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Orthogonalization Based Adaptive Interference Suppression
for Direct-Sequence Code-Division Multiple-Access Systems
Kwang Bok (Ed) Lee

Abstract— Rapid converging adaptive interference suppres-
sion algorithms for direct sequence code-division multiple-access
(DS/CDMA) systems are presented in this letter after showing
the limitations of conventional adaptive algorithms. The rapid
converging algorithms are based on an orthegenal transformation
preprocessing, and are adaptive implementations of the linear
minimum mean square error (MMSE) receiver for interference
suppression. These algorithms do not require a priori knowledge
on interfering signal parameters such as spreading sequences and
relative signal power levels.

I. INTRODUCTION

NTERFERENCE cancellation schemes based on the mini-

mum mean square error (MMSE) criterion were proposed
in [1]-[4] for direct-sequence code-division multiple-access
(DS/CDMA) systems. These schemes do not require a pri-
ori information regarding interfering signals. In [1]-[4], an
adaptive algorithm implementation of the MMSE criterion for
interference suppression was mentioned; however, the applica-
bility and convergence rate of conventional adaptive algorithm
for this application was not investigated. The purpose of this
letter is to show problems with applying conventional adaptive
algorithms to interference suppression, and to present rapid
converging algorithms based on an orthogonal transformation.

II. SYSTEM MODEL AND THE MMSE CRITERION

In a synchronous DS/CDMA system with L concurrent
users, the received signal for the mth duration may be rep-
resented in a vector form in the baseband as follows:

L
R(m) =" gi di(m) cos(6)Pr + Ni(m) )
k=1

where gy, dy, 05, P, represent, respectively, the kth user re-
ceived signal power level, data, carrier phase, and spreading
sequence vector. Nn(m) is a zero mean Gaussian random
noise vector. For simplicity of presentation, a synchronous
system is considered in this letter. Adaptive algorithms pro-
posed in this letter can easily be extended to an asynchronous
system.
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III. CONVENTIONAL ADAPTIVE
ALGORITHMS AND LIMITATIONS

The convergence rate and suitability of adaptive signal
processing algorithms are characterized by the properties of an
input data correlation matrix [S]. An input correlation matrix ©
in DS/CDMA systems, which is derived from (1), is described
by

@ - Gs + ®n (2)
where
L
0, = ng(cos(()k))szPE. 3)
k=1

In (3), the same symbols are used as in (1). The first term
on the right-hand side of (2) is the correlation matrix ©, of
the signal part of input data, and the second term is the noise
correlation matrix ©,,. The correlation matrix of an input data
vector is nearly singular, when the number of transmitters is
less than the number of chips and the noise variance is small
compared to signal power. A signal power spread is closely
related to a signal eigenvalue spread.

The least mean square (LMS) algorithm has been frequently
used in adaptive signal processing for its simplicity. However,
its convergence depends on the eigenvalue spread of an input
data correlation matrix [5]. For an interference suppression
case, the convergence of the LMS algorithm is found to
depend mainly on the signal eigenvalue spread of the input
correlation matrix ©,, which is the ratio of the maximum
nonzero eigenvalue of O, to the minimum nonzero eigenvalue.
The LMS converges slowly when one signal power is greater
than a desired signal power.

The use of the recursive least squares (RLS) algorithm
in the near-far situation, which requires a nonsingular input
correlation matrix, will result in numerical problems, because
of the near-singularity of the input data correlation matrix.
Hence, the RLS algorithm cannot be employed for interference
cancellation in DS/CDMA systems.

1IV. RAPID CONVERGING ADAPTIVE ALGORITHMS

In mobile environments, channel characteristics change
rapidly. Rapid converging adaptive algorithms are required
to track quickly varying mobile channel characteristics. In
this section, rapid converging adaptive algorithms based on
an orthogonal transformation preprocessing are presented
[6]. These algorithms consist of two parts: 1) orthogonal
transformation preprocessing which orthogonalizes input data,
and 2) desired signal estimation and updating tap weights
using orthogonalized data from part 1).
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Fig. 1. Graphical representation of an orthogonal transformation.

