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Parallel Implementation of the Extended Square-Root
Covariance Filter for Tracking Applications

Edward K. B. Lee, Member, IEEE, and Simon Haykin, Fellow, IEEE

Abstract— Parallel implementations of the extended square-
root covariance filter (ESRCF) for tracking applications are
developed in this paper. The decoupling technique and special
properties in the tracking Kalman filter (KF) are explored to
reduce computational requirements and to increase parallelism.
The application of the decoupling technique to the ESRCF results
in the time and measurement updates of m decoupled (n/m)-
dimensional matrices instead of 1 coupled n-dimensional matrix,
where m denotes the tracking dimension and n denotes the
number of state elements. The updates of m decoupled matrices
are found to require approximately m times less processing
elements and clock cycles than the updates of 1 coupled matrix.
The transformation of the Kalman gain which accounts for the
decoupling technique is found straightforward to implement. The
sparse nature of the measurement matrix and the sparse, band
nature of the transition matrix are explored to simplify matrix
multiplications.

Index Terms—Decoupling technique, extended square-root co-
variance filter, Kalman filter, parallel implementation, systolic
array, tracking KF properties, VLSI.

[. INTRODUCTION

HE Kalman filter (KF) has been widely used in sig-
Tnal processing applications such as adaptive control, air
and ship navigation, and target tracking. However, its high
computational demand has limited its use to some extent. Nev-
ertheless, due to the growing availability and cost effectiveness
of VLSI technology, the use of the Kalman filter is becoming
increasingly attractive. There have been a number of papers
on the topic of parallel implementation of the KF ({3], [4], [6],
(8], [91, [13], [16], [18], [19], [22], [24]). Most of these papers
have focused on the implementation of cither the standard KF
or the extended covariance KF (ECKF), but not the extended
square-root covariance filter (ESRCF), except for [3], [8], and
[16].

Of the three papers discussing implementations of the ES-
RCF, [8] does not discuss the implementation of the nonlinear
coordinate transformation from polar to Cartesian coordinates,
or the linearization of the measurement matrix. References
[3] and [16] present techniques for mapping the ESRCF onto
linear arrays of programmable cells. These linear arrays are
general-purpose architectures which are not specialized for the
ESRCF. A general-purpose architecture is more flexible than
a special-purpose architecture, but for a particular application,
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the former is not as efficient as the latter. In this paper, we
develop parallel architectures specialized for the ESRCF for
tracking applications.

The extended Kalman filter (EKF) is usually required in
tracking systems to deal with a nonlinear coordinate transfor-
mation. This occurs when tracking is performed in Cartesian
coordinates and measurements are made in polar coordinates
in terms of range, azimuth angle, and elevation angle. The ES-
RCF has better numerical properties than the ECKF. However,
the ESRCF requires more computation than the ECKF.

In the development of parallel architectures, a decoupling
technique is used to reduce computational requirements and to
increase parallelism ([2}, [7], [20]). The use of the decoupling
technique results in the propagation of m decoupled (n/m)-
dimensional covariance matrices instead of 1 coupled n-
dimensional covariance matrix, where m denotes the tracking
dimension and n denotes the number of state elements. Fur-
thermore, we exploit properties of the tracking KF to simplify
its implementation.

In Section II, we review the standard square-root covariance
filter, followed by the extended square-root covarince filter
for tracking applications. In Section III, we develop a sim-
plification of the extended square-root covariance filter using
a decoupling technique and special properties of the tracking
KF. In Section IV, we present parallel architectures for the
extended square-root covariance filter. Finally, we present
conclusions in Section V.

II. THE SQUARE-ROOT COVARIANCE FILTER

A. The Standard Square-Root Covariance Filter

The square-root covariance filter is a recursive linear state
estimator, based on the a priori representation of system
dynamics and measurement equations ([1], [12], [14]). The
system dynamics and measurement equations are:

a) System dynamics equation:
X(k+1) = ¢(k) X (k) + D(k) M
b) Measurement equation:

Z(k) = H(k)X (k) + E(k). @

The system dynamics noise D(k) and the measurement noise
E(k) are assumed to be zero mean, white Gaussian random
sequences. Covariance matrices of D(k) and E(k) are defined
by E[D(k)DT(i)] = Q(k)ék; and E[E(k)ET(i)] = R(k)bxi,
respectively, where E, T, and 6; denote the expectation
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operator, transpose operation, and the Kronecker delta, respec-
tively. The square-root covariance filter (SRCF) is summarized
below ([5], [15]):

Measurement update

[F(k) G(k) ] p [ VT(k) 0
0 ST(k) H ST (klk — YHT(K) ST (k|k —1)
©)]
K(k) = GT(k)(FT (k)™ @

X (k) = X(klk — 1) + K(k)(Z(k) — H(k)X (k|k — 1))

©®)
Time update
T T T
eV @
X(k +1|k) = (k)X (k) ™)
where (); denotes an orthogonal matrix that upper-
triangularizes a matrix on the right hand side and
X(k) = state estimate vector
X (k|k — 1) = predicted state vector
K (k) = gain matrix
Z(k) = measurement vector
H(k) = measurement matrix
¢(k) = transition matrix
Q(k) = system dynamics noise covariance matrix
= E[D(k)D (k)]
R(k) = measurement noise covariance matrix
= E[E(k)ET (k)]
P(k) = filtered state estimate error covariance matrix
P(k|k — 1) = predicted state estimate error covariance
matrix
U(k) = lower triangular matrix that is the square root of
Q(k)
V (k) = lower triangular matrix that is the square root of
R(k)
S(k) = lower triangular matrix that is the square root of
P(k)
S(k|k — 1) = lower triangular matrix that is the square root
of P(k|k —1)

