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Abstract – In this paper we present a scalable and flexible architecture 

that implements inter-processor communication (IPC) synchronization 

among FIFO channels for multimedia applications. We also compare it 

to the simple mail-box architecture, especially for tasks of finer 

granularity. With experimental results we confirmed the proposed 

architecture is suitable for various cases including a Motion JPEG 

example. 

1 Introduction 

Now various multimedia products such as high-definition TVs, set-top 

boxes, 3D game players, digital camcorders, and digital cameras are 

prevailing. Their architectures are increasingly required to be open and 

flexible to accommodate more functions and multiple standards. 

Therefore, employing multiple processors in designing complex SoCs 

became a viable alternative to meet tight time-to-market by maximizing 

design reuse and providing flexibility [1]. In MPSoCs, however, an 

efficient IPC mechanism should be provided. Multimedia applications 

have parallelism at various levels of granularity, which can easily be 

modeled by a Kahn process network (KPN). The main purpose of this 

paper is to find a suitable hardware architecture based on FIFO channels 

for IPC synchronization in MPSOCs for multimedia applications.  

 

2 Previous Work 

A mail-box has widely been adopted in many implementations because 

of its simplicity in hardware architecture, which is a reasonable solution 

when the granularity of a task is coarse (e.g. synchronization per frame). 

It is shown in [3] that the combination of mail-boxes and OS 

synchronization primitives is sufficient in designing an MPEG-4 video 

encoder with its communication on the per-frame basis. In the Philips’s 

approach [2] and in the SoCBase-DE [4], a FIFO channel controller, 

which manages the tokens for put/get operations, is employed for 

enhancing the performance and reduction of the synchronization 

overhead. However, a dedicated hardware FIFO should be instantiated 

for each channel, which increases the hardware overhead. 

The objective of our work is to propose an efficient hardware 

accelerator for IPC synchronization that is flexible and scalable, which is 

suitable to complex multi-processor systems for multimedia streaming 

applications. In section 3, after describing a simple mail-box hardware 

solution for IPC and its limitations, we propose a new IPC hardware 

architecture to alleviate the problem. In section 4, experiment results are 

presented, which is followed by the conclusion and future work in 

section 5.  

3 New IPC architecture 

3.1 A simple mail-box 

Because only storing the messages to be sent and their signaling are 

supported with a mail-box, software should transport the messages and 

protect the FIFO control data. As granularity of tasks is finer, their 

synchronization overhead gets higher while their synchronization buffers 

are small enough to be allocated in on-chip memory. Moreover, using 

tasks of finer granularity enable us to find more parallelism easily, which 

is more flexible and cost-effective in mapping the tasks on an MPSoC 

architecture. 

Table 1 shows the synchronization overhead in message token passing 

for MJPEG decoding of QCIF 10 frames. For a solution with three CPUs, 

the overhead of sending and receiving message tokens on the 8x8 block 

basis, is more than 65% in our measurement, and the performance is 

degraded to a half to that of the solution with a single CPU. To solve this 

problem by reducing SW overhead at the finer granularity execution, we 

must employ dedicated FIFO channels. 

 
Communication 

unit 

Synchronization 

overhead 

# of msg. 

transport 

Perf. Improv. due 

to 3 CPUs 

Frame 2.75 % 30 46.7 % 

8x8 block 65.60 % 5940 -98.5 % 

Table 1. Synchronization overhead for a simple mail-box  

3.2 Our proposed IPC architecture 
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Figure 1. The overall architecture           Figure 2. IPC hardware agent 

In implementing a FIFO channel and its associated PE interfaces, a 

centralized structure is not scalable although it can reduce latency and 

internal synchronization overhead. Therefore, we propose a distributed 

architecture, shown in Fig.1 for scalability, which is composed of 

flexible IPC hardware agent (Fig.2) that interface PEs, and the FIFO 

grouped channel controller (Fig.3) that configures the number of 

channels. The IPC hardware agent accesses FIFO channels by processing 

thread-level commands on behalf of its corresponding PE. Multiple 

channel controllers can be integrated in this framework. 

Once connectivity among the tasks is established, the tasks can be 

executed in parallel with PEs to get tokens to or from FIFO channels to 

push or pop. This functionality of connectivity pre-loading is 

implemented with low hardware overhead in the IPC hardware agent.  
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Figure 3.  FIFO grouped channel    Table 2. Test scenarios 

A block diagram for a grouped FIFO that can be shared with multiple 

FIFO channel controllers is shown in Fig.3. An active FIFO means one 

that is currently accessed, which can be used by another logical FIFO. 

The context of a FIFO channel is to be saved into or restored from the 

FIFO context buffer. The maximum size of this buffer limits the number 

of FIFO channels to be shared together in a grouped FIFO. The FIFO 

Access Processor (FAP) finds an active FIFO, or makes a request to save 

or restore a proper active FIFO. The Thread Command Processor (TCP) 

is responsible for accepting a thread command request and issuing FIFO 



channel access commands to FAPs one by one. If any event for an active 

FIFO is occurred (e.g. the condition which is able to put or get, is 

changed),  or there is a need to return responses to a IPC hardware agent, 

these messages are transported via the dedicated IPC Message Transport 

Network. 

3.3 Implementation result 

 Table 3 shows synthesis results for the component previous mentioned. 

Each component consists of several functional sub-blocks to enhance its 

flexibility and extensibility in implementing a wide range of applications. 

