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<Abstract> In this paper, we derive a limiting condition for three-dimensional compressible flows and present the 
multi-dimensional limiting process for three-dimensions. The basic idea of the multi-dimensional limiting condition is 
that the vertex values interpolated at a grid point should be within the maximum and minimum cell-average values of 
neighboring cells for the monotonic distribution. By applying the MLP (Multi-dimensional Limiting Process), we can 
achieve monotonic characteristic, which results in the substantial enhancement of solution accuracy and convergence 
behavior. 
 

１．Introduction 
Since the late 1970s, numerous ways to control oscillations have been 

studied and several limiting concepts have been proposed. Most 
representatives would be TVD [1, 2], TVB [4] and ENO [3]. The concept 
of TVD (Total Variation Diminishing) was proven to be extremely 
successful in solving hyperbolic conservation laws. Most oscillation-free 
schemes have been based on the mathematical analysis of 
one-dimensional convection equation and applied to systems of equations 
with the help of some linearization step. They are also applied to 
multi-dimensional applications with dimensional splitting. Though they 
may work successfully in many cases, it is insufficient or almost 
impossible to control oscillations near shock discontinuity in multiple 
space dimensions. For that reason, the need of oscillation control method 
for multi-dimensional applications is obvious. 

In order to find out the criterion of oscillation control for multiple 
dimensions, Kim and Kim [5] extended the one-dimensional monotonic 
condition to two dimensions and presented the two-dimensional limiting 
condition successfully. With the limiting condition, a multi-dimensional 
limiting process (MLP) is proposed which gives more accurate results for 
two-dimensional Euler and Navier-Stokes equations. It is this approach 
which prompts the work of the present paper. Basically, it extends the idea 
of MLP to three dimensions. Thus, in this paper, we derive a 
three-dimensional limiting condition and present the multi-dimensional 
limiting process for two- and three-dimensional situations.  
 
2． Multi-dimensional Limiting Process (MLP) 
(1) Multi-dimensional Limiting Condition 

In view of Godunov-type approach, the steps to construct a numerical 
flux at a cell-interface usually consist of interpolation stage and evolution 
stage. It is known that interpolation stage is generally independent of 
evolution stage where the local Riemann problem is solved at a 
cell-interface. Thus, for higher order spatial accuracy, interpolation stage 
can be modified without changing a Riemann solver. This method for the 
generation of second-order upwind schemes is often referred as the 
MUSCL approach [6].  

One-dimensional limiting condition using TVD constraint can be 
written as follows. [2] 

).2,2min()(0 rr ≤φ≤                          (1) 

Since the extension of Eq.(1) in a dimensional splitting manner is 
insufficient to prevent oscillations in multi-dimensional flow, it needs to 

be modified and/or extended with appropriate consideration of 
multi-dimensional situation.  

However, the dimensional splitting extension does not possess any 
information on property distribution at cell vertex points, which would be 
essential when property gradient is not aligned with grid lines. Thus, as an 
extended condition including the missing information, we require 
multi-dimensional limiting condition as following. 

max
neighbor

min
neighbor ΦΦΦ ≤≤                          (2) 

In order to realize Eq.(2) in three-dimensional situation, the values at 
vertex points are required to satisfy the following condition. 

max
rq,p,r/2kq/2,j,p/2i

min
rq,p, ΦΦΦ ≤≤ +++                  (3) 

where r/2kq/2,j,p/2i +++Φ is a vertex point value and rkq,j,pi +++Φ  is a 
cell-averaged value. The values of index variables, p, q, and r, can be 
positive or negative one, which indicate each vertex point value and 
neighboring cell-averaged value in three-dimensional case. min

rq,p,Φ  and 
max

rq,p,Φ  are the minimum and maximum cell-averaged values among 
neighboring candidates, respectively.  

In order to derive the multi-dimensional limiting function from Eq.(3), 
we need to express the vertex point value in terms of variations at the 
cell-interface. Here we assume that the variations in a cell are linear 
without loss of generality.  

 
(2) General Form of Multi-dimensional Limiting Process (MLP) 

With the multi-dimensional limiting function, a new family of limiting 
process to control oscillations in a multi-dimensional flow can be 
developed. For three-dimensional flows,  
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where α  is the multi-dimensional restriction coefficient which 
determines the baseline region of MLP and β  is the local slope evaluated 
by higher order polynomial interpolation. 

The interpolated values of L
kj,,1/2i+Φ  and R

kj,,1/2i+Φ  are based on the 
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final form of MLP. Since the calculations of interpolated values are 
independent of numerical flux scheme, MLP can be combined with any 

numerical flux. Values of RL,α  and RL,β  in Eq.(4) are summarized as 

follows. 

Along the ξ -direction, if 0∆ p
ξ ≥Φ , 
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where 
kj,1/2,-i
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r  and 

( )( )x,2min,1maxg(x) = . Along the η - and ζ -direction, the left 

and right values at the cell-interface can be calculated in the same 
way. 

Combining Eq.(5) with β  in the form of third order 
polynomial and fifth order polynomial, we finally obtain MLP3 
and MLP5, respectively. Detailed explanation is given in Ref. [6]. 

 
MLP with using 3rd order polynomial (MLP3) : 
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MLP with using 5th order polynomial (MLP5) : 
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3．Numerical Results 

Here, we consider a three-dimensional normal shock discontinuity in 
order to investigate the shock-capturing characteristics of TVD MUSCL 
limiters and MLP. This test shows the advantages of MLP clearly in terms 
of monotonicity and convergence. 

We can observe wiggles which indicate that there are considerable 
oscillations across the shock discontinuity. Figure 1 shows density 
contours and the error history of convectional limiter. CFL number is 5.0 
and LU-SGS is used for time integration. Even if the test case is relatively 
simple, van leer limiter is never converged due to oscillatory behavior 

across the normal shock discontinuity. On the other hand, MLP-van leer 
limiter shows smooth contours in the post-shock region and good 
convergence characteristics as in Fig.2. 

 
4．Conclusion 

The multi-dimensional limiting process (MLP) is developed by 
combining the multi-dimensional limiting function with a higher order 
polynomial interpolation. The newly developed method turns out to have 
several desirable characteristics such as multi-dimensional monotonicity 
across a discontinuity, robust convergence. In addition, higher order 
interpolation can be easily incorporated. 

The most distinguishable property of MLP is to provide 
non-oscillatory profiles in multi-dimensional flows and, as a result, 
exhibits a good convergence characteristic. Through several test cases, it 
is verified that MLP can control numerical oscillations in multiple space 
dimensions very effectively. From the numerical results, MLP provides 
substantial accuracy improvement, compared with TVD MUSCL 
approach using popular flux functions. 

As the outcomes in two-dimensional flows [5], MLP is also proved to 
bring enhanced convergence and accuracy improvement simultaneously 
in three-dimensional compressible flows. 
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Fig .1  Density contours and error history : van leer limiter 
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Fig .2  Density contours and error history : MLP-van leer limiter 