B. The Extended Square-Root Covariance Filter

The standard square-root covariance filter, described in
Section II-A, assumes a linear measurement equation. How-
ever, the measurement equation for tracking applications is
generally nonlinear. A typical tracking radar measures range
r and azimuth angle #,4 in two-dimensional tracking, and
range 7, azimuth angle 64 and elevation angle 6 in three-
dimensional tracking. Specifically, the measurement vector
Z(k) for three-dimensional tracking is given by

Z(k) = [r(k) 6a(k) Ou(k)].

Since the motion of a target is linear in Cartesian coordi-
nates, the state vector for typical three-dimensional tracking is
defined in Cartesian coordinates as follows:

X(k) = [z(k) y(k) 2(k) &(k) g(k) 2(k) $(k) (k) Z(R)]"

where z(k), £(k), and Z(k) denote position, velocity, and
acceleration of the target in the Cartesian coordinate z, re-
spectively. The other elements in the state vector X (k) are
similarly defined in the Cartesian coordinates y and z. The
nonlinear relationship between the state vector X (k) and the

measurement vector Z(k) is expressed by
Z(k) = h(X (k) + E(k) ®

where the three components of k(X (k)) for three-dimensional
tracking are

r(k) = ((z(k))® + (y(k) + (2(k))*)"/? ®
8a(k) = tan™" (y(k)/=(k)) (10)
O(k) = tan~" (2(k)/o(k)" + y(k)")"/?). (1)

To account for the nonlinear relationship between the state
vector X (k) and the measurement vector Z(k), the idea of an
extended SRCF involving the linearization of h(.) has been
proposed ([1], [12]). In this filter, the linearization of h(.)
described by the equation
Oh(u)

Hk) = ou

u=X(k|k—1)

is performed at every filtering instant. For three-dimensional
tracking, the linearization of h(.) results in

H(k) =
E ¢ Z 000000
) cam) 0 00O0O0O0TO
2 2 :
r2(x2—f:9)‘/2 T2(,_.2—_f;2)1/2 :z:;y 00 0O0O0O

where z, y, and z denote the elements &(k|k — 1), §i(k|k — 1),
and 2(k|k — 1) of the predicted state vector X (k|k — 1),
respectively, and r denotes (2(k|k — 1)2 + §(k|k — 1)% +
2(k|k — 1)?)Y/2 for simplicity.

In addition to the linearization of h(.), a coordinate trans-
formation of X (k|k — 1) is required in the ESRCF to compare
the predicted state estimates in Cartesian coordinates and
measurements in polar coordinates.

III. SIMPLIFICATION OF THE KALMAN FILTER

A. Simplification by the Decoupling Technique

The extended square-root covariance filter requires at each
filtering instant a rumber of matrix multiplications, two or-
thogonal upper-triangularizations, a coordinate transformation,
and linearization of the measurement equation. Computation
can be reduced significantly by updating the square-root S(k)
of the state estimate error covariance matrix P(k) in a decou-
pled system and evaluating the state estimate and predicted
state estimate vectors in a coupled system ([2], [7], [20]). In a
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line of sight (LOS) Cartesian frame with the LOS as the z-axis,
the covariance matrix P, (k) is decoupled and can be updated
separately for each axis if the LOS frame does not rotate very
much [20]. Fortunately, this condition is met in many radar
tracking applications. It was found in [7] that the decoupling
technique reduces the effects of truncation and round-off errors
due to finite arithmetic. In this paper, the subscript o indicates
the LOS frame.

The relationship between the polar coordinates (r,84,0g)
and the reference Cartesian coordinates (z,y,z) for three-
dimensional tracking is described by

T =rcosf4cosfg (12)
y=rsinf4 cosfbg (13)
z=rsinfg 14

where 7, 64, and 6 denote range, azimuth angle, and el-
evation angle of a target, respectively. Based on (12), (13),
and (14), the estimation errors in the reference Cartesian
coordinates are expressed in terms of the estimation errors
in the polar coordinates as follows:

cosfscoslp —rsinfacosfg —rcosfasinfg

= |sinfycos0g rcosfycosfp —rsinf,sinfg
sinfg 0 rcosfg
oy
Oa, 15)
09

where 0;, 0y, and o, denote the estimation errors in the
reference Cartesian coordinates z, y, and z, respectively.
Similarly, o,, gg,, and oy ¢ denote the estimation errors in
the polar coordinates r, 84 and 0, respectively.

