
Implementation of a H.264 decoder with
Template-based Communication Refinement

Sangyong Yoon, Sanggyu Park, and Soolk Chae
School of electrical engineering and computer science, Seoul National University

San 56-1 Sillim-dong, Gwanak-gu, Seoul, Korea
{syyoon, sanggyu, chae} ,sdgroup.snu.ac.kr

Abstract We described an H.264 decoder implemented with
our design methodology, in which a system function model of
transaction level is first captured in SystemC and refined into
RTL with a library of communication templates. We determined
its communication architecture by exploring the design space
with template-based communication refinement to meet its
requirement of decoding VGA 30 frames per second at a clock
frequency of 50MHz.

Keywords H.264, template, communication, refinement

I. INTRODUCTION
Several refinement-based design (RBD) methodologies

[1][2] have been reported that can manage the complexity of
the embedded system. In these methodologies, a system-level
function is first captured at a higher abstraction level that does
not include any architectural details and then converted to
lower abstraction levels by progressively making architectural
decisions. In a SystemC-based RBD methodology proposed by
Grotker et al. [6], a system-level functional model is described
with concurrent computation models of the behavioral level in
C/C++ and their communications with channels.

In our design flow, a SystemC-based RBD methodology
provides the Communication Architecture Template Tree
(CATtree) library, with which the designers capture the
communication function and refine the communication
architecture. As described in [4], a CATtree for a
communication primitive channel is a collection of
communication architecture templates (CAT) which are
parameterized implementations of the channel. Each CAT has a
transaction level model (TLM) in SystemC for function-level
simulation, a RTL model in VHDL for hardware
implementation and a software template for software
implementation.

An approach to refine communication architecture in [5] is
similar to our approach. While they provides only FIFO
channels and bus-based ones as a communication primitive, our
CATtree library includes various communication primitives so
that it we can model the video systems effectively.

In this paper, we describe implementation of the H.264
decoders using our design environment and mainly explain
their communication architecture refinements with a CATtree
library. In this paper, we do not include the architectural details
of computation blocks because this paper focuses on the
communication architecture refinement.

The rest of this paper is organized as follows. We explain
our system design flow in Section 2 and then describe the
CATtree library in Section 3. The communication refinement
for the H.264 design examples is summarized in Section 4,
which is followed by the conclusion.

II. DESIGN FLOW
The design flow we used in designing H.264 decoders

consists of two steps: function modeling and architecture
refinement, as shown in Figure 1. In the function modeling
step, the designer captures a system-level function for H.264
decoders at the transaction level using SystemC (Figure la),
which consists of computation TLMs manually captured in
SystemC, and channel TLMs from the CATtree library.

Transaction Level

System Function Model

Computation refinement

communication refinemen

RTL Level

System Architecture Model

(a)

<System-C>

Sye C abstract communication Sye Cchannel
Computation Computation

Function Model Function Model

refine <refine<System-C>
VHDL abstract communication VDchannel

Computation Computation
Architecture Model Architecture Model

:refine
VHDL VHDL VHDL

Computation Communication Computation
Architecture rodel Architecture Model Architecture Model

(b)

Figure 1. (a) System design flow and (b) Example of design entities.

In the refinement step, we refined computation models first.
Each computation TLM can be refined to a RTL model in HDL
manually or with a C-to-RTL synthesis tool. Note that we used
computation models manually described in RTL because our
design target was performance critical.

In the communication refinement step, for each channel in
the design, we selected a proper architecture template from the
CATtree library and replaced it with the original channel after
configuring its parameters to meet the design constraint. We
verified functional correctness of the refined system model
with transaction-level simulation. In refining some part of the
system into RTL, we checked the function and performance in
RTL with our mixed-level simulation environment [3].

III. COMMUNICATION LIBRARY

A CATtree (Communication Architecture Template Tree),
which is defined for each communication primitive, is used in

570

1-4244-0387-1/06/$20.00 (©2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:38 from IEEE Xplore. Restrictions apply.

system function modeling and communication architecture
refinement [4]. It includes its function-level model in TLM and
various communication architecture templates (CATs) with
different performance and area characteristics. For functional
verification, a SystemC-based transaction-level model is
provided for each channel. And for implementation, a RTL
model and a software model are provided for each CAT.

Figure 2 shows a one-dimensional array (IDArray)
channel, which is an abstraction of addressable memories. The
IDarray channels include Register channel, which is based on
flip-flop implementation, SSRAM channel, which consists of
an on-chip SSRAM controller and an on-chip SSRAM, and
Cached channel, which contains local caches.

