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Abstract
Background: The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell
carcinoma (OSCC). Akt-induced epithelial-to-mesenchymal transition (EMT) involves downregulation of E-cadherin,
which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma
cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to
adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise
mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to
investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin,
and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition
of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38.

Methods: We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using
immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid
analogues (PIA) treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce
the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro
migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including
Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and
immunofluorescence analysis.

Results: Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low
or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling, but did not affect
phosphorylation of ERK, JNK, and p38 in KB and KOSCC-25B cells. Akt inhibition led to downregulation of Snail and
Twist expression. In contrast, inhibition of Akt activity by PIA did not induce any changes in SIP-1/ZEB-2 expression. PIA
treatment induced the expression of E-cadherin and β-catenin, reduce that of Vimentin, restored their epithelial
morphology of a polygonal shape, and reduced tumor cell migration in KB and KOSCC-25B cells, which was the
corresponding feature of MErT.

Conclusion: All of these findings suggest that Akt inhibition could induce the MErT through decreased NF-κB signaling
and downregulation of Snail and Twist in OSCC cells. A strategy involving Akt inhibition might be a useful therapeutic
tool in controlling cancer dissemination and metastasis in oral cancer patients.
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Background
Oral squamous cell carcinoma (OSCC) is the most com-
mon neoplasm of the head and neck. Carcinoma cells
accumulate a series of genetic and/or epigenetic changes
and altered phenotypes during tumor progression. Loss of
epithelial morphology and acquisition of mesenchymal
characteristics, termed the epithelial-to-mesenchymal
transition (EMT), are typical for carcinoma cells during
tumor progression and correlate with the local invasive-
ness and metastatic potential of the tumor [1,2]. Among
the mechanisms largely associated with the metastatic
conversion of epithelial cells and the EMT, the loss of E-
cadherin-mediated cell adhesion is prominent [3,4].

The Akt/PKB family of kinases is a downstream effector of
phosphatidylinositol 3-kinase (PI3K) and is frequently
activated in human cancers, including OSCC [5-8].
Recently, activation of the PI3K/Akt axis is emerging as a
central feature of EMT. Akt-induced EMT involves down-
regulation of E-cadherin, which appears to result from
upregulation of the transcription repressor Snail. Akt
activity is induced by ligand stimulation of growth factor
receptors such as the insulin-like growth factor-I receptor
(IGF-IR) and the EGF family of receptors [9]. Ligand stim-
ulation activates PI3K, the upstream activator of Akt, by
direct binding to either the activated phosphorylated
receptor or to adaptor proteins phosphorylated by recep-
tor kinase activity [10]. Phosphoinositides generated by
PI3K activity trigger activation of Akt kinases through
direct binding to the pleckstrin homology (PH) domain
and the subsequent phosphorylation of Akt at two con-
served residues [11]. Therefore, we used an Akt inhibitor,
structurally modified phosphatidylinositol ether lipid
analogues (PIA) [12], that specifically binds to the PH
domain of Akt.

Recently, it was proposed that carcinoma cells, especially
in metastatic sites, could acquire the mesenchymal-to-epi-
thelial reverting transition (MErT) in order to adapt the
microenvironments and re-expression of E-cadherin be a
critical indicator of MErT [13,14]. Therefore, it seems to be
important to investigate which molecules or inhibitors
could induce MErT in cancers. However, the precise mech-
anism and biologic or clinical importance of the MErT in
cancers have been little known in in vitro and in vivo study.

The purpose of our study was to investigate whether Akt
inhibition by PIA treatment would restore the expression
of E-cadherin and β-catenin, reduce that of Vimentin, and
induce the MErT in OSCC cells with low or negative
expression of E-cadherin. We also investigated whether
inhibition of Akt activity would affect the E-cadherin
repressors, including Snail, Twist, and SIP-1/ZEB-2 and
signaling molecules like NF-κB, ERK, JNK, and p38.