Using (15) and the relationships a¢_, = Or, 00—y =
106, and oo, = 04, (Where 69—z, 09—y, and oo_, are
estimation errors in the LOS Cartesian z, y, and z-axes) the
estimation errors in the reference Cartesian coordinates may
be expressed in terms of the estimation errors in the LOS
Cartesian coordinates as follows:

Og 00—z
oy | = F1| ooy (16)
O (o
where
cosfycosfp —sinfacosfg —coshysinfp
Fi(k)=|sinf4cosfr cosb4cosfp —sinfsinfg
SiIlaE 0 COSOE
17)

Since the state estimate vector X (k) and predicted state vector
X (k + 1|k) are usually expressed in the reference Cartesian
frame, the Kalman gain matrix for the reference Cartesian
frame K (k) is needed. It can be evaluated from the Kalman
gain matrix for the LOS Cartesian frame K, (k), using (16),
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as shown below:

Fi(k) 0 0
Kk)=| 0 Fk) 0 |K(k). (18)
0 0 Fi(k)

The simplified extended square-root covariance filter has the
update of the decoupled covariance matrices in the LOS frame
So(k)’s, and the transformation of the Kalman gain matrix
from the LOS to reference Cartesian frames. The simplified
ESRCEF is referred to as the decoupled ESRCF, and it is
summarized as follows:

1) So(k),S.(k+1|k), and K,(k) are processed in the LOS

frame:
[Sf(klk—l)]_ [sz(k—l) #T(k = 1)
0 - Ql

UT (k) J (19)

[Fa(m Go<k>]

0 STk

_ VI (k) 0
“Q‘[sﬂkw—lw&”w) soT(klk—n] (20)

Ko(k) = GZ (k)(FS (k). @y

The matrix Q; denotes an orthogonal matrix that upper-
triangularizes a matrix on its righthand side.
2) K(k) is calculated from K,(k) using the Jacobian

transformation:
FrF 0 0
Kky=|10 F 0 K, (k) (22)
0 0 K

where Fy is defined in (17) for three-dimensional track-
ing system.

3) X(k) and X(k + 1|k) are processed in the reference
Cartesian coordinates frame:

X (k) = X(klk — 1) + K(k)(Z(k) — h(X (k]k ~ 1)))
(23)

X (klk + 1) = ¢(k)X (k). (24)

In the decoupled ESRCF, m decoupled (n/m)-dimensional
So(k)’s are updated separately for each axis, instead of one
coupled n-dimensional S(k) for all axes, where n is the
number of state elements and m is the tracking dimension. It is
assumed that n is a multiple of m. Fortunately, this assumption
is generally valid for typical tracking applications. For a typical
three-dimensional tracking, n and m are 9 and 3, respectively.

The number of required operations for the update of m de-
coupled square-roots, S, (k)’s is less than that for the update of
1 coupled S(k) by a factor of between m? and m. The reason
for this reduction factor is that the required orthogonalization
for the update of S, (k) is a combination of an order of n® and
n? operations. The decoupling technique reduces an order of
n® operations by a factor of m2, and an order of n2 operations
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by a factor of m. The update of m decoupled covariance
matrices for each axis can be propagated simultaneously; the
decoupling technique thus increases parallelism.

B. Simplification by the Use of Special Properties of the
Tracking KF

A typical transition matrix ¢(k) that relates the state vectors
X (k) and X (k + 1) is a sparse, band matrix [21], as shown
below:

1 TI 0
¢=10 I I 25)
0 0 pl

where I is a (3 x 3) identity matrix, 7' and pI are (3 x 3)
identiy matrices multiplied by constants T and p, respectively.
T is the sampling period and p is a correlation coefficient
for acceleration. The correlation coefficient for acceleration p
is used to specify the acceleration characteristics of a target.
The transition matrix may be separated for each Cartesian
coordinate in the LOS frame, as follows:

1 T 0
¢o—z = ¢o—y = d’o—z =10 1 1 (26)
0 0 p

where the subscripts 0 — z, 0 — y, and o — z denote axes in
the LOS frame. In this paper, when an axis is not needed to
be specified, ¢, is used in place of ¢,— ., Po_y, and ¢,_,.
The sparse, band matrix properties of ¢,(k) can be uti-
lized to simplify matrix multiplication. The multiplication of
ST (k) and ¢__ (k) for z-axis in (19) is expanded below:

S11 8921 831 1 00
ST(k)gT(k)y=| 0 522 s32{|T 1 0
0 0 833 0 1 p

s11+Ts21 S21+ 5831 psar

= Tsz 522+ 832 psa2

0 833 pS33

This expansion indicates that a column of the output matrix
is a linear combination of two columns of ST (k). This
band matrix multiplication requires 2 * m? multiplications
and m? additions, where m is the dimension of the matrix.
This requirement is an order of magnitude less than the
conventional requirement of a matrix-matrix multiplication,
which is m® multiplications and m?(m — 1) additions. In
addition to the reduction in computational requirements, the
use of the sparse, band matrix properties of ¢,(k) simplifies
implementation, as described in Section IV.

In the LOS frame, the measurement matrix H (k) becomes
a sparse matrix, as shown below:

1 0 0 00 0 0 O00O0
Hyky=|0 »~1 0 0000 0 0| @7
0 0 1 0000O0O0OTO
where r denotes the target range. The matrix H,(k) can be

divided for each axis, as follows:

H,_.=[1 0 0] (28)

H, ,=[r!
H, ,=[r!

