intended to be deterministic: nobody
would like an aircraft autopilot to react non-
deterministically! Reconciling (logical) concurrency
with determinism is the main purpose of the syn-
chronous model.

II. PRINCIPLES AND LANGUAGES

In the synchronous model, the behaviour of a program
is a sequence of steps (or logical instants), which can

be triggered by events coming from the environment, or
simply by periodic activations. All the processes share
this same logical time scale, and are involved in all the
reactions.

A very fruitful analogy concerns synchronous circuits:
basically, such a circuit can be viewed as being made of
memory elements (flip-flops), synchronized on a clock,
and of a combinational part, which computes, at each
clock cycle, the current outputs and the next values of
memories, from the current input and memory values
(Fig. 1). In other words, in response to a sequence
i0, i1, . . . , in, . . . of input vectors, the circuit computes a
sequence o0, o1, . . . , on, . . . of output vectors such that,
∀n ≥ 0, on = FS(in,mn), where the memory vectors
satisfy mn+1 = FM (in,mn), and m0 is the initial value
of the memory.

Now, the combinational function F may consist of a
network of gates computing in parallel. Two circuits can
be composed in parallel, by wiring back some outputs
of each of them to the other’s inputs (Fig. 2). The
components of F1 and F2 run in parallel, or according
to an order compatible with variables dependences. Of
course, such a composition only works if no combina-
tional loop is created between variables computed by F1

and F2. In synchronous programming, this property is
called causality: there should exist a (partial) order for
evaluating the variables of the program; depending on
the language, this order must either be global, or may
change at each clock cycle.

The synchronous model is just a generalization of this
model to work on data of arbitrary types, and to be

F

M

Fig. 1. Synchronous circuit
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Fig. 2. Synchronous composition

used not only for hardware but also for software. The
connection between synchronous programming and the
circuit model is more or less apparent, depending of the
style of the language used:

• The similarity is obvious for data-flow languages, like
Lustre [1] or Signal [2]. In these languages, a program
can be viewed as a generalized circuit. As a matter of
fact, the “circuit” of Fig. 1 would be described in Lustre
by the following equation:

(O,M) = F(I, M0 -> pre(M))

which expresses that, at each instant (clock cycle),
the values of the outputs O and the memories M are
the results of the combinational function F applied to
current inputs I and to previous values of the memory
(pre(M)), initialized with M0.

• In imperative languages like Esterel [3], [4] or Sync-
chart [5], the underlying circuit model is less evident. It
is more natural to consider a program as a synchronous
composition of automata, which may be hierarchic (in
the sense that a “state” of an automaton can be “refined”
by a sub-automaton). Such a program is compiled into
a generalized circuit as before. For instance, the classi-
cal “timekeeper” program, where a first process counts
“seconds” to emit “minutes” towards an other process
counting “minutes” to emit “hours”, etc., can be written
as follows in Esterel:

[
every 60 SECOND do emit MINUTE end

||
every 60 MINUTE do emit HOUR end

]

and behaves exactly as written: in the same logical
instant where the 60th SECOND happens, the MINUTE
signal is emitted, and perceived by all processes which
are “listening” to it, and in particular by the one which
takes care of HOURs, the counter of which is incre-
mented in the very same reaction. This program can
also be viewed as the synchronous product of two inter-
preted automata (Fig. 3). Logical instants correspond to,
possibly simultaneous, firings of transitions: every sixty
SECONDs, the former automaton emits a MINUTE
signal, which triggers a transition of the later automaton.

s:=0

SECOND ?
s=59 ?

s:=0
emit MINUTE

SECOND ?
s < 59 ?
s++

m:=0

MINUTE ?
m=59 ?

m:=0
emit HOUR

MINUTE ?
m < 59 ?
m++

SECOND ?
s < 59 ?

s++

SECOND ?
s=59 ?

emit MINUTE

SECOND ?
s=59 ?
m=59 ?
emit MINUTE
s:=m:=0
emit HOUR

s:=m:=0

m < 59 ?

s:=0
m++

Fig. 3. Synchronous counters and their product

III. IMPORTANT TOPICS AND ONGOING RESEARCH

This section briefly reviews the main topics specific
to the synchronous model, and the current trends of
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research.
a) Semantics issues: One of the main features of

synchronous languages is their completely formal and
clean semantics. In particular, the timing behaviour of
programs is perfectly determined with respect to the
logical time scale. We already mentioned the semantic
problem of causality, which is specific to synchronous
languages: One can write programs with combinational
loops, which don’t make sense in general, but are
sometimes difficult to detect. This question, which is
now completely solved [6], originated most problems
of “almost synchronous” formalisms, like Statecharts or
Sequential Function Charts.