Materials and methods
Cell culture and reagents
KB, SCC-15, SCC-25 (American Type Culture Collection,
Manassas, VA), HSC-3, HSC-4, Ca9-22 (from Dr. T.
Takata, Hiroshima Univ.), and KOSCC-25B (from Dr. BM
Min, Seoul National Univ.) [15,16] human OSCC cells
were cultured in DMEM supplemented with 10% fetal
bovine serum (FBS) and antibiotics (100 U/ml penicillin
and 100 μg/ml streptomycin). Akt inhibitor PIA (SH-5)
was purchased from Calbiochem (Gibbstown, NJ). Anti-
bodies against Akt1/2, phosphorylated ERK (Tyr 204),
phosphorylated JNK (Thr183/Tyr185), phosphorylated
p65, p50, p38, Snail, SIP-1/ZEB-2, Twist, β-catenin, and E-
cadherin were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Phosphorylated Akt (Ser 473) was
obtained from Cell Signaling Technology (Danvers, MA).
Vimentin was obtained from BD Biosciences (Franklin
Lakes, NJ). α-Tubulin and phalloidin-TRITC were pur-
chased from Sigma (St. Louis, MO).

Pharmacological Treatments
OSCC cells were plated at 2–2.5 × 105 cells/well in 6- or
12-well plates in DMEM containing 10% FBS and incu-
bated for 24 h. The medium was then changed to DMEM
with 0.1% FBS, and the cells were incubated overnight.
After overnight incubation, cells were treated with PIA dis-
solved in DMSO (5 μM) for 12 h (in vitro migration assay)
or 24 h (other experiments). In all experiments, DMSO
added to control samples had no effect on Akt activity.

RT-PCR
mRNA was purified from the cells using the Trizol reagent
(Invitrogen, Carlsbad, CA) according to the manufac-
turer's recommended protocol. Two μg RNA was added to
RT-PCR reactions containing primers at a concentration of
0.5 μM. After a 42°C/60-min reverse transcription step,
30 cycles of PCR amplification were performed at 94°C
for 30 sec, 58°C for 50 sec, and 72°C for 50 sec. PCR
products were run on 1.5% agarose gels for identification.
Primers used were 5'-TCC CAT CAG CTG CCCAGA AA-3'
and 5'-TGA CTC CTG TGT TCC TGT TA-3' for E-cadherin,
5'-AAG CAG GAG TCC ACT GAG TA-3' and 5'-GTA TCA
ACC AGA GGG AGT GA-3' for Vimentin, 5'-GGG CAG
GTA TGG AGA GGA AGA-3' and 5'-TTC TTC TGC GCT
ACT GCT GCG-3' for Snail, 5'-TTC CTG GGC TAC GAC
CAT AC-3' and 5'-GCC TTG AGT GCT CGA TAA-3' for
Sip1, 5'-GGA GTC CGC AGT CTT ACG AG-3' and 5'-TCT
GGA GGA CCT GGT AGA GG-3' for Twist, 5'-GCT GAT
TTG ATG GAG TTG GA-3' and 5'-GCT ACT TGT TCT TGA
GTG AA-3' for β-catenin, and 5'-GAA GGT GAA GGT CGG
AGT C-3' and 5'-CAA AGT TGT CAT GGA TGA CC-3' for
GAPDH.
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Analysis of the E-cadherin promoter by Methylation 
specific-PCR (MS-PCR)
Methylation status of the CpG sites in the E-cadherin pro-
moter region was analyzed based on the principle that
bisulfite modification of the genomic DNA would convert
unmethylated cytosine residues to uracil, whereas methyl-
ated cytosine is resistant to the treatment. Bisulfite modi-
fication and MS-PCR were carried out as described
[17,18]. Modified DNA was amplified using primers spe-
cific for the methylated sequence (5'-TTA GGT TAG AGG
GTT ATC GCG T-3' and 5'-TAA CTA AAA ATT CAC CTA
CCG AC-3' and for the unmethylated sequence (5'-TAA
TTT TAG GTT AGA GGG TTA TTG T-3' and 5'-CAC AAC
CAA TCA ACA ACA CA-3'). 35 cycles of PCR amplification
were performed at 94°C for 30 sec, 56°C for 30 sec, and
72°C for 30 sec. PCR products were run on 2% agarose
gels for identification. MDA-MB-231 and MCF-7 (Ameri-
can Type Culture Collection) breast cancer cells were uti-
lized as positive controls for methylated and
unmethylated E-cadherin gene, respectively [19].