A. Orthogonal Transformation Preprocessing

In DS-CDMA systems, the input vector, consisting of data
received at the chip rate over one symbol period, is correlated.
This correlated input vector may be transformed to a decorre-
lated vector by an orthogonal transformation. Fig. 1 shows a
graphical representation of an orthogonal transformation based
on the Gram-Schmidt transformation [7], [8] for an input
vector of five elements. In this figure, the input vector, z,
is fed in from the top and orthogonalized on an element-by-
element basis. At the first level, transformation is applied to
the input vector such that v} is orthogonal to the elements,
U]2~ for j from two through five. Note that the superscript and
subscript denote the level of decorrelation and the position of a
vector element, respectively. The same procedure continues at
the following levels. The number of correlated vector elements
decreases by one each step of decorrelation, as one more vector
element becomes decorrelated from the rest of the vector
elements.

The correlation between the element vi and the elements
vf- for j from two through five is mostly determined by the
strongest interfering signal spreading sequence. The stronger
the strongest interfering signal is, the closer the correlation
is to the strongest interfering signal spreading sequence. The
first level decorrelation may be viewed as a subtraction of the
strongest signal from the received signal, since the portion
correlated with vi is subtracted from the received signal.
The level-by-level decorrelation is similar to a successive
interfering -signal subtraction technique described in [9] and
[10].

The signal eigenvalue spread of the correlation matrix
formed by a vector consisting of correlated elements decreases
with a level-by-level decorrelation, since strong interfering
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signals which contribute to large eigenvalue spread are sub-
tracted through a level-by-level decorrelation. An input data
vector becomes completely decorrelated after the L-1th level
of decorrelation, where L is the number of transmitters. This
will be referred to as a complete orthogonalization in this
letter. The elements of the completely decorrelated vector may
be divided into two parts: elements associated with signals
and elements associated with noise. In estimating a desired
signal, only signal vector elements are used. This requires
the identification of signal and noise vector elements. The
identification of signal and noise components may not be a
trivial task.

A need for the identification of signal and noise compo-
nents may be eliminated by using a partially, not completely,
decorrelated output vector from a partial orthogonal trans-
formation in estimating a desired signal and updating tap
weights. Rapid convergence in the LMS adaptive interference
suppression for DS/CDMA systems will be obtained using a
partial decorrelated output vector, as long as strong interfering
signals are decorrelated. In the determination of an optimal
partial decorrelation. level, a priori knowledge of a desired
signal power level and/or an information-theoretical criteria,
proposed by Akaike to estimate the order of a model for a
stochastic process [11], may be used.

It is worth noting that the orthogonal transformation de-
scribed in this section is similar to an orthogonal technique
used in adaptive lattice filtering [5] and transform domain
adaptive filtering such as frequency domain adaptive filtering
[12]. However, there are some differences. In lattice filtering,
the orthogonalization is serially applied to one input data
element at a time, not a vector, through time and order updates.
In transform domain processing, a complete orthogonalization,
not partial, has been utilized.
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TABLE I
SIMULATION PARAMETERS
Ratio of
Interfering Signal | maximum minimum | eigenvalue
Powerto Desired | eigenvalue | eigenvalue spread
Power
10 71.88 4.00 17.97
225 1576.72 4.00 394.18
1000 7001.72 4,00 1750.43

B. Adaptive Desired Signal Estimation and Tap Update

With a complete orthogonalization preprocessing, both the
LMS and RLS algorithms may be used in estimating a
desired signal using only decorrelated vector signal elements.
In estimating a desired signal with partially orthogonalized
data which consist of both decorrelated and correlated vector
elements, the LMS algorithm, not the RLS, has to be used.
This is because of the near-singularity of the correlation
matrix formed by partially decorrelated data. In using the
LMS algorithm, step sizes optimized for each element may be
used for decorrelated vector elements to improve convergence,
whereas the same step size has to be used for correlated vector
elements.