b) Compilation: Most efforts were devoted to se-
quential code generation. Two main solutions were ex-
plored, together with intermediate versions: the compila-
tion into an explicit automaton — which produces very
efficient code, but often involves an explosion of the code
size — and the translation into a single loop — “read
inputs / compute outputs / update memories”. Gener-
ating code for distributed architectures is much more
difficult [7], [8] and still concerns ongoing research.
Compiling synchronous languages into circuits is also
an important topic [9], [10]

c) Verification: Program verification is of course
an important goal for reactive systems. The synchronous
model enjoys a very nice feature in this domain: pro-
grams, called synchronous observers, can be used to
express safety properties of other programs. Such an
observer is a program taking as inputs the signals
or variables which are relevant for the property, and
emitting an “alarm” whenever the property is violated.
They are used both for expressing desired properties of
programs, and assumptions about their environment (for
a property is rarely satisfied independently of any knowl-
edge about the environment). The verification goal is
then to establish that, when considering the combination
of the program and its two observers (Fig. 4), if the
assumption observer never complains, neither does the
property observer. Such a verification can be performed
using standard model-checking techniques (possibly us-
ing abstraction) [11], [12], [13], or abstract interpretation
[14]. Program testing is also an important topic [15]
which can benefit from the technique of synchronous
observers.

d) Language issues: Synchronous languages are
still under development. Trends are to introduce asyn-
chronous concepts [16], [17], and to combine imperative
and data-flow concepts [18]: now, Esterel-V7 integrates
Esterel and Lustre.

incorrect

unrealistic

property

observer

observer

assumption

verification
under

program

Fig. 4. Synchronous observers

IV. BIBLIOGRAPHY

There is no room, here, for an exhaustive bibli-
ography on the domain of synchronous programming.
However, most references can be found from a few basic
books [19], [3] and articles [20], [21], [22].
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I. MOTIVATION

Reliability in real-time systems can be improved through
the use of formal methods for the specification and analysis of
timed behaviors. Recently, there has been a spate of progress
in the development of real-time formal methods. Much of
this work falls into the traditional categories of untimed
systems such as temporal logics, assertional methods, net-
based models, automata theory and process algebras. In this
paper, we provide an overview of the family of resource-bound
real-time process algebras that we have developed.

Process algebras, such as CCS [8], CSP [5], Acceptance
Trees [4] and ACP [2], have been developed to describe and
analyze communicating, concurrently executing systems. They
are based on the premises that the two most essential notions
in understanding complex dynamic systems are concurrency
and communication [8]. The most salient aspect of process
algebras is that they support the modular specification and
verification of a system. This is due to the algebraic laws
that form a compositional proof system which enables the
verification of a whole system by reasoning about its parts.
Process algebras are being used widely in specifying and
verifying concurrent systems.

Algebra of Communicating Shared Resource (ACSR) intro-
duced by Lee et. al. [7], is a timed process algebra which
can be regarded as an extension of CCS. The timing behavior
of a real-time system depends not only on delays due to
process synchronization, but also on the availability of shared
resources. Most current real-time process algebras adequately
capture delays due to process synchronization; however, they
abstract out resource-specific details by assuming idealistic
operating environments. On the other hand, scheduling and
resource allocation algorithms used for real-time systems
ignore the effect of process synchronization except for simple
precedence relations between processes. ACSR algebra pro-
vides a formal framework that combines the areas of process
algebra and real-time scheduling, and thus, can help us to
reason about systems that are sensitive to deadlines, process

This research was supported in part by NSF CCR-9988409, NSF CCR-
0086147, NSF CCR-0209024 and ARO DAAD19-01-1-0473

interaction and resource availability.
ACSR supports the notions of resources, priorities, interrupt,

timeout, and process structure. The notion of real-time in
ACSR is quantitative and discrete, and is accommodated using
the concept of timed actions. Executing a timed action requires
access to a set of resources and takes one unit of time.
Resources are serially reusable, and access to them is governed
by priorities. Similar to CCS, the execution of an event is
instantaneous and never consumes any resource. The notion of
communication is modeled using events through the execution
of complementary events, which are then converted into an
internal event. As with timed actions, priorities are also used
to arbitrate the choice of several events that are possible at
the same time. Although the concurrency model of CCS-like
process algebras is based on interleaving semantics, ACSR
includes interleaving semantics for events as well as lock-step
parallelism for timed actions.

