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Microshaping metal surfaces by wave-directed self-organization

Pil J. Yoo, S. Young Park, S. Joon Kwon, Kahp Y. Suh, and Hong H. Lee®
School of Chemical Engineering, Seoul National University, Seoul, 151-744, Korea

(Received 25 July 2003; accepted 6 October 2003

Self-organization in the shaping of a metal surface is dictated by an internal wave that selects the
type of modes from an externally imposed periodic pattern. An elastomeric mold, when placed on
a thin bilayer of metal on polymer and heated, provides periodic nodes that give rise to a periodic
wave of harmonic series. The internal wave in the bilayer selects the type, number of harmonic
modes, and the fractional magnitude that each allowed harmonic mode contributes to the overall
surface shape, thereby permitting shape engineering of the metal surfac003®American
Institute of Physics.[DOI: 10.1063/1.1630377

The phenomenon of surface wrinkling has receivedraised to 130 °C, which is well above tfig of PS(105 °O.
much attention because of its significance in thin film sciencdypical annealing time was 12 h. It was then allowed to cool
and industry:~* Controlling the wrinkling so as to produce a down to room temperature and the mold was removed. The
desired pattern or shape is a key issue in the surface wrirresulting surface structures were examined by atomic force
kling, and yet only recently have there been studies on utimicroscopy(AFM, Digital Instruments, Dimension 310
lizing the wrinkling for the purpose of generating regular the contact mode. Figurg& is an optical micrograph of the
patterns~’ In the thin bilayer of a metal on a polymer being metal surface formed by wave-directed self-organization.
considered, wrinkles are generated upon heating above the Although the isotropic wrinkles lack directional order
glass transition temperaturd ) of the polymer to relieve [Fig. 1(a)], they have a certain intrinsic wavelength associ-
the stress generated due to a difference in the thermal expaated with them as shown in the fast Fourier transform image.
sion coefficients of the two layers. It has been shown thafhis wavelength can be determined theoretically iragori-
when a patterned polydimethylsiloxar®DMS) mold is  ori mannef When a patterned PDMS mold is placed on the
placed on the bilayer and the system is heated, the externalljilayer, it makes a strong conformal contact with the under-
imposed pattern of the mold causes the wrinkles to be shapdyging metal surface, which makes the edges of the pattern act
as a simple sinusoidal wade. as nodes. These nodes dictate the nodal condition to be sat-
A specific question raised in this work is how an exter-isfied; that is, creation of nodal waves within the period of
nally imposed periodic wave causes the surface of a bilayer
to evolve into different shapes. As shown in Figa)l the
usual isotropic wrinkles are created in the absence of an ex-(b)

ternal mold. When a mold with a periodic pattern is placed

onto the bilayers with a different intrinsic wavelength, how- \

ever, the bilayers are made to self-organize into the various /Opm
10

ordered shapes shown in Figgbilthrough 1e) even with
the same mold. This wave-directed self-organization does Symmetric single\
shape. (a)k ’

not lead to a surface with a simple sinusoidal structure or
For the experiments, a monodispersed polystyréte,

M,=4.04x 10°, M,,/M,,=1.05, Polymer Source, Incwith X : 5.0 pmidiv
. - Z : 200 nm/div

toluene as the solvent was spin-coated onto the silicon sub-

strate to various thicknesses ranging from 150 to 800 nm.

For the metal, we used thermally deposited aluminum, rang- (c)

ing in thickness from 30 to 100 nm. The PDMS molds were

prepared by mixing a siloxane base oligomer and a curing 3
agent(Sylgard 184, Dow Corningin the ratio of 15 to 1 by 20

weight, pouring the mixture onto the master molds and then 10
curing at 50°C for 12 h. For the wave-directed self- Asymmetric single Asymmetric double
organization, the bilayer samples and the PDMS molds were  (Echellette-like shape) (Cascade-like shape)

Sep?rately heated to a temperature sllghtly beT(a\Mf PSto FIG. 1. Three-dimensional AFM images of the metal surface formed by the

avoid the undue stress generated during heating. The PDMsjt.organization. For all the shapes formed, the same PDMS tBoldn

mold was then placed on the sample and the temperature wége-and-spacewas used(a) Isotropic waves in the absence of the mdt.

Symmetric single modet =80 nm,t,=520 nm,\;=4.68 um). (c) Asym-

metric double modet(,=60 nm,t,=600 nm,\;=3.92 um). (d) Asymmet-

dAuthor to whom correspondence should be addressed; electronic maitic double mode t,=50 nm, t,=350 nm,\;=2.96 um). () Symmetric
honghlee@snu.ac.kr double mode t,=30 nm,t,=220 nm,\;=1.68 um).
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ceeds the ratio. For the third modes=3 and /hh—1=5, and

() ||~ . . .l | therefore the second mode is allowed up to the mold wave-

length that satisfies the condition given bly(3k,,)

(a) [ (b) = conditions, the ratio was calculated to be nearly constant at
l l 1.612 which means that the value of the mold wavelength in

.............. m-epolyme, eta excess of the intrinsic wavelength is allowed up to 60% for

50 micron Substrate the first mode, and the second mode comes in when it ex-

’ =F(5k,,). As was done for the first mode, one can get the
l l I l | value of 3.82 as the ratio of wavelengths. Similarly, the third
First harmonic Second harmonic mode is allowed up to 5.88, the fourth mode is allowed up to