Immunoblotting
Briefly, 70–80% confluent cells were homogenized with 1
ml of lysis buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2,
10 mM KCl, 0.5 mM DTT, 0.2 mM PMSF) and incubated
on ice. To the homogenates was added 125 μl of 10% NP-
40 solution, and the mixture was then centrifuged for 30
sec at 12,000 × g. Supernatant protein concentration was
determined by the Bradford protein assay (Bio-Rad, Her-
cules, CA, USA) using bovine serum albumin (Sigma) as a
standard. Immunoblot analysis was performed as
described elsewhere [20].

Immunofluorescence analysis and confocal microscopy
Cells grown on coverslips were fixed in 4% PFA, permea-
bilized in 0.3% Triton X-100, and blocked for 40 min in
1% BSA/10% fetal bovine serum. The cell samples were
incubated with primary antibodies at 4°C overnight,
washed with PBS containing 0.1% BSA, and then reacted
with FITC- or Cy3-conjugated secondary antibodies (Jack-
son ImmunoResearch Laboratories, West Grove, PA, USA)
at room temperature for 40 min. After washing, the sam-
ples were rinsed with PBS containing 0.1% BSA, stained
with 5 mg/ml 4,6-diamidino-2-phenylindole (DAPI;
Sigma), and mounted. Confocal analyses were performed
using an Olympus (Center Valley, PA) FC-300 Confocal
Laser Scanning Microscope equipped with FITC- and Cy3-
channel filter systems. All images were converted to TIFF
format and arranged using Photoshop 7.0 (Adobe, Seattle,
WA).

In vitro migration assay
The in vitro migration assay was performed as described
previously [21]. 5 × 104 cells were placed in the upper
compartment (8 μm pore size) of the cell culture insert

with or without 5 μM PIA. Medium, supplemented with
100 ng/ml IGF-I (R&D Systems, Minneapolis, MN), was
added to the lower compartment. After 12 h of incuba-
tion, the cells on the upper surface of the filter were wiped
out with a cotton swab, and the filter was removed from
the chamber and stained with Diff-Quick stain set (Fisher,
Pittsburgh, PA). The migration of the cells was determined
by counting the number of cells that migrated through the
pores to the lower side of the filter under a microscope at
100 × magnification. We performed the assay three times,
and three randomly selected fields were counted for each
assay. We used Student's t test to determine the signifi-
cance at a level of P < 0.05.

Results
Screening of oral squamous cell carcinoma cell lines
We screened several OSCC cell lines in order to select suit-
able cell line models with the characteristics of the EMT
(low or negative expression of E-cadherin) and a constitu-
tively activated state of Akt. Of the 7 OSCC cell lines, KB,
KOSCC-25B, Ca9-22, and SCC-15 showed constitutively
activated phosphorylated Akt (p-Akt). Of these four lines,
only KB and KOSCC-25B showed low or negative expres-
sion of E-cadherin (Fig. 1A). Because the E-cadherin
downregulation could be caused by the methylation of its
promoter, we investigated the methylation status of E-cad-
herin gene promoter in the KB and KOSCC-25B cells with
MS-PCR. PCR products were detected in both KB and
KOSCC-25B with unmethylation-specific primer pairs,
not methylation-specific ones (Fig. 1B). These results indi-
cate that the KB and KOSCC-25B have unmethylated E-
cadherin gene. So, the KB and KOSCC-25B cell lines were
chosen as suitable models for the present study.

Effects on Akt and Akt-related signaling molecules by PIA 
treatment
As expected, there were no changes in Akt1 and Akt2 pro-
tein levels in KB and KOSCC-25B cells and p-Akt level was
significantly lower after 5 μM PIA treatment for 24 hours
(Fig. 2A). However, ILK, upstream molecules of Akt, did
not show any change after PIA treatment, indicating that
PIA is a specific blocker of Akt signaling. Next, we investi-
gated whether PIA treatment could affect signaling mole-
cules such as ERK, p38, p50, and p65. Inhibition of Akt
activity by PIA induced downregulation of p-p65 and p-
50, but did not affect phosphorylation of ERK, JNK, and
p38 in KB and KOSCC-25B cells (Fig. 2B).

