
Hardware implementation of inter-processor communication in MPSoCs for

multimedia applications

Moonmo Koo*, Soo-Ik Chae**

School of Electrical Engineering and Computer Sciences

Seoul National University, Seoul, Korea

*jeffley@soc.snu.ac.kr, **chae@sdgroup.snu.ac.kr

Abstract – In this paper we present a scalable and flexible architecture

that implements inter-processor communication (IPC) synchronization

among FIFO channels for multimedia applications. We also compare it

to the simple mail-box architecture, especially for tasks of finer

granularity. With experimental results we confirmed the proposed

architecture is suitable for various cases including a Motion JPEG

example.

1 Introduction

Now various multimedia products such as high-definition TVs, set-top

boxes, 3D game players, digital camcorders, and digital cameras are

prevailing. Their architectures are increasingly required to be open and

flexible to accommodate more functions and multiple standards.

Therefore, employing multiple processors in designing complex SoCs

became a viable alternative to meet tight time-to-market by maximizing

design reuse and providing flexibility [1]. In MPSoCs, however, an

efficient IPC mechanism should be provided. Multimedia applications

have parallelism at various levels of granularity, which can easily be

modeled by a Kahn process network (KPN). The main purpose of this

paper is to find a suitable hardware architecture based on FIFO channels

for IPC synchronization in MPSOCs for multimedia applications.

2 Previous Work

A mail-box has widely been adopted in many implementations because

of its simplicity in hardware architecture, which is a reasonable solution

when the granularity of a task is coarse (e.g. synchronization per frame).

It is shown in [3] that the combination of mail-boxes and OS

synchronization primitives is sufficient in designing an MPEG-4 video

encoder with its communication on the per-frame basis. In the Philips’s

approach [2] and in the SoCBase-DE [4], a FIFO channel controller,

which manages the tokens for put/get operations, is employed for

enhancing the performance and reduction of the synchronization

overhead. However, a dedicated hardware FIFO should be instantiated

for each channel, which increases the hardware overhead.

The objective of our work is to propose an efficient hardware

accelerator for IPC synchronization that is flexible and scalable, which is

suitable to complex multi-processor systems for multimedia streaming

applications. In section 3, after describing a simple mail-box hardware

solution for IPC and its limitations, we propose a new IPC hardware

architecture to alleviate the problem. In section 4, experiment results are

presented, which is followed by the conclusion and future work in

section 5.

3 New IPC architecture

3.1 A simple mail-box

Because only storing the messages to be sent and their signaling are

supported with a mail-box, software should transport the messages and

protect the FIFO control data. As granularity of tasks is finer, their

synchronization overhead gets higher while their synchronization buffers

are small enough to be allocated in on-chip memory. Moreover, using

tasks of finer granularity enable us to find more parallelism easily, which

is more flexible and cost-effective in mapping the tasks on an MPSoC

architecture.

Table 1 shows the synchronization overhead in message token passing

for MJPEG decoding of QCIF 10 frames. For a solution with three CPUs,

the overhead of sending and receiving message tokens on the 8x8 block

basis, is more than 65% in our measurement, and the performance is

degraded to a half to that of the solution with a single CPU. To solve this

problem by reducing SW overhead at the finer granularity execution, we

must employ dedicated FIFO channels.

Communication

unit

Synchronization

overhead

of msg.

transport

Perf. Improv. due

to 3 CPUs

Frame 2.75 % 30 46.7 %

8x8 block 65.60 % 5940 -98.5 %

Table 1. Synchronization overhead for a simple mail-box

3.2 Our proposed IPC architecture

IPC Hardware

Agent 1

IPC Hardware

Agent 2

IPC Hardware

Agent N

IPC Message Transport Network

FIFO

Group

Controller

Single FIFO

Channel

Controller

Mutex

Semaphore

Cond. Var.

PE 1

……

PE 2 PE N

……
Array

Channel

Controller

IPC Hardware

Agent 1

IPC Hardware

Agent 2

IPC Hardware

Agent N

IPC Message Transport Network

FIFO

Group

Controller

Single FIFO

Channel

Controller

Mutex

Semaphore

Cond. Var.

PE 1

……

PE 2 PE N

……
Array

Channel

Controller

PE Interface

Message

Packet

Transfer Unit

IPC

Command

Processor

Thread

Scheduler

Pre-Load

Control

Config.

Unit

Task

Graph

Storage

Message

Command

/Response

Buffer

Message Sender Message Receiver

IPC Message Transport Network

PE Interface

Message

Packet

Transfer Unit

IPC

Command

Processor

Thread

Scheduler

Pre-Load

Control

Config.