. . . 7.93, and so on.
FIG. 2. (a) Optical micrograph of line-and-space metal surface formed by

the self-organization(b) A schematic of the experimental setup. The dotted One notable finding in our experimental results is that

box denotes the repeating unit structure of self-organizationFirst har-  asymmetric waves form as shown in Figgc)land Xd),
monic case X; is almost the same as;). (d) Second-harmonic case (is \yhich deviate from the symmetric harmonic series that con-
smaller than\ ,,). Waves are allowed as odd harmonics to satisfy the sym- . . .

metry condition in the confined unit structure. sists of odd harmonic waves. This symmetry breaking for the

double mode originates from the system’s desire to minimize

the mold patterrisee Fig. 2b)]. The question is how these its free energy at thfa risk of an uneyen conta(_:t of PDMS
nodal waves created by the externally imposed wave interadfi0ld’s pattern, allowing even harmonic waves, in effect se-
with the internal, intrinsic wave. lecting nodes from within two periods rather than one period.
In the shaping of the metal surface, the nodal conditiorAn even second mode will lower the free energy as long as
must be satisfied and the shape is simply the result of a linedis free energy is smaller than the free energy associated with
combination of the nodal waves. If we normalize the wavethe odd second mode; that B(2k,,)<F(3k,,). This con-
profile with respect to the amplitudeand utilize the sym-  dition, when solved for the wavelength ratio, yields a value
metric nature of the mold, the normalized wave profiigx) of 2.43, which gives the range to which an even second

can be written as mode is allowed. Therefore, the range of the ratjp/\;,
% f within which an asymmetric double mode results, is from
w(x)=eE ﬁsir{(Zn—l)kmx]. n=1,2,3,..., 1.60 to 243, which in turn gives the range
n=1 (£N—

2.43<\,,/\;<3.80 as the symmetric double-mode range.

@ Other asymmetric modes are not observed for higher modes
wherex is the axis of the wavef, is the fractional contri- because the free energy per unit wave shows little difference
bution from thenth harmonic, andk, is the mold wave whether it is a symmetric or an asymmetric wave, making
number given by Z/\y,, where\r, is the mold wavelength.  the higher asymmetric modes irrelevant. The accommodation
Odd harmonics were chosen to satisfy the symmetry condisf the even harmonic gives rise to echellette-likég. 1(c)]
tion in the repeating unit_ strL_Jcture consisting of one void and,, cascade-likéFig. 1(d)] shape, which is useful for optical
one contact, as shown in Figscand 2d). applications, as in shallow gratings.

The resulting harmonic conditions are not at the global Shown “’q Fig. 3 are the AFM images of surface profiles

minimum free energy corresponding to the intrinsic wave : .
number. In the absence of the global minimum, the systerrt1h‘r’lt were generated experimentally by the wave-directed

keeps adding harmonics to the harmonic series starting Wit'ﬁelf-organization. All the experimental results agree with the

the first mode until adding an additional harmonic results infheoretical results given earlier that are based on the free

an increase of the free energy. LFtk,,) be the free energy €nergy consideration. For a given bilayer, the surface shapes
of the first harmonicii=1 and Zh— 1=1). If the next higher ~ are entirely determined by the ratio of the mold and intrinsic
mode fi=2 and Zh—1=3) is to be included in the harmonic Wwavelengths. From top down in any given column in the
series, its free energi(3k,,) has to be at least equal to figure, one can see the shape change with the increase in the
F (k) to reach a minimum: mold wavelength X ,,) for a given intrinsic wavelength\().

F(k,)=F(3K,). @) Conversely, from left to right in any given row, one can also

m m observe the change with increasing intrinsic wavelength for a

The free energy of the bilay&?is given by the sum of the given mold. For the case &f,=6 um, for example, one can
bending energy of the metal layeand the elastic deforma- generate symmetric double mode, asymmetric double mode,
tion energy of the underlying polymer lay#fr: and symmetric single mode wave simply by varying the film

thickness.
E k2t3 E, 2E,|(ek)? . .
F(k)= m—"; 4_"3 3_kp (64) , (3 Now that the number of harmonics and their types that
12(1-vy) Kty are to be included in the harmonic series are determined, it

wheret is the thicknessE is Young’'s modulus, the sub- ©Only remains for the engineering of the metal surface shape
Scriptsm and p are for the metal and the po|ymer, respec-to resolve the fractional Welghtll’ll}I . The expression f.OI' the
tively, k is the wave number, ang,, is the Poisson ratio of free energy of the self-organized wave can be derived in a
the metal. Equatiori2) has been solved with the aid of Eq. straightforward manner, although cumbersofh¥. The ex-

(3) for ki /k,, that satisfies Eq(2). For all the experimental pression is
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FIG. 4. Comparison between experimental res{dtsts converted from the
,\/ J\ AFM profile) and theoretical resul{solid gray ling. (a) Asymmetric double
/\/ mode.(b) Symmetric triple mode.

Scan size: 20um Scan size: 30 um  Scan size: 40 um advantage of tunability for an optical surface can be utilized

FIG. 3. Two-dimensional AFM micrographs and the corresponding surfacS @ promising method for making an optical device with

profiles (insetg of the self-organized metal surfacg@) Column for \; of other techniques that have been propd§é8
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(b) Column for\; of 2.96 um. The shape changes from symmetric single

mode (,=4 wum), to asymmetric doubleN(,=6 um), to symmetric

double A ,=10 um), and to symmetric tripleN,=14 um). (c) Column 1s. P. Timoshenko and J. M. GerEheory of Elastic StabilifMcGraw-
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