These results are obtained with 0.18 um technology assuming that clock 

frequency is lower than 100MHz, which excludes the on-chip buffers 

such as the command/response buffers, the FIFO context buffers. The 

hardware overhead for implementing the thread-level command is 

substantial, while the area overhead of the pre-load functionality is 

negligible. 

 

IPC Hardware 

Agent 

Configuration 

Gate Counts Thread-Level 

Command 

Pre-Load 

Functionality 

O O 14.6 K 

O X 14.5 K 

X N/A 8.1 K 

IPC FIFO Group 

Configuration 
Gate Counts 

TCP # FAP # 

1 1 33.1 K 

3 2 40.0 K 

3 4 42.5 K 

N/A 1 26.6 K 

Table 3. Synthesis results of the IPC hardware agent and the IPC grouped FIFO 

4 Experimental Results 

To confirm feasibility of the scheme proposed in this paper, several 

experiments for Motion JPEG were performed on three test scenarios 

(Table 2) to represent the pipelined execution pattern which is common 

in the streaming multimedia applications. A FPGA prototyping board 

was used in our experiments, where three ARM7TDMI soft-cores and the 

proposed IPC architecture that has three IPC hardware agents and one 

FIFO group are configured.  

4.1 Test scenarios  

In TC1, all the tasks communicate with other tasks via a single FIFO 

channel. In TC2, the synchronization overhead is substantial because 10 

FIFO channels are used in each connection. The average computation 

granularity of MJPEG is approximately 10,000 cycles, and the maximal 

parallelism ignoring synchronization overhead can be achieved is 1.89 

(the same to 47% cycles counts reduction) in the task partition shown in 

Table 3 (huffman, dequant, idct, yuv2rgb). 

4.2 Synchronization overhead 

Testbench 
Comp. 

granularity  

Sync. 

overhead 

(%) 

prepreprepre----loadloadloadload sync. 

overhead 

reduction 

threadthreadthreadthread----level level level level 

commandcommandcommandcommand    sync. 

cost reduction 

TC1 

938 cycles 7.8 % 23.2 % 62.3 % 

3928 cycles 2.0 % 23.1 % 62.2 % 

9127 cycles 0.9 % 23.1 % 62.1 % 

TC2 

938 cycles 56.2 % 16.1 % 60.4 % 

3928 cycles 24.3 % 12.0 % 60.3 % 

9128 cycles 12.5 % 9.3 % 60.3 % 

Table 4. Synchronization overhead and the effects of each function 

As shown above, the synchronization overhead is lowered under 2.0 % 

in the TC1 case when computation granularity becomes larger than 4000 

cycles. The TC2, in spite of massive synchronization, the overhead of 

synchronization approaches to 10% as the granularity is coming up to 

10,000. The overhead reduction of hardware acceleration of the thread-

level command, is more than 60%, so it can be justified when the 

hardware overhead shown in Table 3, is acceptable. 

4.3 Motion JPEG running profiles on 3 CPUs 

Testbench 

Desc. 

# of 

CPUs 

yuv2rgb 

& 

Display 

Cent. 

vs. 

Dist. 

Cycle 

Counts 

# of 

Thread 

Switch 

Cycles 

reduction 

※ MJPEG 
QCIF 10 
Frames, 
※ Sync. 

per 8x8 
block 
basis 
※ Round-
Robin 
Thread 
Scheduling 
※ 32 FIFO 
depth 

1 off N/A 109.8 M N/A N/A 

1 on N/A 132.4 M N/A N/A 

3 off C 58.5 M 1587 46.7 % 

3 off D 62.6 M 1530 43.0 % 

3 on C 77.6 M 1566 41.4 % 

3 on D 78.9 M 1676 40.4 % 

Table 5.  The Motion JPEG execution profile data on 3 CPUs 

The last column of Table 5 means the reduction of cycle counts 

compared to that of the execution on one CPU. Inclusion or exclusion of 

the yuv2rgb block and display has been also considered, because the 

yuv2rgb block in the current implementation is done on the frame basis 

so as to disturb the parallel execution. In spite of  the inefficiency at the 

expense of the implementation of the distributed architecture, the 

performance is comparable to the centralized one and the ideal case, with 

the help of the novel architectural functionality such as the thread-level 

command and the pre-load capability. It is difficult to extract the pure 

synchronization cycles involved, because the thread scheduling and 

context switch overhead under a conventional RTOS are unavoidable 

and the schedule of multi-threads is not optimal. Moreover, these effects 

of the RTOS make the analysis much more complicated. Therefore, we 

will implement a hardware accelerator for a RTOS kernels closely related 

to the multi-thread execution in the near future. 

 

5 Conclusion and Future Work 

In this paper, we proposed a new IPC architecture that is efficient 

especially for more frequent synchronization among smaller tasks, 

compared to a conventional mail-box approach. To provide scalability 

and flexibility, we employed a distributed architecture that can easily be 

adapted to requirements of each channel and its corresponding threads. 

Both an IPC hardware agent and a grouped FIFO can be configured 

dynamically or statically. From the area estimation and experimental 

results for three test scenarios including MJPEG, we confirmed that the 

propose architecture is effective, compared to the mailbox approach. We 

plan to integrate the proposed IPC accelerator into SoCBase-DE [4] 

developed in Seoul National University, which is a refinement-based 

SoC design environment that covers various abstraction levels from 

transaction level to register transfer level, and provides mixed-level 

simulation for incremental refinement. 
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