Unit

Task

Graph

Storage

Message

Command

/Response

Buffer

Message Sender Message Receiver

IPC Message Transport Network

Figure 1. The overall architecture Figure 2. IPC hardware agent

In implementing a FIFO channel and its associated PE interfaces, a

centralized structure is not scalable although it can reduce latency and

internal synchronization overhead. Therefore, we propose a distributed

architecture, shown in Fig.1 for scalability, which is composed of

flexible IPC hardware agent (Fig.2) that interface PEs, and the FIFO

grouped channel controller (Fig.3) that configures the number of

channels. The IPC hardware agent accesses FIFO channels by processing

thread-level commands on behalf of its corresponding PE. Multiple

channel controllers can be integrated in this framework.

Once connectivity among the tasks is established, the tasks can be

executed in parallel with PEs to get tokens to or from FIFO channels to

push or pop. This functionality of connectivity pre-loading is

implemented with low hardware overhead in the IPC hardware agent.

Message Receiver

TCP

1

?TCP: Thread Command Processor

?FAP: FIFO Access Processor

TCP

2

TCP

N

FIFO CTX

SAVE Unit

FIFO CTX

Load Unit

FAP

1

FAP

2

FAP

M

Active

FIFO

0

Active

FIFO

1

Active

FIFO

L

FIFO

Context

Buffer

Message Sender

……

…

……

IPC

Message

Transport

Network

Message Receiver

TCP

1

?TCP: Thread Command Processor

?FAP: FIFO Access Processor

TCP

2

TCP

N

FIFO CTX

SAVE Unit

FIFO CTX

Load Unit

FAP

1

FAP

2

FAP

M

Active

FIFO

0

Active

FIFO

1

Active

FIFO

L

FIFO

Context

Buffer

Message Sender

……

…

……

IPC

Message

Transport

Network

10 FIFOs

T1

PE1

T2

PE2

T3

PE3

T1

PE1

T2

PE2

T3

PE3

… …

10 FIFOs

huffman

PE1

dequant

PE2

idct

PE3

yuv2rgb

PE1

Task Name

PE to run on

Notation of

a thread

TC 1

TC 2

MJPEG

Task GraphTask GraphTask GraphTask Graph

10 FIFOs

T1

PE1

T1

PE1

T2

PE2

T2

PE2

T3

PE3

T3

PE3

T1

PE1

T1

PE1

T2

PE2

T2

PE2

T3

PE3

T3

PE3

… …

10 FIFOs

huffman

PE1

huffman

PE1

dequant

PE2

dequant

PE2

idct

PE3

idct

PE3

yuv2rgb

PE1

yuv2rgb

PE1

Task Name

PE to run on

Task Name

PE to run on

Notation of

a thread

TC 1

TC 2

MJPEG

Task GraphTask GraphTask GraphTask Graph

Figure 3. FIFO grouped channel Table 2. Test scenarios

A block diagram for a grouped FIFO that can be shared with multiple

FIFO channel controllers is shown in Fig.3. An active FIFO means one

that is currently accessed, which can be used by another logical FIFO.

The context of a FIFO channel is to be saved into or restored from the

FIFO context buffer. The maximum size of this buffer limits the number

of FIFO channels to be shared together in a grouped FIFO. The FIFO

Access Processor (FAP) finds an active FIFO, or makes a request to save

or restore a proper active FIFO. The Thread Command Processor (TCP)

is responsible for accepting a thread command request and issuing FIFO

channel access commands to FAPs one by one. If any event for an active

FIFO is occurred (e.g. the condition which is able to put or get, is

changed), or there is a need to return responses to a IPC hardware agent,

these messages are transported via the dedicated IPC Message Transport

Network.

3.3 Implementation result

 Table 3 shows synthesis results for the component previous mentioned.

Each component consists of several functional sub-blocks to enhance its

flexibility and extensibility in implementing a wide range of applications.

These results are obtained with 0.18 um technology assuming that clock

frequency is lower than 100MHz, which excludes the on-chip buffers

such as the command/response buffers, the FIFO context buffers. The

hardware overhead for implementing the thread-level command is

substantial, while the area overhead of the pre-load functionality is

negligible.

IPC Hardware

Agent

Configuration

Gate Counts Thread-Level

Command

Pre-Load

Functionality

O O 14.6 K

O X 14.5 K

X N/A 8.1 K

IPC FIFO Group

Configuration
Gate Counts

TCP # FAP #

1 1 33.1 K

3 2 40.0 K

3 4 42.5 K

N/A 1 26.6 K

Table 3. Synthesis results of the IPC hardware agent and the IPC grouped FIFO

4 Experimental Results

To confirm feasibility of the scheme proposed in this paper, several

experiments for Motion JPEG were performed on three test scenarios

(Table 2) to represent the pipelined execution pattern which is common

in the streaming multimedia applications. A FPGA prototyping board

was used in our experiments, where three ARM7TDMI soft-cores and the

proposed IPC architecture that has three IPC hardware agents and one

FIFO group are configured.