0 0] (29)
0 0] (30)

The sparse nature of the measurement matrix H,(k) for the
LOS frame could be utilized to further simplify the ESRCF
equations. In the multiplication of ST (k|k — 1) and HZ (k)
in (20), the use of the sparse nature of the measurement
matrix Hg_,(k) for the z-axis turns the multiplication of
ST_.(k|k — 1) and HI _(k) into the extraction of the first
column vector from S7__(k|k — 1). The multiplication of
ST _(k|lk — 1) and HI _(k) therefore does not require any
multiplication or addition. Similarly, the multiplication of
ST ,(klk —1) and HL_ (k), and that of ST, (k|k — 1) and
HT (k) are simplified.

The fact that the product of ST (k|k — 1) and HZ (k) for
each axis has only one nonzero element may be used to
simplify the orthogonal upper triangularization needed for the
measurement update in (20). The orthogonal triangularization
for the measurement update for the z-axis is expressed in detail
below:

fu gu g2 913 o O 0 0
0 s11 821 831 | _ 0 s;1 811 S:m S;
0 0 832 s32| o 0 s5 832
0 0 0 s33 0 0 0 s5p

This equation shows that only one element s;;, which is
the first element on the second row, is to be nullified in this
orthogonalization. Similarly, only one element needs to be
nullified in the orthogonal triangularizations for measurement
updates for the y- and z-axes. It is shown in Section IV that
the utilization of the requirement of only one element to be
nullified simplifies the implementation of (20).

IV. PARALLEL IMPLEMENTATION OF THE EXTENDED SRCF

In this section, we present parallel architectures for the
decoupled extended square-root covariance filter for tracking
applications, described in (19) to (24). In Section III, these
equations were broken down into 3 parts by the decoupling
technique. Correspondingly, the architecture for the decoupled
ESRCF may be split into 3 parts in the following way:

1) The processor for the LOS coordinates computes

So(klk — 1), S, (k) and K, (k) [(19), (20), and (21)]

2) The processor for the coordinate transformation com-
putes K (k) from K,(k) by using the Jacobian transfor-
mation [(22)]

3) The processor for the reference Cartesian coordinates
computes X (k) and X (k + 1|k) [(23) and (24)]

The processor for the LOS frame, that for the coordinate
transformation of K,(k), and that for the reference Carte-
sian coordinates will be hereafter referred to as Processor 1,
Processor 2, and Processor 3, respectively. Fig. 1 shows a
block digram of the tracking KF implementation. Processor
1 that implements (19), (20), and (21) needs to perform two
QR-decompositions and one division of a vector by a scalar
number. The QR-decomposition may be performed by using
various algorithms such as Gram-Schmidt orthogonalization,
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Fig. 1.

Householder transformation, and Givens rotation [11]. Givens
rotation using a QR systolic array [10] is chosen for an imple-
mentation of the QR-decomposition, because the QR systolic
array has desirable characteristics for a parallel architecture
such as modularity, regularity, local interconnection, and a
high degree of pipelining and parallelism.

The two QR-decompositions can be implemented using one
or two QR systolic arrays. However, sharing one systolic array
for two QR-decompositions is difficult, because the delay ele-
ments and multipliers necessary for (19) have to be somehow
bypassed in calculating (20). Hence, an architecture based on
two QR systolic arrays is chosen for the implementation of
the ESRCF.

A triangular systolic array for the QR-decomposition, de-
scribed in [10], assumes that an input matrix to be triangu-
larized by orthogonalization enters a systolic array from the
top row to the bottom row. We find that this systolic array
can be easily modified to allow an input matrix to enter the
systolic array in reverse order, that is, from the bottom row
to the top row. The use of these two different systolic arrays
for the implementation of Processor 1 results in two different
architectures: one with a unidirectional bus, and the other with
a bidirectional bus.

An architecture for Processor 1, based on a unidirectional
bus, requires longer interconnection than an architecture with
a bidirectional bus. However, the unidirectional bus is usually
easier to control than the bidirectional bus. It should be noted
that an architecture based on a unidirectional bus requires
a unidirectional interconnection among processing elements,
and vice versa for an architecture based on a bidirectional
bus. Hereafter, we will call a processor with a bidirectional
bus Processor 1A, and a processor with a unidirectional bus
Processor 1B. C

In this section, for convenience of presentation, we assume
that the number of tracking dimension, m, is 3 and that the
number of state elements, n, is 9.

A. Processor 1A for the LOS Coordinates

The proposed architecture for Processor 1A is shown in Fig.
2. We use a systolic array on the top for (20), and one at the
bottom for (19) in Fig. 2.

Block diagram of the ESRCF.

D
e

Fig. 2. Implementation of Processor 1A for the LOS frame.

The implementation of (20) for the z-axis and the cor-
responding input matrix flow are shown in Fig. 3. This
implementation is based on a QR systolic array with 10
processing elements and the input data matrix entering the
systolic array bottom row first in a skewed manner. Note that
in the input data stream, nonzero elements are preceded by a
number of zero elements, corresponding to the zero elements
at the bottom left side of the input matrix. We may eliminate
the first two rows of zeros in the input data stream by making
internal cells generate 0 and 1 for cos 6 and sin 6, respectively,
right before the input matrix enters the systolic array. This
ensures that the elements s;, and s;; would be treated as if
the two rows of zeros were not eliminated.