IR DArray
Functionall moddl

re1DArray RB idI DPtR
Functonal Model

Passive Port ArchitectM

Active Port III -I [(

Array write interFace rryu M itach i

Array read interFace z

onchip SSRAM interFace SSR
offchip SDRAM interFace h k M h R M

/onchip SSRMA\ zArSBus-Master InterFace J)controle <>e 9

Bus-Slave InterFace '

gOAonchip hip offhip
e AA fo ntroller c n

0J p

Figure 2. A CATtree for ID array channels.

A. Function-Level Models
The CAT library in our design environment supports

several types of the channels such as FIFO, array, event and
variable channels.

A FIFO channel is for point-to-point, ordered and
synchronized data transmission, which are suitable to model
the channels between two computation blocks if they have
data-dependency. An event channel is for point-to-point event
notification without data transmission, which is useful to model
the channels between two computation blocks if they have
control-dependency. An array channel is good for the channels
with data storage that are addressable with index, which does
not include any synchronization function. We support three
kinds of array channels such as ID, 2D, and 3D arrays. A
variable channel is useful to model the channels with data
storage with multiple writers and readers, which does not have
any synchronization function either.

B. Architecture-Level Models
A CATtree is provided for each communication primitive

and its root includes a SystemC TLM model as its function-
level model, which does not have any architecture details.
Therefore, during the communication refinement step, we
refine it to a specific architecture of each channel by selecting
one of the CATs in its corresponding CATtree to meet the
design constraints for a specific application. The CATs may
include the following parameters.

(1) Buffer's memory size: FIFO depth or array size

(2)

(3)
(4)
(5)

Buffer's memory type: register, on-chip memory, or off-
chip memory
Cache configuration: cache size, and cache line size
Bus topology: point-to-point, or shared bus
Bus arbitration scheme : priority, round robin
If we change an architecture parameter in a CAT, the

variation of its performance and area can be significant. We
modeled a decoded frame buffer of H.264 decoder with a 3D
array channel, which includes an off-chip SDRAM as its buffer
memory. To find a good architecture, we changed the size of
cache embedded in the array channel as well as its cache line
size and then measured the average number of clock cycles
required to transfer the data per a macroblock processing from
a decoded frame buffer to Inter Prediction block. As shown in
Figure 3, the performance is changed from 787 cycles to 2667
cycles and the logic gate count also varies from 14.7K to
70.3K. In this experiment, we used the foreman bit-stream of
seven QCIF pictures.

3000

2500

2000
0

1500

1000

500

L: 147 K

M 0L: 157K

L: 307 K
M: 0.25 KB

L: 34.9 K L: 70.3 K
M1KB M4KB

L: 246 K
M: 025KB L 337 K L: 423K

M: 1 KB M 4 KB

1 2D1C 3hX32 (p 4x4

2D Cache Size (pelxpel)

L logic gate counts
M: on chip memory size

Noncache
1-D_cache

+-2D_cache 4x4 Line
2D_cache 8x8 Line

0

Figure 3. Simulation results for a 3D array by changing the parameters of
the cache embedded

IV. COMMUNICATION REFINEMENT FOR H.264 DE-CODERS
We designed two different H.264 baseline decoders: one for

VGA 30 frame/s and the other for CIF 30 frame/s at a clock
frequency of 50 MHz. To have a margin of about 300 cycles,
the decoders were targeted to decode one macro block in 1100
cycles for VGA pictures and in 3900 cycles for CIF pictures,
respectively. Similarly, their critical path delays were limited to
be less than 15ns.

As shown in Figure 4, we first captured a system function
model, which is a TLM in SystemC, for the H.264 decoders. It
consists of seven computation blocks: a bitstream parser
(PARSER), a variable length decoder (VLD), an inverse
transform and inverse quantization (ITQ) block, an inter-
picture prediction (INTRA) block, an intra-picture prediction
(INTER) block, a reconstruction (RECONST) block, and a de-
blocking filer (DF). Note that bit-stream parser controls all the
computation blocks, which is not shown in Figure 4 for the
clarity. Basically each computation blocks are pipelined in MB
level, but INTER, ITQ, INTRA and RECONST are pipelined
in sub-MB level to reduce the channel's buffer size.

To model the communication among the computation
blocks, we used 65 FIFO channels, 18 array channels, and 3

APCCAS 2006

3W-

571

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:38 from IEEE Xplore. Restrictions apply.

variable channels. Note that only the important channels in the
H.264 decoder are shown in Figure 4.