The computation model of ACSR is based on the view that a
real-time system consists of a set of communicating processes
that use shared resources for execution and synchronize with
one another. The use of shared resources is represented by
timed actions and synchronization is supported by instanta-
neous events. The execution of a timed action is assumed to
take one time unit and to consume a set of resources during
the same time unit. Idling of a process is treated as a special
timed action that consumes no resources. The execution of a
timed action is subject to availability of the resources used
in the timed action. The contention for resources is arbitrated
according to the priorities of competing actions. To ensure the
uniform progression of time, processes execute timed actions
synchronously. Unlike a timed action, the execution of an event
is instantaneous and never consumes any resource. Processes
execute events asynchronously except when two processes
synchronize through matching events. Priorities are used to
direct the choice when several events are possible at the same
time.

We have extended ACSR into a family of process algebras,
GCSR [1], Dense-time ACSR [3], ACSR-VP [6], PACSR [9]
and P � ACSR [10]. GCSR is a graphical version of ACSR
which allows the visual representation of ACSR processes.

European Summer School on Embedded Systems, Sweden, 2003 74



Dense-time ACSR is an extension of ACSR with dense time.
ACSR-VP� extends ACSR with value-passing capability so that
arbitrary scheduling problems can be specified and analyzed.
PACSR (Probabilistic ACSR) allows the modeling of resource
failure with probabilities, whereas P � ACSR extends PACSR
with the notion of power consumption and resource constraints
of embedded systems.

II. BACKGROUND: THE COMPUTATION MODEL

In our algebra there are two types of actions: those which
consume time, and those which are instantaneous. The time-
consuming actions represent one “tick” of a global clock.
These actions may also represent the consumption of re-
sources, e.g., CPUs, devices, memory, batteries in the system
configuration. In contrast, the instantaneous actions provide
a synchronization mechanism between a set of concurrent
processes.

Timed Actions. We consider a system to be composed of
a finite set of serially reusable resources, denoted by � . An
action that consumes one “tick” of time is drawn from the
domain �� � � 	 � � 
 , with the restriction that each resource be
represented at most once. As an example, the singleton action,� � � � � 
 � , denotes the use of some resource � � � running at
the priority level � . The action � represents idling for one time
unit, since no resuable resource is consumed.

We use � � to denote the domain of timed actions, and we
let � � � � ! range over � � . We define " � � 
 to be the set of
resources used by the action � ; e.g., " � � � � ' � � ' 
 � � � � � � � 
 � 
 +� � ' � � � � . We also use - / � � 
 to denote the priority level of the
use of resource � in action � ; e.g., - / 2 � � � � ' � � ' 
 � � � � � � � 
 � 
 +

� ' . By convention, if � is not in " � � 
 , then - / � � 
 + 5 .
Instantaneous Events. We call instantaneous actions

events, which provide the basic synchronization in our process
algebra. We assume a set of channels 6 . An event is denoted
by a pair � 7 � � 
 , where 7 is the label of the event, and � is its
priority. Labels are drawn from the set 8 : <8 : � ? � , where
for all 7 � 6 7 D � 8 and 7 F � <8 . We say that 7 D and 7 F are
inverse labels. As in CCS, the special identity label,

?
, arises

when two events with inverse labels are executed in parallel.
We use � I to denote the domain of events, and let J , K andL range over � I . We use M � J 
 and - � J 
 to represent the label

and priority, respectively, of the event J . The entire domain of
actions is � + � � : � I , and we let R and S range over � .

The executions of a process are defined by a timed labeled
transition system (timed LTS). A timed LTS T is defined asU W � � � [ ] , where (1)

W
is a set of ACSR processes, ranged

over by ^ � ` , (2) � is a set of actions, and (3) [ is a labeled
transition relation such that ^ ab b b b [ ` if the process ^
may perform an instantaneous event or timed action R and
then behave as ` .

For example, a process ^ ' may have the following behavior:
^ ' a 2b b b b [ ^ � a hb b b b [ ^ k a lb b b b [ n n n That is, ^ ' first executes
R ' and evolves into ^ � , which executes R � , etc. It takes
no time to execute an instantaneous event. A timed action
however is executed for exactly one unit of time.

III. A FAMILY OF RESOURCE-BOUND REAL-TIME

PROCESSES

We briefly describe four process algebras: ACSR, PACSR,
ACSR-VP and P � ACSR.

A. Real-Time Processes

The following grammar describes the syntax of ACSR
processes.