Effects of Akt inhibition on Snail, SIP-1/ZEB-2, and Twist 
expression
We examined the effects of Akt inhibition on the expres-
sion of EMT-related transcription factors Snail, SIP-1/ZEB-
2, and Twist in KB and KOSCC-25B cells. Downregulation
of Snail and Twist was detected by immunoblot and RT-
PCR analysis (Fig. 3A). In addition, a shift from the
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Screening of OSCC cell lines in order to obtain a suitable cell line model for inducing MErTFigure 1
Screening of OSCC cell lines in order to obtain a suitable cell line model for inducing MErT. (A) Of the 7 OSCC 
cell lines, KB, KOSCC-25B, Ca9-22, and SCC-15 showed constitutively activated phosphorylated Akt (p-Akt). Of these four 
lines, only KB and KOSCC-25B showed low or negative expression of E-cadherin. (B) Methylation specific-PCR: PCR products 
were detected in both KB and KOSCC-25B with unmethylation-specific primer pairs, not methylation-specific ones. M, DNA 
ladder; lane 1, MDA-MB-231; lane 2, MCF-7; lane 3, KB; lane 4, KOSCC-25B.
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nucleus to the cytoplasm of Snail and Twist was detected
in the immunofluorescence analysis (Fig. 3B). In contrast,
inhibition of Akt activity by PIA did not induce any
changes in SIP-1/ZEB-2 expression.

Effects of Akt inhibition on epithelial and mesenchymal 
markers
KOSCC-25B cells had an elongated shape, assuming a
fibroblast-like appearance. In contrast, PIA treatment of
the cells seemed to restore their epithelial morphology of
a polygonal shape (Fig. 4A upper panel). In phalloidin

staining, KOSCC-25B cells demonstrated circumferential,
cortical actin, and actin in elongated filopodia; however,
no actin stress fibers were detected. In contrast, PIA-
treated cells revealed an abudance of actin stress fibers
(Fig. 4A lower panel). These results showed that PIA treat-
ment of the cells induced actin cytoskeleton reorganiza-
tion, which contributed to loss of the migratory
phenotype. We examined whether PIA treatment could
affect the expression and localization of E-cadherin and β-
catenin, epithelial markers, and Vimentin, a mesenchy-
mal marker. In accordance with the observed morpho-
logic change, inhibition of Akt activity induced the
expression in immunoblotting and RT-PCR (Fig. 4B) and
localization of E-cadherin and β-catenin as seen in the
immunofluorescence analysis (Fig. 5 upper and middle
panel). Also, PIA treatment decreased the vimentin
expression (Fig. 4B) or localization (Fig. 5 lower panel),
although the change was not as prominent as that in the
epithelial markers.

Reduced migratory ability after Akt inhibition
In order to examine whether inhibition of Akt activity
could affect cell motility, we performed an in vitro migra-
tion assay. The numbers of KB and KOSCC-25B cells from
the PIA-treated group that migrated through the filter
were only 61.1% and 56.4% of that in control cells (P <
0.05; Fig. 6), respectively.

Discussion
During EMT, epithelial cells acquire fibroblast-like prop-
erties and exhibit reduced cell-cell adhesion and increased
motility. The plasticity afforded by the EMT is central to
the complex remodeling of embryo and organ architec-
ture during gastrulation and organogenesis. In pathologi-
cal processes such as oncogenesis, the EMT may endow
cancer cells with enhanced motility and invasiveness.
Indeed, oncogenic transformation may be associated with
signaling pathways promoting the EMT [22]. Akt activa-
tion is frequent in human epithelial cancer. In our previ-
ous study [23], Akt activation in OSCC was linked to
aggressive clinical behavior and the loss of histological
features of epithelial differentiation. These findings are
consistent with Akt directly affecting epithelial cell mor-
phology, cell motility, and invasiveness.