LCD

CrDecodedFrrame Ctroller

_LuaDeodedFr _ame

uma~ uHpRanorst ut

INE hromlterPrc umaHupRconstyOb

2tuadownRecon41 -

IlumaCoei LumaResidual umaHdownRecor!s ,yncNA strea m P: 6e,

LD-hror,eff ITQ ChromaResidual RECONST_b on,

l l <43C~~~~~~~~~~_bReconstSync ;

|LumalntraPred R c st_ 3(1
*(0) r R econstSync 0|

RChromantraPrel l D l
FIFO C Ro

-~Array Luma,Chroma |,

C*FIFO Interface lem +e V e tRcns u LuLDLre
° Array InterFace L uoRcoht_ro _ ChromaDF Buff

Figure 4. System function model of the H.264 decoder.

After capturing the function model of the H.264 decoder,
we manually refined each computation block into RTL. Their
performance and complexity are summarized in Table 1.

TABLE I. DESIGN SUMMARY FOR THE COMPUTATION BLOCKS.

Computation Area Performance
Block l(K gates) |(cycles / macro block)
VLD 4.7 444
ITQ 15.9 150
INTRA 24.6 478
INTER 47.1 507
RECONST 2.0 260
DF 76.4 503
Total 170.7

In designing the VGA decoder, we started with an initial
configuration and went through five major refinement steps to
get the final communication architecture, as shown in Figure 5.
In order to evaluate the system area, we synthesized the
decoder in 0.18 ,um process technology with a 15ns timing
constraint. To measure its system performance, we simulated
the whole H.264 decoder with a VHDL simulator while only
PARSER was executed in software. In this experiment, we
used the foreman bit-stream of forty QCIF pictures where QP
is 28 and the maximal reference frame number is 15.

For the initial communication architecture, the most of
FIFO channels were refined to register-implemented FIFOs [4]
with the depth enabling MB level pipelining. Decoded frame
buffers were refined to a non-cached 3D array that uses an off-
chip SDRAM. Line buffers were refined to a SSRAM ID array
that uses an on-chip static SRAM. The other array channels
were refined to a registered ID array. This initial architecture
implies that just like other conventional video decoders, we
used an off-chip memory for the frame buffers, on-chip
memories for line buffers, but for the other channels we tried to
minimize their complexity.

4500

4000
v0

m 3500
2

03000
X

12500

12000
1 500

cL

1 500

-0-Area

L: logic gate
counts

M: on_chip
memory size

|P Picture
| - picture

O Initial Stepl Step2 Step3 Step4 Step5
Cache Cache FIFO Memory Bus
Config Config Depth Type Arbitration Refinement Step

Figure 5. Performance and area of the H.264 VGA decoder after each
refinement step.

After throughput analysis, we found that the array channel
transferring the data from the decoded frame buffer to INTER
block was a throughput bottleneck in the initial architecture
because the INTER block wasted most of the cycles in waiting
to read data from the decoded frame buffer. Therefore, we
decided to use an array channel with a cache to reduce the
latency of the array channel using off-chip SDRAM. At the
refinement step 1, we configured the 3D array to one with a 2D
cache of size 32x32 with line size 8x8, based on the results in
Figure 3. In the refinement step 2, we configured two 3D arrays
for the decoded frame buffers of chrominance to ones with a
2D cache of size 16x16 with line size 4x4. After the refinement
steps 1 and 2, the performance was enhanced by four times
with complexity overhead of 39 Kgates and 1.5KB on-chip
memory.

After the step 2 refinement, we found that chrominance
sample processing in the INTER block waited until luminance
sample processing was finished in each macro block because
luminance and chrominance processing shares the same
datapath in the DF block. We resolved this problem by
increasing the FIFO depth from 16 bytes to 256 bytes.
Consequently, the performance was improved from 1049
cycles to 992 cycles by decreasing 57 cycles while the area was
increased by 18 Kgates.

Initially the total size of the on-chip memory for the line
buffers was 20 KB. Therefore, instead of the ID array channels
with on-chip memory for the line buffers, we also decided to
use ID array channels using the off-chip SDRAM in the
refinement step 4. Consequently, with the performance penalty
of 65 cycles, the gate counts were increased by 40 Kgates and
the on-chip memory size was reduced by 20 KB, which is
equivalent to roughly 240 Kgates. Consequently, its reduction
of the silicon area was 1.9 mm2, which is about 44% of the
total silicon area ofthe final VGA decoder.