^ o o + r t u w � 7 � y 
 n ^ w � o ^ w ^ | ^ w ^ � ^ w
^ � � � � ^ � ^ � ^ 
 w ^ � � w � ^ � � w ^ � � � w � [ ^ w ! n

The process r t u represents the inactive process. There are
two prefix operators, corresponding to the two types of actions.
The process � 7 � y 
 n ^ executes the instantaneous event � 7 � y 

and proceeds to ^ . The process � o ^ executes a resource-
consuming action during the first time unit and proceeds to

^ . The process ^ | ` represents a nondeterministic choice
between the two summands. The process ^ � ` describes the
concurrent composition of ^ and ` : the component processes
may proceed independently or interact with one another while
executing events, and they synchronize on timed actions.

The scope construct, ^ � � � � ` � � � � 
 , binds the process ^
by a temporal scope and incorporates the notions of timeout
and interrupts. We call � the time bound, where � � � � : � � �
and require that ^ may execute for a maximum of � time
units. The scope may be exited in one of three ways: First, if

^ terminates successfully within � time-units by executing an
event labeled 7 F where 7 � 6 , then control is delegated to ` ,
the success-handler. Else, if ^ fails to terminate within time
� then control proceeds to � . Finally, throughout execution of
this process construct, ^ may be interrupted by process � .

In ^ � � , where � � 6 , the scope of channels in � is
restricted to process ^ , and thus, components of ^ may use
these labels to interact with one another but not with ^ ’s
environment. The construct � ^ � � , � � � , produces a process
that reserves the use of resources in � for itself, extending
every action � in ^ with resources in � b " � � 
 at priority
0. ^ � � � hides the identity of resources in � so that they are
not visible on the interface with the environment. That is, the
operator ^ � � � binds all free occurrences of the resources of

� in ^ . This binder gives rise to the sets of free and bound
resources of a process ^ . Process � [ ^ represents the
conditional process: it performs as ^ if boolean expression �
evaluates to true and as r t u otherwise. Process constant !
with process definition ! � � �+ ^ allows standard recursion.

B. Resource Probabilities and Actions

PACSR (Probabilistic ACSR) extends the process algebra
ACSR by associating with each resource a probability. This
probability captures the rate at which the resource may fail.
Since instantaneous events in PACSR are identical to those of
ACSR, we only discuss timed actions, which now can account
for resource failure.

Timed Actions. As in ACSR, we assume that a system
contains a finite set of serially reusable resources drawn from
the set � . We also consider set � that contains, for each
� � � , an element � , representing the failed resource � . We
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write R for � � � . Actions are constructed as in ACSR, but
now can contain both normal and failed resources. So now
the action

� � � 	 � 
 � , � � � , cannot happen if � has failed.
On the other hand, action

� � � 	 � 
 � takes place with priority �
given that resource � has failed. This construct is useful for
specifying recovery from failures.

Resource Probabilities. In PACSR we associate each re-
source with a probability at which the resource may fail. In
particular, for all � � � we denote by � � � 
 � � � 	 " # the
probability of resource � being up, while � � � 
 & " ( � � � 

denotes the probability of � failing. Thus, the behavior of
a resource-consuming process has certain probabilistic as-
pects to it which are reflected in the operational semantics
of PACSR. For example, consider the process

� � ) � , 	 " 
 � 2
3 5 7 , where resource ) � , has probability of failure " : ; , i.e.,

� � ) � , 
 & " : ; . Then, with probability ? : ; , resource ) � , is
available and thus the process may consume it and become
inactive, while with probability " : ; the resource fails and the
process deadlocks.

Probabilistic Processes. The syntax of PACSR processes
is the same as that of ACSR. The only extension concerns
the appearance of failed resources in timed actions. Thus, it is
possible on one hand to assign failure probabilities to resources
of existing ACSR specifications and perform probabilistic
analysis on them, and, on the other hand, to ignore failure
probabilities and apply non-probabilistic analysis of PACSR
specifications.

C. Processes with Dynamic Priorities

ACSR-VP (ACSR with Value Passing) extends the process
algebra ACSR by allowing values to be communicated along
communication channels. The syntax of ACSR-VP constructs
is similar to that ACSR. The semantics of ACSR-VP process
is also defined as a labeled transition system, similarly to that
of ACSR. It additionally makes use of the following ideas:
Process � ) A B C 	 B D 
 F G transmits the value obtained by evaluating
expression B C along channel ) , with priority the value of
expression B D , and then behaves like G . Process � ) H I 	 � 
 F G
receives a value K from communication channel ) and then be-
haves like G � K : I # , that is, G with K substituted for variable I .
In the concurrent composition � ) H I 	 � C 
 F G C M � ) A K 	 � D 
 F G D , the
two components of the parallel composition may synchronize
with each other on channel ) resulting in the transmission of
value K , producing an event � N 	 � C O � D 
 , and leading to process

G C � K : I # M G D .

