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= Abstract =A microcomputer program for prediction of individualized optimal drug dosage
based on Bayesian Statistical Theory and Maximum Likelihood Estimation is presented. Model
(one or two compartmental model) and parameter distribution (normal or log normal) can be
selected to describe the plasma drug concentrations-time course. Simplex method is adapted
for contraction of objective function in non-linear least square fitting to the final minimum. It is
designed so that user can integrate universal dosing regimens with different doses, routes, and
regular or irregular intervals. Complex dosage regimens and non steady-state conditions can
be handled. This program can also generate graphic simulations of plasma and peripheral
compartment drug levels of one or two compartmental model. It has been designed to run
interactively to assist learning the pharmacokinetic concept and to be handled by user with

little knowledge on mathematics or computer.

Kew words: Computer program, Bayesian theorem, Simplex method, Non-linear least square. Pharma-
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INTRODUCTION

Recent advances in analytical technologies allow
rapid determination of drug concentration in biolo-
gical fluids with high precision (Jolley 1981; Oeller-
ich 1980). As a result, clinicians have become in-
creasingly interested in estimation of individual
pharmacokinetic parameters for future precise dos-
age regimens. Although some durgs could be safe-
ly used by patients’ characteristics alone (e.g. age,
body weight or creatinine clearance), standard dos-
age regimens according to physical characteristics
alone may produce significant variations in plasma
drug concentrations achieved, that aspect which
may be of particular importance in the manage-
ment of drugs with narrow therapeutic windows
(Benowitz and Meister 1978; Jusko et al. 1979;
Smith et al. 1969).

For the rapid estimation of individual pharmaco-
kinetic parameters, several methods based on sim-
plified pharmacokinetic concepts have been prop-
osed. However, frequently, these methods have
several shortcomings such as fixed dose, fixed
schedule for drug administrations and blood sam-
plings and are aimed toward particular drug ther-

apy. Recently, Sheiner et al. (19/9) proposed a
general method adapting Bayes approach, which
has been shown to provide more accurate predic-
tion of optimal dose (Sheiner and Beal 1982; Yuen
et al. 1982). Thereafter, several programs based on
Bayesian algorithm have been developed for this
purpose. However, most of them were developed
for particular drug therapy with fixed model and
administration routes (Burton et al. 1985; Lenert et
al. 1982; Vozeh et al. 1985). Although those res-
tricted approaches remain indispensable in teach-
ing of pharmacokinetics and analyzing pharmaco-
kinetic data in specific condition, the dosage reg-
imens are occasionally far more complicated in cli-
nical practice.

The computer program described herein is de-
veloped in order to adapt Bayesian algorithm easily
in any clinical situation and to assist medical stu-
dents and physicians learning clinical pharmaco-
kinetic concepts.

METHOD

Model

One and two compartmental pharmacokinetic
models are used with an input function appropriate
to the different modes of drug administation. Fig. 1
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Fig. 1. One(a) and two(b) compartmental systems used
for the distribution and elimination kinetics of
drugs. In two compartmental model, drugs dis-
tribute instantaneously in cental compartment(V..)
after administration of dose and equilibrate with
peripheral compartment(V,) at rates determined
by the intercompartmental rate constants (k,,
ko;). Clearance can be expressed as V. - k.
Symbols of ka and km represent first order drug
absorption rate constants of oral, and other
parenteral routes, respectively.

shows two basic compartment systems used in this
program. Herein, details of two compartmental
model will be described.

Each dosage regimens can be defined as follows;
1) The time of administration of each dose, t(i),
that is specified along a patient's “time-line” of
dosing history.

2) The amount of each dose, D(i), that is adminis-
tered through each route; D(i) for oral or intra-
muscular route includes biocavailability term(F) in
itself.

3) Route of drug administration with each dosage
regimen is verified as intravenous bolus, intraven-
ous infusion, oral or other parenteral route; oral
(including administration of different absorption
rate formulations, e.g. regular and slow releasing
formulations) and other parenteral routes are veri-
fied as same type routes as oral route to be used
interchangeably.

4) The duration over which each dose is adminis-
tered at uniform rate can be defined with t(i)-t(i),
where t(io) is the time of termination of infusion as
expressed along a patient’s “time-line”.

5) Kinetic model parameters are CL, Vc and ka or
km for Bayesian method and ki, k,; can be in-
cluded as variables for simple non-linear fitting,
where appropriate.

6) Initial plasma level with uncertain dose history is

presumed to be declined by single exponential
function assuming complete distribution of the drug
at the time of initial sampling.