Because the frame buffers and the line buffers were decided
to use the same SDRAM and the same bus in this design, its
performance depended on the bus arbitration scheme. The
initial bus arbitration scheme was round robin. Therefore, in
the refinement step 5, we configured that the priority of
LumaDecodedFrame channel was the highest and the other

APCCAS 2006

Area
L 361 K L: 379 K (r, r")
M 21.5 KB M 21.5 KB

L: 331 K 6.0

L 322
M: 20 K. 5 -0

L 419 K L 419 K 4.0
M:1.5KB M:1.5KB

0 ---+--+.n

572

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:38 from IEEE Xplore. Restrictions apply.

channels were scheduled by a round robin policy, which
enhanced the performance by 30 cycles without any penalty.

After all the five refinement steps, the performance was
improved by about 4 times and the area was increased to 1.3
times and the on-chip memory size was reduced from 20KB to
1.5 KB. Consequently, we could meet the design specification
of decoding VGA 30 frames per second at 37 MHz.

We also designed another H.264 decoder for CIF pictures
with similar refinement steps from the same initial
communication architecture. Both results are summarized in
Table 2. In the CIF decoder, we decided not to use cache in the
frame buffers because the performance constraint is looser than
that ofVGA decoder. We could reduce the system area by 0.7
mm2 while meeting the performance constraint of CIF decoder.

TABLE II. DESIGN RESULTS OF VGA AND CIF DECODERS

Design System Area System Performance
Denstraint Logic Memory Area (cycles / macro block)Constraint (K gates) (KB) (mm2) P Pic Pic

VGA 30 fr/s@ 5OMHz 419 1.5 4.3 1027 887
CIF30fr/s 50MHz 369 0 3.6 3914 887

Although we designed the communication architecture by
refining the templates in the CATtree library rather than by
designing it manually, Table 3 shows the design results have
reasonable system area and performance compared with other
designs.

TABLE III. DESIGN COMPARISON WITH OTHER H.264 DECODERS

Profile
Software Part
Picture Size
Clock Frequency
Logic Gates
Onchip Memory

71 81
Baseline Main
Parser+VLD Non
HD CIF
200 MHz 30 MHz
300K 189K
74 KB 41.5KB

IOur Design
TBaseline
|Parser except VLD
VGA
137 MHz|41 9K
11 5 KB

V. CONCLUSION

In this paper, we explained a communication library, which
supports various channel primitives and includes a SystemC

TLM and various RTL architecture templates for each channel
primitive, to support efficient communication architecture
refinement. Since each channel template is a parameterized
architecture model, the library is very useful for effective
communication DSE.

We designed two different H.264 decoders with the CAT
library. We found that our design flow was very efficient
because the system function model capture for a VGA decoder
can be reused directly in designing a CIF decoder.
Furthermore, the communication DSE could be performed
effectively with the CAT library we developed. The VGA
decoder occupies an area of 4.3 mm2 and can decode a macro
block in 1027 cycles, while the CIF decoder occupies 3.6 mm2
and in 3914 cycles.

REFERENCES

[1] J. Peng, S. Abdi and D. Gajski, "Automatic Model Refinement for Fast
Architecture Exploration", Proc. ASP-DAC 2002, pp. 332-337, Jan.
2002.

[2] T. Givargis, F. Vahid, J. Henkel, "System-Level Exploration for Pareto-
Optimal Configurations in Parameterized System-on-a-Chip", IEEE
Trans. on Very Large Scale Integration Systems, vol. 10, issue 4, pp.
416-422, Aug. 2002.

[3] Sanggyu Park, Sangyong Yoon, Soo-Ik Chae, "A mixed-level virtual
prototyping environment for refinement-based design methodology",
Accepted by Workshop ofRapid System Prototyping, Jun. 2006.

[4] S. Park, S. Chae, "Reusable component IP design using refinement-
based design environment", Proc. of 11th ASP-DAC, Jan. 2006.

[5] J.-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, and L. Pasquier, "COSY
Communication IP's", Proc. Design Automation Conf, pp. 406-409,
June 2000.

[6] Thorsten Grotker, Stan Liao, Grant Martin, Stuart Swan, "System design
with SystemC", Kluwer Academic Publisher, 2002.

[7] Y, Hu, A. Simpson, K. MCAdoo, J. Cush, "A high definition
H.264/AVC hardware video decoder core for multimedia SOC", IEEE
International Symposium on Consumer Electronics, pp. 385-389, Sept.
2004

[8] Cheng-Ru Chang et al. "An H.264/AVC Main Profile Hardwired
Decoder", 2006 Picture Coding Symposium, Beijing, China, April 24-
26, 2006

APCCAS 2006 573

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:38 from IEEE Xplore. Restrictions apply.