D. Power-aware Processes

An extension of PACSR, called P D ACSR, allows us to
reason about power-aware processes. In P D ACSR, power-aware
processes are constructed by the same ACSR operators, but use
power-consuming actions instead of timed actions. Every time
a resource is accessed, a certain amount of power is consumed.

Resources and power consumption. In order to reason
about power consumption in distributed settings, the set of
resources � is partitioned into a finite set of disjoint classes
� Q , for some index set R . Intuitively, each � Q corresponds to
a distinct power source which can provide a limited amount

of power at any given time. This limit is denoted by ) Q . Each
resource � � � Q consumes a certain amount of power from the
source � Q . As in PACSR, each resource has a fixed probability
of failure in each step.

Power-consuming timed actions. As above, a timed action
consists of several resources, each resource being used at some
priority, and consumes one unit of time. In addition, each
resource in an action has some level of power consumption.
Formally, an action is a finite set of triples of the form

� � 	 � 	 ) 
 , where � is a resource, � is the priority of the resource
usage and ) is the rate of power consumption, with the usual
restriction that each resource is represented at most once. The
additional restriction on an action V is that the total power
consumption for any of the resource classes does not exceed
the limit of the class: W X Y Z [ \ [ ] Z _ a b [ Y Z a d f ) g i ) Q

Analysis of power-aware systems. Given a P D ACSR pro-
cess, we can prove that total power consumption in a given
behavioral scenario does not exceed some bound. To specify
and check such properties, we defined a power-aware temporal
logic and a model checking algorithm for it [10]. Given a time
frame, we can also compute minimum and maximum power
consumption within this time frame.

IV. SUMMARY

This tutorial describes a process-algebraic approach to the
schedulability and performance analysis problems commonly
encountered in the design of embedded systems. In particular,
we overview a family of real-time process algebras, ACSR,
PACSR, ACSR-VP, and P D ACSR, and present a set of illus-
trative examples.
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Abstract.  We propose a method for schedulability-aware 

scenario-based multithreading of UML-RT models. Our 
method provides (1) scenario-based multithreading, (2) 
model-transformation to support timing and multithread 
modeling, and (3) automated generation of 
schedulability-guaranteed implementations. Our 
scenario-based multithreading improves the performance of 
multithreaded implementations by eliminating blocking due to 
message passing, and by bounding as once the blocking due to 
run-to-completion semantics through our use of preemption 
threshold scheduling. Our model-transformation clearly 
separates design and implementation since programmers can 
describe timing requirements and multithreading specification 
without modifying original models. Finally, our automated 
generation of schedulability-guaranteed implementations 
improves programmer efficiency by eliminating the need for 
tedious fine-tuning. 
 

Index Terms. Object-oriented real-time system design, 
scenario-based multithreading, model transformation, 
UML-RT, real-time scheduling, preemption threshold 
scheduling. 
 

I. INTRODUCTION 

Real-time embedded systems are becoming increasingly 
more sophisticated and complex, while at the same time 
experiencing a shorter time-to-market with greater demands 
on reliability. As a result, the need for systematic software 
development methods and tools for real-time embedded 
systems is now greater than ever.  To meet these needs, 
object-oriented modeling tools have become increasingly 
popular with real-time embedded systems designers.  

However, current modeling tools for object-oriented 
modeling often lack in providing predictable and verifiable 
timing behavior and the automatically generated code is not 
always acceptable. For real-time embedded systems it is of 
the utmost importance to generate executables that can 
guarantee timing requirements with limited resources. 
Currently, designers must map design-level objects to 
implementation level tasks in an ad-hoc manner. Because 

task derivation has a significant effect on real-time 
schedulability, tuning the system with this approach is often 
extremely tedious and time-consuming. 
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 To address these problems, we propose a systematic, 
schedulability-aware method that maps real-time 
object-oriented models to multi-threaded implementations in 
an automated manner. The proposed method uses the notion 
of scenarios, which can be described as a sequence of events 
triggered by an incoming external event.  With the use of 
scenarios, timing constraints can easily be defined for 
end-to-end computations. The proposed method maps 
mutually exclusive scenarios to logical threads, and assigns 
each logical thread a priority and preemption threshold that 
guarantees the schedulability of the whole system.  Then, the 
method groups logical threads into mutually non-preemptive 
groups, each of which is mapped to a physical thread. Finally, 
a schedulability-guaranteed implementation is generated. In 
[1] and [2], the implementation details of this method are 
presented. 
 We show that our scenario-based multithreading improves 
the performance of multithreaded implementations by 
eliminating blocking due to message passing and by 
bounding as once the blocking due to run-to-completion 
semantics through our use of preemption threshold 
scheduling. While providing these performance benefits, our 
method clearly separates design and implementation by using 
intermediate models that leave the original model untouched.   
 The paper is organized as follows.  In Section II we discuss 
the current multithreading approach, and drawbacks to this 
approach. Section III presents our method of scenario-based 
multithreading, model transformation to support timing and 
multithread modeling, and automated priority and 
preemption threshold assignment that guarantees the 
schedulability implementation.  The final section concludes 
the paper. 