If we assume that at the end of the calculation of (19) the
matrix S,(k|k — 1) is stored in the systolic array for (19), then
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0
Fig. 3. Implementation of (20).

the data flow, shown in Fig. 3, can be realized by connecting
two systolic arrays for (19) and (20), as shown in Fig. 2.
The implementation of (20) requires 7 clock cycles from the
completion of (19) to the completion of the QR-decomposition.

Since the result of (20) is stored in the systolic array at
the end of the calculation of (20), we find that (21) may be
performed by reading out G¥ (k) and FT (k) from the systolic
array and dividing GT (k) by FZ (k). This process, which
requires 3 dividers, is shown in Fig. 4.

We now consider an implementation of (19). It consists of
a matrix-matrix multiplication of S7 (k) and ¢ (k), followed
by the QR-decomposition. A matrix-matrix multiplication can
be performed in various ways [17]. We exploit the sparse,
band matrix property of ¢7 (k) to simplify the multiplication
of ST(k) and ¢Z (k). In particular, each column of the
multiplication result is a linear combination of two columns
of ST (k). Hence, the multiplication of ST (k) and ¢7 (k) is
implemented by multiplying S (k), which is stored in the
systolic array at the end of (20), by #7(k), as shown in
Fig. 5(a). In Fig. 5(a), the QR systolic array is connected
to three delay elements represented by dotted squares, and
three multipliers represented by circles with a cross inside.
The delay elements synchronize the elements of ST (k) for a
matrix-matrix multiplication. The functionality of a multiplier
is presented in Fig. 5(b). This implementation requires an order
of n multipliers and clock cycles, where n denotes the number
of state elements in the state vector X (k).

The proposed implementation in Fig. 5 using the sparse,
band matrix property of ¢,(k) is much more efficient than the
conventional implementation for two reasons: 1) It does not
require to read any matrix to be multiplied into the systolic

1”2 13

Fig. 4.

Calculation of R ,(k), (21).

LJ

g

(a)
inl .
inl
LD
out=a*ini+b*in2
out

(®)

Fig. 5. Multiplication of S7 and ¢! . (a) Structure. (b) Function of a cell.

array. 2) It takes only an order of n multipliers, compared to an
order of n? multipliers for the conventional implementation.

After the multiplication of S7 (k) and ¢7(k), the QR-
decomposition is performed on a matrix shown in detail
below:

b1 ba1  ba
b b b
ST k T k 12 22 32
UT U1 U221 U3
° 0 uze u3
0 0 Uu33

where the elements of ST (k)¢T (k) are denoted by b;;’s.
Typically, for the QR-decomposition of a matrix, all the
elements in the input matrix have to be fed into a systolic
array. However, we can use the upper triangular shape of
UT (k) to eliminate feeding UZ (k) into the systolic array.
An upper triangular matrix does not change, when the QR-
decomposition is applied to it. Hence, after preloading U7 (k)
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[
o

b

Fig. 6. Implementation of (19).

at the beginning of filtering, we need to feed only the product
of ST(k) and ¢T(k), as shown in Fig. 6. It reduces the
computational time by three clock cycles. Note that UT (k)
is assumed constant, which is usually valid in typical tracking
environments. This QR-decomposition requires 6 processing
elements. The computation of (19) requires 8 clock cycles.

At the end of the calculation of (19), ST (k + 1|k) is stored
in the systolic array, as assumed earlier in describing the
implementation of (20).

B. Processor 1B for the LOS Coordinates

The proposed architecture for Processor 1B is shown in Fig,
7. We use a systolic array on the top of Fig. 7 for (20), and
one at the bottom for (19).

The implementation of (20) is first considered. Fig. 8
shows an implementation of (20) with the flow of an input
data matrix. This implementation, consisting of 10 processing
elements, shows that in contrast to the implementation in Fig.
3, the elimination of any row of the input matrix from the input
data stream is impossible, because of the reversed direction of
the input data flow. With the assumption that the systolic array
for (19) stores S,(k + 1|k) at the end of (19), the required
data flow, illustrated in Fig. 8, is realized when systolic arrays
for (19) and (20) are connected through 6 delay elements, as
shown in Fig. 7. Equation (20) requires 10 clock cycles to
compute.

As in Processor 1A, (21), the calculation of the Kalman
gain K,(k) can be performed by reading out F,(k) and G, (k)
stored in the systolic array for (20) at the end of the calculation
of (20), and dividing G,(k) by F,(k). Its implementation,
which consists of 3 dividers, is illustrated in Fig. 7.

We now consider the implementation of (19). This equation
has two parts: a matrix-matrix multiplication, and the QR-
decomposition. The matrix-matrix multiplication in (19) can
be performed by combining two columns of ST (k) for each
column of the output matrix, as described in Section IV-A.
This implementation requires three arithmetic units, whose
function is described in Fig. 5(b), but it does not require any

FZ g,él

¥ —1—e

&

Fig. 7. Implementation of Processor 1B for the LOS frame.