V. EXPERIMENTAL RESULTS

Convergence of adaptive algorithms for interference sup-
pression is investigated in this section by means of computer
simulations. Ensemble-averaged learning curves are generated
by averaging 100 independent simulation runs. In the sim-
ulations, five synchronous transmitters, one of which is a
desired transmitter, are assumed to be present in additive white
Gaussian noise (AWGN) channels. The five transmitters are
assigned to unique Gold spreading sequences with period 7.

A. Convergence of Adaptive Algorithms Based
on Complete Orthogonalization

Convergence of rapid algorithms based on a complete
orthogonal preprocessing is investigated under three different
conditions which are summarized in Table I.

Received power from one of the interfering transmitters
is varied to simulate different eigenvalue spread conditions,
while received signal levels from four other transmitters in-
cluding a desired transmitter are assumed to be equal. The
AWGN power is set to 30 dB lower than the desired signal
power. Fig. 2 shows three ensemble-averaged learning curves
of the conventional LMS algorithms without an orthogonaliza-
tion. These learning curves are associated with three different
eigenvalue spreads: 17.97, 394.18, and 1750.43. In these
simulations, a step size, which is used in updating tap weights,
is set to one quarter of the inverse of the maximum eigenvalue
for each simulation condition. Fig. 2 confirms that an increase
in eigenvalue spread slows down the rate of convergence.

The results of simulations using the LMS updating equations
with an orthogonal transformation preprocessing are shown in
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Fig. 2. Learning curves of the conventional LMS algorithm for eigenvalues
spreads: 17.97, 394.18, and 1750.43.
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Fig. 3. Leaming curves of the LMS algorithm with an complete orthogonal-
ization for eigenvalues spreads: 17.97, 394.18, and 1750.43.

Fig. 3. In the simulations, the number of signals is assumed
to be known, and step sizes are individually set to one
quarter of the inverse of the power levels of the signal vector
elements after an orthogonalization. A comparison of Figs. 2
and 3 indicates that the use of optimal step sizes for each
vector element after an orthogonal transformation significantly
speeds up the convergence rate. The overlapped learning
curves in Fig. 3 for different eigenvalue spread cases confirm
that the rate of convergence of the LMS algorithm with an
orthogonalization does not depend on the eigenvalue spread.

B. Convergence of Adaptive Algorithms Based
on Partial Orthogonalization

Various level decorrelated data from a partial decorrelation
are employed in estimating a desired signal and updating
coefficients to investigate decorrelation level effects on conver-
gence. In the simulations, five synchronous transmitters, one of
which is a desired transmitter, are assumed to be present. The
ratios of four interfering signal powers to the desired signal
power are 1000, 10, 1, and 1. The AWGN power is set to 30
dB lower than the desired signal power.

A step size for decorrelated elements, used in LMS tap
updating equations, is optimized for each element and set to
one quarter of the inverse of the power of each element. For
correlated elements, a step size is set to one quarter of the
inverse of the maximum eigenvalue of the correlation matrix
of correlated elements. Fig. 4 shows five learning curves of
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Fig. 4. Learning curves of the LMS algorithm with a partial orthogonaliza-
tion, Interfering signals power wrt. desired: 30 dB, 10 dB, 0 dB, 0 dB.

the LMS algorithm with different levels of decorrelation.
The LMS with a level-one decorrelation, where most of the
strongest interfering signal are decorrelated, converges much
faster than the LMS without any decorrelation. The LMS with
level-two and level-three decorrelation performs as well as
the LMS with a complete decorrelation. The reason is that the
eigenvalue spread of the correlation matrix after level-two and
level-three decorrelations is close to one.

V1. CONCLUSION

In this letter, we have presented rapid converging adaptive
equalization algorithms based on both complete and partial
orthogonal transformations for interference suppression, after
showing a convergence problem with the LMS algorithm and
a near-singularity problem with the RLS algorithm. The use
of a partial orthogonalization eliminates the need for signal

1085

and noise identifications after an orthogonalization. Simula-
tion results confirmed that the proposed algorithms with an
orthogonalization converge much faster than the conventional
LMS algorithm without an orthogonalization. The LMS with
a partial orthogonalization was found to converge as fast as
the LMS with a complete orthogonalization as long as strong
interfering signals are decorrelated. ’
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