Grille et al. [24] demonstrated that OSCC cells engineered
to express constitutively active Akt underwent EMT, char-
acterized by downregulation of the epithelial markers
desmoplakin, E-cadherin, and beta-catenin, and upregu-
lation of the mesenchymal marker vimentin. The cells
also lost their epithelial cell morphology and acquired
fibroblast-like properties. In addition, the cells expressing
constitutively active Akt exhibited reduced cell-cell adhe-
sion, increased motility on fibronectin-coated surfaces,
and increased invasiveness in animals.

Effects of PIA treatment on Akt and Akt-related signaling moleculesFigure 2
Effects of PIA treatment on Akt and Akt-related sig-
naling molecules. (A) P-Akt level in KB and KOSCC-25B 
cells was significantly lower after 5 μM PIA treatment for 24 
hours. However, Akt1/2 and ILK (upstream molecules of 
Akt) did not show any change after PIA treatment. (B) Inhibi-
tion of Akt activity by PIA induced downregulation of p50 
and p-p65 in KB and KOSCC-25B cells, but it did not affect 
phosphorylation of JNK, p38, and ERK.
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Effects of Akt inhibition on Snail1, SIP-1/ZEB-2, and Twist expression and localizationFigure 3
Effects of Akt inhibition on Snail1, SIP-1/ZEB-2, and Twist expression and localization. (A) Downregulation of Snail 
and Twist was detected in KB and KOSCC-25B cells by immunoblot and RT-PCR analysis. In contrast, inhibition of Akt activity 
by PIA did not induce any changes in SIP-1/ZEB-2 mRNA and protein expression. (B) A shift from the nucleus to the cytoplasm 
of Snail and Twist in KOSCC-25B cells was detected by immunofluorescence analysis.

Snail

SIP1

Twist

KB KOSCC-25B
PIA -  +  -  +  -  +

GAPDH/α-Tubulin

Tw
is

t
Sn

ai
l

+ PIA- PIA

A

B



Journal of Experimental & Clinical Cancer Research 2009, 28:28 http://www.jeccr.com/content/28/1/28

Page 7 of 11
(page number not for citation purposes)

Effects of Akt inhibition on cell morphology and the expression of the epithelial and mesenchymal markersFigure 4
Effects of Akt inhibition on cell morphology and the expression of the epithelial and mesenchymal markers. (A) 
KOSCC-25B cells had an elongated shape, assuming a fibroblast-like appearance. In contrast, PIA-treated KOSCC-25B cells 
seemed to restore their epithelial morphology of a polygonal shape. In phalloidin staining, KOSCC-25B cells demonstrated cir-
cumferential, cortical actin (blue arrowheads), and actin in elongated filopodia (white arrowheads); however, no actin stress 
fibers were detected. In contrast, PIA-treated cells revealed an abudance of actin stress fibers (yellow arrowheads). Scale bar: 
100 μm (black), 20 μm (white). (B) Inhibition of Akt activity increased the expression of E-cadherin and β-catenin, and reduced 
the Vimentin expression in KB and KOSCC-25B cells.
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Effects of Akt inhibition on the localization of the epithelial and mesenchymal markersFigure 5
Effects of Akt inhibition on the localization of the epithelial and mesenchymal markers. The inhibition of Akt 
activity induced the localization of E-cadherin and β-catenin, and decreased that of vimentin, as seen in the immunofluores-
cence analysis.
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Because OSCC cells engineered to express constitutively
active Akt have been known to undergo EMT, we tried to
examine whether inhibition of Akt activity could restore
epithelial characteristics and deplete mesenchymal fea-
tures. In the present study, PIA treatment induced the
expression and cytoplasmic localization of the epithelial
markers (E-cadherin and β-catenin). In addition, it
decreased the vimentin expression and localization,
although the change was not as prominent as that in the
epithelial markers. Also, the inhibition of Akt activity
restored the polygonal epithelial morphology and
reduced the migratory ability. This indicates that the inhi-

bition of Akt activity could induce the MErT in OSCC
cells, and that the gain of epithelial characteristic might
earlier or more prominent event in the MErT of the OSCC
than the loss of mesenchymal one.