Gy
.
(o] S,
0 (o) S
0 S Sy
(o] Ss
S
Fig. 8. [Implementation of (20).

delay element in contrast to the implementation in Fig. 5(a).
The zero elements in ST(k), not stored in the systolic array,
but needed in multiplying ST (k) and ¢7 (k), may be generated
by the boundary cells after the content of the boundary cells
is passed out.
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Fig. 9 shows an implementation of the second phase of (19),
the QR-decomposition. In Fig. 9, the product of S7 (k) and
#7 (k), represented by the b;;s, enters the systolic array before
UZ(k), because the systolic array is designed to receive first
the bottom row of an input matrix to be triangularized. This
means that U7 (k) has to go through the QR-decomposition
after the product of ST (k) and ¢7 (k) goes through, and that
UZ(k) cannot be prestored in the systolic array for (19).
However, UX (k) can be prestored in the systolic array for
(20), and be fetched after ST (k) is read from the systolic
array. The complete implementation of (19) requires 10 clock
cycles. Note that ST (k + 1|k) is stored in the systolic array
at the end of (19). The assumption made earlier in describing
the implementation of (20) is validated.

C. Processor for the Coordinate Transformation of the
Kalman Gain

Equation (22) transforms the gain matrix from the LOS
frame to the reference Cartesian coordinates frame. Equation
(22) for two-dimensional tracking is expanded below:

kzr kaA
k?ﬂ kyf’A
kir  kye
KE= ki o,
ki kyo,
kgr ko,
Fl I 0 I 0 ko—mr 0
RO R 0 ko—yo,
o I A 0||kes O
I I | ... 0 k,,_ygA
0 | 0 | Fi|]|ko-sr 0
I I 0 ko—fl'9A
cosfa —sind
Fi(k) = [ sin 92 cos GAA

where k., denotes an element of K (k) that relates r(k)
element in the measurement vector Z(k) to the z(k) element
in the state vector X (k). Similarly, k,_,, denotes an element
of K, (k) that relates 7(k) element in the measurement vector
Z(k) to the z,(k) element in X,(k). The other elements in
K(k) and K,(k) are similarly defined. Note that elements
in K,(k) that are always zero are indicated by zeros in
corresponding positions.

This expanded form indicates that each component of the
Kalman gain matrix K(k) is a product of a component
of matrix K,(k) and a component of matrix Fj(k). The
implementation of (22) is shown in Fig 10; it requires
12 multipliers to multiply a component of K,(k) and the
corresponding component of F(k). This is a small price to
pay for the reduction in computational requirement realized by
the use of decoupling. The use of the decoupling technique is
found in Section III to reduce the computational requirements
of the update of S(k) by a factor of between m? and m,
where m is the tracking dimension.

The implementation in Fig. 10 generates all the gain matrix
elements at the same time. It may be modified to produce
the gain matrix elements in a pipelining manner. However,
a pipeline implementation requires more computational time

U,
U,

Y YU,

Y, by,
u, b, b,
b, b, b,

”
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Fig. 9. QR decomposition for (19).
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Fig. 10. Transformation of the Kalman gain in a broadcasting manner, (22).

and delay elements to synchronize incoming data at processing
elements than a broadcasting implementation, even though the
data bus in the former implementation is simpler than that in
the latter implementation.
D. Processor for the Reference Cartesian Coordinates
Equation (23) that estimates the state vector may be sepa-

rated into the following three parts:

a) Z(klk—1) = h(X(klk —1))

b) AZ=Z(k)- Z(klk—1)

¢) X(k)=X(klk—1)+ K(k) AZ.
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The first part a) is a coordinate transformation of X (k|k—1),
which may be implemented using the Coordinate Rotation
Digital Computer (CORDIC) [23]. The CORDIC is described
in Section IV-E. The second part b) calculates the correction
vector AZ. It requires 2 adders for two-dimensional tracking,
and 3 adders for three-dimensional tracking. The third part
c) of (23) for two-dimensional tracking may be expanded as
follows:

X(k)=X(klk-1)+ K(k)AZ
z(k) z(klk — 1) ker ko
(k) z(klk - 1) ki kio
= + Ar + A6
y(k) y(k}k -1) Eyr kye
y(k) y(klk - 1) Kyr ko
y(k) y(klk - 1) kg ko
where Z is defined as follows:
[Ar] correction factdr in range
AZ = =
A correction factor in azimuth angle

The expansion shows that the state estimate vector X (k)isa
sum of the state prediction vector X (k|k — 1), the first column
vector of K (k) scaled by Ar, and the second column vector
of K (k) scaled by A#.

Fig. 11 shows a broadcast implementation of part c) of (23)
for 2-dimensional tracking. The architecture in Fig. 11 consists
of two columns of six multipliers and one column of process-
ing elements. In this architecture, Ar, A, and the elements
of K (k) from Processor for the coordinate transformation of
the Kalman gain are broadcasted to necessary multipliers. Six
multipliers on the left implement the multiplication of the first
column of K (k) by the broadcasted r, while six multipliers on
the right implement the multiplication of the second column
of K(k) by Af. Six processing elements in the middle add
3 following vectors: 1) the result of left hand column of
multipliers, 2) the result of right hand column of multipliers,
and (3) the prestored vector X (k|k — 1). The implementation
of part ¢) of (23) requires 2 clock cycles.