II. CURRENT MULTITHREADING AND ITS DRAWBACKS 

A. Current Multithreading 
The current multithreading method of RoseRT can be 

summarized as (1) capsule-based multithreading and (2) 
direct multithreading specification in application models. 
First, in capsule-based multithreading, all messages 
associated with each capsule are mapped to a single thread 
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and programmers need to assign priorities both to each 
message and each thread. Second, in direct multithreading 
specification, programmers can create multithreaded 
implementations only by directly modifying the structural 
design and behavioral design models, as stated in the user 
manual of RoseRT as follows. 

If you want a capsule to run in another user-defined thread, 
you must incarnate that capsule in that thread at run-time. 
Only optional capsules may be placed on threads other 
than the MainThread. 

B. Drawbacks of Capsule-Based Multithreading 
Capsule-based multithreading may degrade the 

performance of real-time systems by extending blocking time 
unnecessarily. The sources of blocking in capsule-based 
mapping are (1) two-level scheduling, (2) message sending, 
and (3) run-to-completion semantics. Blocking due to 
two-level scheduling occurs when a message is handled by a 
lower priority thread. Blocking due to inter-thread message 
passing occurs because the per-thread message queue is 
accessed by multiple threads. Finally, blocking caused by 
run-to-completion semantics is due to the synchronization 
requirements of each state transition of a capsule. This last 
type of blocking can occur for each instance of inter-thread 
message passing. 

Blocking due to two-level scheduling can be eliminated if 
thread priorities are dynamically changed according to the 
priorities of the handled messages, and blocking due to 
message passing can be bounded as once for each task if IIP 
(Immediate Priority Inheritance Protocol) is adopted. 
However, blocking due to run-to-completion semantics can 
be neither eliminated nor bounded as once in capsule-based 
multithreading. 

C. Drawbacks of Direct Multithreading Specification 
With direct multi-threading specification, application 

design models are blurred. Design and implementation are 
not separated and it is also difficult to recognize 
implementation models. The process of multithreading 
specification is also tedious and error-prone. 

Moreover, it is hard to specify timing requirements such as 
deadline and priority. Timing requirements should be 
specified in units of end-to-end computation. However, the 
UML-RT meta-model does not contain end-to-end 
computations as a modeling entity 

 

III. PROPOSED METHOD 
Our goals are to propose (1) a multithreaded 

implementation method that can minimize unnecessary 
blocking, (2) a model transformation method, and (3) a 
method that can automatically generate 
schedulability-guaranteed implementations based on given 
timing modeling specifications. To achieve these goals, we 
propose the following: 

1) Scenario-based multithreading: 
We map all events in a scenario to a single thread. A 
scenario is a sequence of actions triggered by an 
external event. 

2) Model Transformation to Support Timing and 

Multithread Modeling: 
Instead of direct mapping, our tools provide 
intermediate models such as scenario models and thread 
models. Programmers can specify timing requirements 
such as deadline and priority to scenarios, which 
represent end-to-end computations. 

3) Automated assignment of priority and preemption 
threshold to threads:  
We provide algorithms for assigning a priority and a 
preemption threshold that guarantee the schedulability 
of a given task set. This frees programmers from the 
need to perform repetitive fine-tuning. 

A. Scenario-Based Multithreading 
Figure 1 shows an example execution of scenario-based 

multithreading. In Figure 1, each capsule is represented by a 
finite state machine and Ox:Ay represents action y of capsule 
x. In capsule-based multithreading, all actions O1:A0, O1:A1, 
and O1:A2 should execute in one thread. However, in 
scenario-based multithreading, each action can execute in a 
different thread: O1:A0 in the main thread, O1:A1 in thread1, 
and O1:A2 in thread2. In this example, O1:A1 sends a 
message to a port contained in capsule role O2 and this 
message triggers O2:A2. This means these two actions 
O1:A1 and O2:A2 compose one scenario. In capsule-based 
multithreading, these actions should execute in different 
threads since they belong to different capsule roles. In 
contrast, in scenario-based multithreading all actions 
contained in the same scenario execute in the same thread. 
This eliminates unnecessary blocking time. One thread can 
execute multiple scenarios and the priority of a thread 
changes dynamically according to the priority of the 
executing scenario. 

send()
S2

S1S1

S2

send() 

O1 O2

main
thread1 
thread2 A1 A1 A2A2

A0 A0

 
Fig. 1. Execution model of scenario-based multithreading. 