4.1 Test scenarios

In TC1, all the tasks communicate with other tasks via a single FIFO

channel. In TC2, the synchronization overhead is substantial because 10

FIFO channels are used in each connection. The average computation

granularity of MJPEG is approximately 10,000 cycles, and the maximal

parallelism ignoring synchronization overhead can be achieved is 1.89

(the same to 47% cycles counts reduction) in the task partition shown in

Table 3 (huffman, dequant, idct, yuv2rgb).

4.2 Synchronization overhead

Testbench
Comp.

granularity

Sync.

overhead

(%)

prepreprepre----loadloadloadload sync.

overhead

reduction

threadthreadthreadthread----level level level level

commandcommandcommandcommand sync.

cost reduction

TC1

938 cycles 7.8 % 23.2 % 62.3 %

3928 cycles 2.0 % 23.1 % 62.2 %

9127 cycles 0.9 % 23.1 % 62.1 %

TC2

938 cycles 56.2 % 16.1 % 60.4 %

3928 cycles 24.3 % 12.0 % 60.3 %

9128 cycles 12.5 % 9.3 % 60.3 %

Table 4. Synchronization overhead and the effects of each function

As shown above, the synchronization overhead is lowered under 2.0 %

in the TC1 case when computation granularity becomes larger than 4000

cycles. The TC2, in spite of massive synchronization, the overhead of

synchronization approaches to 10% as the granularity is coming up to

10,000. The overhead reduction of hardware acceleration of the thread-

level command, is more than 60%, so it can be justified when the

hardware overhead shown in Table 3, is acceptable.

4.3 Motion JPEG running profiles on 3 CPUs

Testbench

Desc.

of

CPUs

yuv2rgb

&

Display

Cent.

vs.

Dist.

Cycle

Counts

of

Thread

Switch

Cycles

reduction

※ MJPEG
QCIF 10
Frames,
※ Sync.

per 8x8
block
basis
※ Round-
Robin
Thread
Scheduling
※ 32 FIFO
depth

1 off N/A 109.8 M N/A N/A

1 on N/A 132.4 M N/A N/A

3 off C 58.5 M 1587 46.7 %

3 off D 62.6 M 1530 43.0 %

3 on C 77.6 M 1566 41.4 %

3 on D 78.9 M 1676 40.4 %

Table 5. The Motion JPEG execution profile data on 3 CPUs

The last column of Table 5 means the reduction of cycle counts

compared to that of the execution on one CPU. Inclusion or exclusion of

the yuv2rgb block and display has been also considered, because the

yuv2rgb block in the current implementation is done on the frame basis

so as to disturb the parallel execution. In spite of the inefficiency at the

expense of the implementation of the distributed architecture, the

performance is comparable to the centralized one and the ideal case, with

the help of the novel architectural functionality such as the thread-level

command and the pre-load capability. It is difficult to extract the pure

synchronization cycles involved, because the thread scheduling and

context switch overhead under a conventional RTOS are unavoidable

and the schedule of multi-threads is not optimal. Moreover, these effects

of the RTOS make the analysis much more complicated. Therefore, we

will implement a hardware accelerator for a RTOS kernels closely related

to the multi-thread execution in the near future.

5 Conclusion and Future Work

In this paper, we proposed a new IPC architecture that is efficient

especially for more frequent synchronization among smaller tasks,

compared to a conventional mail-box approach. To provide scalability

and flexibility, we employed a distributed architecture that can easily be

adapted to requirements of each channel and its corresponding threads.

Both an IPC hardware agent and a grouped FIFO can be configured

dynamically or statically. From the area estimation and experimental

results for three test scenarios including MJPEG, we confirmed that the

propose architecture is effective, compared to the mailbox approach. We

plan to integrate the proposed IPC accelerator into SoCBase-DE [4]

developed in Seoul National University, which is a refinement-based

SoC design environment that covers various abstraction levels from

transaction level to register transfer level, and provides mixed-level

simulation for incremental refinement.

References

[1] Grant Martin, “Overview of the MPSoC Design Challenge”, Proc.

of 43rd Design Automation Conference(DAC), San Francisco, July 2006.

[2] Gangwal, O. P., A. K. Nieuwland, and P. E. R. Lippens, “A

scalable and flexible data synchronization scheme for embedded HW-

SW shared-memory systems”, Proceeding of the International

Symposium on System Synthesis, pp.1-6, October, 2001

[3] M-W. Youssef et al., “ Debugging HW/SW Interface for MPSoC:

Video Encoder System Design Case Study,” Proc. 41st Design

Automation Conf. (DAC 04), IEEE CS Press, 2004, pp.909-913

[4] Sanggyu Park, Sangyong Yoon, Soo-Ik Chae, “A Mixed-Level

Virtual Prototyping Environment for Refinement-based Design

Environment”, Asia and South Pacific Design Automation Conference,

pages 588-593, January, 2006