Equation (24), predicting the state vector, requires a matrix-
vector multiplication. The implementation of (24) may be
simplified using the property of the sparse, band transition
matrix ¢(k) in the same way as in the implementation of (19).
In Fig. 11, processing elements for (23) are interconnected.
This interconnection is used to move the elements of X (k) for
the calculation of X (k + 1|k) in (24). These interconnected
processing elements alternatively store elements of the state
vector X (k) and those of the predicted state vector X (k+1|k),
and perform additions and multiplications for (23) and (24).
The implementation of (24) in Fig. 11 requires 2 clock
cycles. This requirement is very small compared to that of the
conventional implementation of a matrix-vector multiplication.
The conventional implementation requires an order of n clock
cycles on a systolic array of an order of n processing elements,
where n is the dimension of the array. Hence, the use of the
sparse, band property of ¢(k) reduces the computational time
requirement of a matrix-vector multiplication by an order of
magnitude.
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Fig. 12. Coordinate digital computer (CORDIC). (a) CORDIC for the eval-
uation of trigonometric functions. (b) CORDIC for the two-dimensional coor-
dinate transformation. (c) Series of two CORDIC’s for the three-dimensional
coordinate transformation.

E. Coordinate Rotation Digital Computer (CORDIC)

Equation (22) requires the evaluation of trigonometric func-
tions and (23) requires a coordinate transformation from Carte-
sian to polar coordinates. Volder [23] proposed the coordinate
rotation digital computer (CORDIC), which is suitable for two-
dimensional coordinate transformation and the evaluation of
trigonometric functions. These transformations are shown in
Fig. 12(a) and (b). It is found that Volder’s scheme can be
extended to three-dimensional coordinate transformation by
placing two CORDIC’s in series and a scaler between the
CORDIC’s, as shown in Fig. 12(c).

F. Requirements of Hardware and Computational Time

We first examine the hardware and computational time
requirements of the QR-decomposition, which is a major part
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TABLE 1
HARDWARE REQUIREMENTS FOR THE ESRCF (USING PROCESSOR
1A) FOR m-DIMENSIONAL TRACKING WITH n STATE ELEMENTS

TABLE 11
HARDWARE REQUIREMENTS FOR THE ESRCF (USING PROCESSOR
1B) FOR m-DIMENSIONAL TRACKING WITH n STATE ELEMENTS

Eq. number 19,20,21 22 23,24 Total Eq. number 19,20,21 22 23,24 Total
PE. n? 2 0 n°3 PE. n° on 0 LS

a +2n+m n E +3n+m E n+m n i n
Mulf n nm+4 nm-3 2nm+n+1 Mul’.* n nm+4 nm-3 2nmn+1
Div. n+m-1 0 0 n+m-1 Div. n+m-1 0 0 n+m-1
Add. 0 0 m m Add. 0 0 m m
Cordic 0 m-1 m-1 2m-2 Cordic 0 m-1 m-1 2m-2
Mux. m 0 0 m Mux. m 0 0 m

2 2 2 2

Delay. n 0 0 n Delay. n“ n 0 0 n“.n

m n m *2 n Y3

* For 2-dimensional tracking, Eqation (22), and Equations (23) and (24)
both require nm multipliers; the total number of required multipliers is
2nm-+n.

of (19) and (20). The QR-decomposition of the (n X n)
matrix S(k) in the coupled ESRCF requires n(n + 1)/2
processing elements and 3n — 2 clock cycles, whereas the
QR-decomposition of the ((n/m) x (n/m)) matrix S,(k)
in the decoupled ESRCF requires (n/m)(n/m + 1)/2 pro-
cessing elements and 3n/m — 2 clock cycles. Hence, the
QR-decomposition of m decoupled ((n/m) x (n/m)) matrices
So(k)’s in the decoupled ESRCF requires approximately m
times less processing elements and computational time than
that of the (» x n) matrix S(k) in the coupled ESRCF.

The product of the reduction ratio for the number of
processing elements and that for the computational time is m?,
and it is greater than the overall computational reduction ratio
by the decoupling technique, which is found to be between
m? and m in Section III-A. This can be explained by the
fact that the decoupling technique reduces only the number
of internal processing elements, not that of computationally
intensive boundary processing elements.

Tables I and II present the hardware requirements for each
processor and the total hardware requirements for the parallel
implementation of the extended SRCF using Processors 1A
and 1B respectively. A comparison of Tables I and II shows
that the implementations using Processors 1A and 1B require
the same number of arithmetic units except for delay elements.
The implementation based on Processor 1A requires more
delay elements than that based on Processor 1B for the
following two reasons:

1) The delay elements in Processor 1B are shared both in
the time and measurement updates due to the bidirec-
tional bus.

2) The delay elements that synchronize S (k — 1) for the
multiplication ST (k—1) and ¢35 (k — 1) in Processor 1A
are not necessary in Processor 1B.

Figs. 13 and 14 show the number of clock cycles needed
to implement each KF equation of the ESRCF for three-
dimensional tracking and how the equations can be performed
in parallel according to their interdependence. Figs. 13 and
14 are based on Processors 1A and 1B, respectively. Here we
assume that multiplication, division, CORDIC calculation, and

* For 2-dimensional tracking, Eqation (22), and Equations (23) and (24)
both require nm multipliers; the total number of required muitipliers is
2nm+n.
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Fig. 13. Parallel computation of the simplified ESRCF using Processor 1A
(numbers in brackets indicate the number of clock cycles required for each
step).

addition are all performed within 1 cycle. In Figs. 13 and 14,
(22) is divided into two parts and (23) is divided into three
parts. Equation (22), which rotates the Kalman gain K, (k) for
the LOS frame by the rotation matrix, may be performed in
two steps:

1) The calculation of sin# and cos 6 in F}(k) immediately

after #(k|k — 1) is determined.