The main concerns in designing a run-time system to 
support such scenario-based multithreading are (1) 
scenario-aware message passing and (2) satisfying 
run-to-completion semantics. For scenario-aware message 
passing, we added attributes representing a scenario to the 
class for external messages; the target thread id, the priority, 
and the preemption threshold of the scenario. The message 
sending functions insert messages into the message queue of 
the target thread. In [2], the details of this implementation are 
presented. 

To satisfy run-to-completion semantics, we use a mutex 
for each capsule state transition. For real-time 
synchronization we use IIP (immediate inheritance protocol) 
under PTS with priority ceilings. With this, a scenario can 
block only once before it starts its execution. For further 
analysis of IIP under PTS with priority ceilings, please refer 
to [3]. 
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B. Model Transformation to Support Timing and 
Multithread Modeling 
Figure 2 shows the overview of our model transformation 

method that is a three-step process: transforming a UML-RT 
model to (1) a scenario model, (2) a logical thread model, and 
(3) a physical thread model. The first step derives scenarios 
from a given design model. The second step groups mutually 
non-concurrent scenarios and merges them into a single task 
to transform the scenario model to a logical thread model. 
This step also assigns each task an appropriate priority and 
preemption threshold that guarantees schedulability of the 
task set. We refer to this task as a logical thread to 
differentiate it from a physical thread that actually comprises 
a final implementation. The final step merges logical threads 
into non-preemptive groups according to their priorities and 
preemption thresholds. Each non-preemptive group becomes 
a physical thread. 

UML-RT Model Implementation

Scenario-based
multithreaded 
implementation
that guarantees
schedulability

Our Approach

Physical Thread ModelPhysical Thread Model

Grouping of mutually non-
concurrent scenarios

Period and Deadline ModelingPeriod and Deadline Modeling

Scenario Model

Grouping of mutually non-
preemptive logical threads

Logical Thread Model

Priority Modeling with
Schedulability Analysis
Priority Modeling with

Schedulability Analysis

Fig. 2. The overview of model transformation. 

1) Scenario model 
A scenario model is created from a given UML-RT design 

model. To derive a scenario model, our method first 
identifies scenario initiation points or initial scenario 
transitions, which are transitions that handle external events. 
External events are messages delivered from service 
provision ports (SPPs) or unpublished wireless ports. Timer 
is a representative example of an SPP. Scenario initiation 
points are represented as a set of capsule role, port, signal, 
and transition as in Figure 3.  

 
Fig. 3. A scenario model: a text file containing this entry is generated. 
 

Users may need to track the execution path of a scenario, 
and for this purpose scenario models can be represented as an 
AND-OR action tree like Figure 4. In Figure 4, Ox:Ay 
represents action y of capsule x. A node denotes either an 
action or a conjunction or disjunction of messages, and an 
edge denotes message flow. Action nodes are classified into 
SINGLE-Action, AND-Action, OR-action, and 
LEAF-Action nodes. An AND-Action must send out all of its 
outgoing messages in the left-to-right order. An OR-Action 
sends only one of its outgoing messages depending on the 
condition within the action. A LEAF-Action does not possess 
any outgoing messages. When an action has nested 

conjunctions or disjunctions among its outgoing messages, 
bridge nodes are used. They are classified into AND-bridge 
and OR-bridge nodes.  
 

O2::A3 O1::A2 O2::A4 O2::A3 O1::A3

O3::A1O1::A2
O1::A1

O2::A1 O2::A2

O1::A1

AND-Action 
Node

OR-Action
Node

OR-Bridge
Node

AND-Bridge
Node

AND-Bridge
Node

SINGLE-Action
Node

SINGLE-Action
Node

LEAF-Action
Node

 
Fig. 4. An example AND-OR action tree. 

2) Logical thread model 
A logical thread model is created from a given scenario 

model and is represented as a text file containing entries as in 
Figure 5. Transformation to a logical thread model is 
composed of (1) grouping of mutually non-concurrent 
scenarios, (2) assigning a priority to each logical thread, and 
(3) assigning a preemption threshold to each physical thread. 
Mutually non-concurrent scenarios are such scenarios that 
cannot run concurrently. For example, in a cruise control 
system a scenario that starts from “start cruise mode” and a 
scenario that starts from “start manual mode” do not run 
concurrently. The results of this grouping are shown as a 
generated logical thread model and users can refine this. 