Several EMT-inducing developmental regulators repress E-
cadherin transcription via interaction with specific E-
boxes of the proximal E-cadherin promoter [25,26]. The
Snail-related zinc-finger transcription factors (Snail and
Slug), the (more distantly related) repressor SIP-1/ZEB-2,
and the related Snail family member δ EF-1/ZEB1 are the
most prominent [27-30]. The Snail protein is one of the

Reduced migratory ability due to Akt inhibitionFigure 6
Reduced migratory ability due to Akt inhibition. Photomicrography of control (A) and PIA-treated (B) KOSCC-25B 
groups in the in vitro migration assay. (C) The numbers of KB and KOSCC-25B cells from the PIA-treated group that migrated 
through the filter were only 61.1% and 56.4% of that in control cells (P < 0.05), respectively.
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key molecules in the EMT and its expression is inversely
correlated with E-cadherin expression in a number of can-
cers, including OSCC [31-33]. Accordingly, inhibition of
Akt activity induced downregulation of EMT-related tran-
scription factor Snail. However, inhibition of Akt activity
did not affect the expression level of the SIP-1/ZEB-2.
These data suggest that Akt signaling could induce the
EMT through activation of Snail, but not SIP-1/ZEB-2, in
OSCC cells.

The basic helix-loop-helix transcription factor Twist, a
protein known to be essential for initiating mesoderm
development during gastrulation, was recently added to
the growing list of developmental genes with a key role in
E-cadherin repression and EMT induction [34]. Yang et al.
[29] demonstrated that knockdown of Twist expression
by RNAi in a metastatic mammary tumor cell line pre-
vented lung metastasis, and the high levels of Twist
expression seen in 70% of invasive lobular breast carcino-
mas, which display many features of EMT, were inversely
correlated with E-cadherin expression. However, there
have been no reports on the relationship of Twist with the
EMT in oral cancer cells. In the present study, inhibition
of Akt activity induced downregulation of EMT-related
Twist in OSCC cells. To our knowledge, this study is the
first description of the participation of Twist in the EMT/
MErT process in oral cancer.

Akt signaling has been deeply studied because Akt plays
critical roles in regulating growth, proliferation, survival,
metabolism, and other cellular activities [21,35]. Chua et
al. [36] showed that NF-κB suppresses the expression of
epithelial specific genes E-cadherin and desmoplakin and
induces the expression of the mesenchymal specific gene
vimentin in breast carcinoma cells. Similarly, Julian et al.
[37] reported that activation of NF-κB by Akt upregulates
Snail expression and induces EMT in OSCC cells, and
expression of the NF-κB subunit p65 is sufficient for EMT
induction. We investigated whether it could be possible in
the reverse direction, which have been little known. In the
present study, inhibition of Akt activity induced the MErT
through interaction with NF-κB. Downregulation of NF-
κB contributed to MErT. Huber et al. [38] showed that
inhibition of NF-κB signaling prevents EMT in Ras-trans-
formed epithelial cells, while activation of this pathway
promotes the transition to a mesenchymal phenotype.
Fig. 7 shows a schematic representation of the proposed
signaling mechanism that promotes MErT through the
inhibition of Akt activity in KB and KOSCC-25B cells.
Additional study using NF-κB inhibitors could be needed
in order to verify this proposed pathway.

In summary, we demonstrated that Akt inhibition by PIA
treatment induced downregulation of Snail and Twist
expression, upregulation of E-cadherin and β-catenin,

downregulation of vimentin, and reduced cell migration,
which led to the MErT in oral cancer cells. The MErT in
oral cancer cells seems to be acquired through decreased
NF-κB signaling. All of these findings suggest that Akt
inhibition can induce the MErT through decreased NF-κB
signaling and downregulation of Snail and Twist in OSCC
cells. A strategy involving Akt inhibition might be a useful
therapeutic tool in controlling cancer dissemination and
metastasis in oral cancer patients.

Conclusion
All of these findings suggest that Akt inhibition could
induce the MErT through decreased NF-κB signaling and
downregulation of Snail and Twist in OSCC cells. A strat-
egy involving Akt inhibition might be a useful therapeutic
tool in controlling cancer dissemination and metastasis in
oral cancer patients.
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