2) The rotation of the Kalman gain K,(k) by the rotation

matrix Fj(k) is computed.

The precalculation of sin and cos allows the rotation of the
Kalman gain K, (k) to be performed immediately after K, (k)
is available. It eliminates having to wait for the calculation
of sinf and cos#, after K,(k) is available. Similarly, (23)
may be separated into the following three parts to reduce the
waiting period:

a) Z(klk—1)= h(X(klk - 1))
b) AZ=Z(k)— Z(klk 1)
¢) X(k)=X(klk—1)+ K(k) AZ.

The transformation of X(k|k — 1) in Step a) and the
calculation of AZ in Step b) are precomputed before K(k)
is available.
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Fig. 14.  Parallel computation of the simplified ESRCF using Processor 1B
(numbers in brackets indicate the number of clock cycles required for each

step).

In addition to the concurrent update of the state estimate
error covariance matrices S,(k)’s for each axis, parallelism
can be further explored by calculating more than one equa-
tion simultaneously. After K,(k) is calculated, the processor
for the LOS coordinates can continue computing S, (k) and
S,(k + 1{k) while the processor for the reference Cartesian
coordinates calculates X (k) and X (k + 1lk).

Figs. 13 and 14 show that for three-dimensional tracking one
iteration of the ECKF requires 15 clock cycles using Processor
1A, and 20 clock cycles using Processor 1B. Equations (19)
and (20) take longer to implement on Processor 1B than on
Processor 1A. This is due to the fact that in the implementation
of (19) and (20) using Processor 1A the first two rows of zeros
are eliminated in an input data stream for the measurement
update, and that U(k), which takes 3 cycles to feed, is
prestored in the systolic array for the time update.

Figs. 13 and 14 show that Processor 2 and Processor 3
are left idle after computing (22a) and (23b), respectively.
Hence, if the implementation of (22a) and (23a) takes more
than 2 cycles and less'thap 8 cycles for the architecture based
on Processor 1A, or more than 2 cycles and less than 11
cycles for the architectire based on Processor 1B, then the
total computational time would not increase. As a result, the
required time for a CORDIC operation can be increased from
an assumed 1 cycle to 4 cycles for the architecture based on
Processor 1A without affecting the total computational time.
Similarly, for the architecture based on Processor 1B, the
required time for a CORDIC operation can be increased from
1to 5 clock cycles.

G. Comparisons

The proposed specialized architecture for the ESRCF is
difficult to compare with other architectures. The linear arrays
of processors used in [3] and [16] are general-purpose archi-
tectures that are not specialized for the ESRCF. However, the
decoupling technique and special properties of the tracking KF
can be exploited in mapping the ESRCF onto linear arrays.

We have chosen to compare the proposed architecture
with the Sung—Hu architecture that is a parallel architecture
specialized for the standard SRCF [22]. Sung and Hu have
explored parallelism by separating the KF equations into
two loosely dependent groups. One of these two groups

performs measurement and time updates on the square-root
of the state estimate error covariance matrix, whereas the
other group estimates state vectors X (k) and X (k|k — 1). A
comparison between the Sung—Hu architecture and the archi-
tecture developed in this paper on the hardware requirements
for the time update confirms that the decoupling technique
reduces the number of processing elements by a factor of
approximately m. However, for the measurement update, the
Sung~Hu architecture requires nm + m(m + 1)/2 processing
elements, and the architecture proposed in this paper requires
(n+m)(n/m+1)/2 processing elements. These requirements
are difficult to compare, for their relationship changes with
m and n. Nevertheless, for three-dimensional tracking with 9
state elements, the Sung—Hu architecture is found to require
33 processing elements, whereas the architecture developed in
this paper is found to require 30 processmg elements. These
requirements are comparable. This means that Sung and Hu’s
use of the sparse nature of an input matrix in the measurement
update is as effective as the use of the decoupling technique
in our paper.

For computational time requirements, the Sung—Hu archi-
tecture requires 4n + m — 1 clock cycles, which corresponds
to 38 clock cycles for three-dimensional tracking with 9 state
elements. On the other hand, the architecture proposed in this
paper requires 15 or 20 clock cycles, depending on the form
of implementation adopted. The smaller computational time
requirement for the architecture developed in this paper is due
to the simplification that results from the use of the decoupling
technique and the special properties of the tracking KF.

V. CONCLUSIONS

In this paper, we have developed parallel implementations
of the extended square-root covariance filter for radar tracking
applications. We have made extensive use of the decoupling
technique and special properties of matrices in the tracking KF.

The use of the decoupling technique reduces the required
number of processing elements and that of clock cycles for
the update of S(k) in the ESRCF by a factor of m, where
m denotes the tracking dimension. The combined use of the
sparse nature of the measurement matrix H (k) and the sparse,
band nature of the transition matrix ¢(k) simplifies matrix-
vector and matrix-matrix operations. The implementation of
the multiplication of S(k) and ¢(k) in the ECKF requires
n multipliers, which is an order of magnitude less than the
conventional implementation. Similarly, the implementation of
the multiplication of ¢ (k) and X (k), using the sparse, band
nature of ¢(k), requires an order of magnitude less number of
clock cycles than the conventional implementation.
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