 
List of Scenarios

(Non-concurrent group)
Preemption 
ThresholdPriorityLogical 

Thread Id
List of Scenarios

(Non-concurrent group)
Preemption 
ThresholdPriorityLogical 

Thread Id  
 
Fig. 5. A logical thread model: a text file with this entry is generated. 
 

At run-time, a logical thread may have multiple periods, 
worst-case execution times, and run-to-completion blocking 
times since a logical thread may be a collection of scenarios. 
Our method can automatically assign the logical threads 
priorities and preemption thresholds that guarantee the 
schedulability of the task set. We present the algorithms for 
this automated priority assignment in the next section. 
Alternatively, users can assign logical thread priorities and 
preemption thresholds, or assign some subset of priorities 
and preemption thresholds and let our method assign the 
remaining priorities and preemption. 

Filled and refined 
Initial scenario transition info by programmers

ScenariScenari CapsulCapsul Port Port SignaSigna TransitioTransitio WCETWCET PerioPerio DeadlineDeadlineII RolRol

3) Physical thread model 
A physical thread model is created from a logical thread 

model and is represented as a text file containing entries as in 
Figure 6, and users are able to refine this model. Logical 
threads can be further aggregated into a non-preemptive 
group where every possible pair is mutually non-preemptive. 
Two logical threads Li and Lj are mutually non-preemptive if 
π(Li) ≥ γ(Lj) and π(Lj) ≥ γ(Li), using the notation found in 
Table 1. With this relationship, we can easily construct 
non-preemptive groups of logical threads. We can directly 
map a non-preemptive group to a physical thread. This can 
significantly reduce the number of threads, thus reducing 
context switching overhead and static memory resource 
demands. 
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List of Logical Threads 
(Mutually non-preemptive group)

Physical
Thread Id

List of Logical Threads 
(Mutually non-preemptive group)

Physical
Thread Id  

Fig. 6. A physical thread model: a text file with this entry is generated. 

C. Automated Priority and Preemption Threshold 
Assignment 
For feasible priority assignment, our method adopts 

Audsley's algorithm. For schedulability testing, our method 
uses response time analysis. Considering that logical threads 
have multiple scheduling attributes, our method extended 
existing response time analysis as follows according to the 
notations of Table 1. 

Table 1. Notations for describing response time analysis algorithms. 

Notation Description 
Li A logical thread 
τi A scenario 
τj

i A scenario mapped to logical thread Lj 
Aj

i An action composing scenario τj 
O(Aj

i) A capsule that contains action Aj
i 

C(τi) The worst-case execution time of scenario τi 
T(τi) The period of scenario τi 
β(τi) The blocking time of scenario τi 

π(X) 
The fixed-priority of X that may be either scenario τi or  
logical thread Li 

γ(X) 
The preemption threshold of X that may be either scenario 
τi or logical thread Li 

B(Li) 
The blocking time of logical thread Li due to preemption 
threshold scheduling 

S(Li) The start time of logical thread Li 
F(Li) The finish time of logical thread Li 
R(Li) The response time of logical thread Li 
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The higher the preemption threshold a task has, the lower 
number of context switches the task will incur. Therefore, our 
method assigns each logical thread the maximum possible 
preemption threshold. Our algorithm for assigning maximum 
preemption thresholds exploits the method presented in [4]. 
The response time analysis algorithm for logical threads with 
assigned preemption thresholds is as follows. 
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IV. CONCLUSION 
We have proposed a method for schedulability-aware 

scenario-based multithreading for UML-RT models. Using 
our method it is possible to easily define timing requirements 
for an end-to-end computation and automatically generate a 
schedulability-guaranteed implementation. 

Our scenario-based multithreading outperforms 
capsule-based multithreading because scenario-based 
multithreading (1) eliminates the blocking due to message 
passing that cannot be avoided in capsule-based 
multithreading and (2) our preemption threshold scheduling 
bounds as once the blocking due to run-to-completion. Please 
refer to [2] for our experimental results. 

While enhancing the performance of multithreaded models, 
our model transformation also eliminates the mix of 
implementation and design that is present in the current 
RoseRT tool. Our method also enables programmers to 
specify timing requirements such as deadline and priority 
without modifying original models. 

Also, our method automatically generates implementations 
that guarantee schedulability. With this, programmers do not 
need to generate implementations repeatedly or perform 
tedious fine-tuning. 
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