Throughout the time courses of each dosage reg-
imen, plasma concentrations, (C(i,t)), can be de-
scribed by an equation of the following;

C@i,t) = Co () + Cp (D(i), F, CL, Vc, ka, km, ko,
ko1) (1)

where Co represents initial plasma drug concen-
tration, occasionally it shows uncertain dose his-
tory. Cp is the superimposed plasma drug concen-
tration-time profile from initial dose to ith dose, and
is the function of each dose, clearance, volume of
distribution and the relevant rate constants. De-
pending on the mode of each dose, Cp can be
given with superposition of the following functions
(Gibaldi and Perrier 1982);
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where Civ, Cinf, Cor and Cim are the plasma con-
centeration- time function of intravenous volus, in-
travenous infusion, oral and other parenteral admi-
nistration, respectively,and ki acts as ka or km, de-
pend on the route of administrataion. T and t* are
time variables during infusion. After stopping the
infusion, T and t" are duration of infusion and
(t-T), respectively.

If we assume partition coefficient between plas-
ma and peripheral compartment to be 1, drug
levels in the peripheral compartment after the dos-




ing can be expressed as the following equations,
which used in simulation, according to the defined
two compartmental model.
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where Cts represent drug concentration changes in
the peripheral compartment.

Parameter optimization

Calculation of the most likely set of parameters
CL, Vc and ka or km for each individual patient is
carried out by a procedure based on Bayes’
Theorem and the application of the Maximum
Likelihood Principle (Edwards 1976). If one can de-
fine the statistical distribution of a set of para-
meters of a given drug in the general population
(the prior distribution), one or more measurements
of plasma drug level after dosing can be used to
obtain the posterior distribution of the set of para-
meters of that patient. With Bayes’ Theorem, the
posterior probability distribution of the patient can
be given as follows;

p(g)-pC| @g)
p(C)

where p(g) is the probablity density function for
the set of parameters. p(C) is the probablity density
function for the observation of plasma levels after
dosing. p(C | 4) is conditional probability density
function for the plasma level observation under a
given set of parameters. p(# | C) is the conditional
probability density function for the parameters
under given observation of plasma levels.

If each pharmacokinetic parameter (4) is nor-
mally distributed in the population with mean 4,

p(g | C) = (8)
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and variance ¢ 2, and each parameter is indepen-
dent, p(#) can be given by;

() =T ———=e" 2.7 9

p Y . 57 2 (9)
Since each plasma level measurement (Ci) becom-
es a normal distribution under random error with
variance ¢ .°, this conditional probability (p(C|4))
can be expressed as follow;
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Then, omitting constants values of the above equa-
tions and parameter independent p(C), a maximum
likelihood estimator of the parameters of the patient
can be obtained by minimizing the negative log
likelihood function (Owls).
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where C; and ¢ .# are model and parameter related
expected plasma level and the variance of plasma
level due to all forms of measurement error includ-
ing model misspecification.

Minimization of objective function is carried out
using Simplex method (Nelder and Mead 1965;
Nicol et al. 1986). Although Simplex method can
not give standard error of optimized parameter
without Monte Carlo simulation, we chose this
algorithm because it never diverge despite poor ini-
tial estimate. Weighing on measured plasma level is
allowed with power function (1/C™).

For the optimal use of Bayesian algorithm on
dosage optimization, precise population parameter
is essential. Mean and the variance of population
parameter, and experimental error can be calcu-
lated by mixed effects modeling (Sheiner et al.
1977) from fragmentary data of a large number of
subjects or by the traditional two stage method or
other new approach (Steimer et al. 1984).

Program description

This package is written in Microsoft BASIC to be
used on many IBM PC XT/AT compatible micro-
computers, and compiled by Turbo BASIC compiler
(Borland Inc 1987) with numeric coprocessor op-
tion for maximum speed, precision and prevention
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Fig. 2. Flow-chart showing organization of the program.

of overflow error during iterations. Compiled prog-
ram occupies about 75 Kbytes. Graphic simulation
runs on the screen of high resolution mode. Prog-
ram is designed completely interactive and
menu-driven for user with little knowledge on
mathematics and computer. The general layout of
the program is shown in Fig. 2. and consists of five
main section.

As a primary option, Bayesian estimation, non-
Bayesian non-linear least square fitting of para-
meters, and simulation for hypothetical case are
provided. For Bayesian optimization, two distinct
parameter distributions assumed (normal and log
normal distribution) are provided, because distribu-
tions of kinetic parameters of some drugs are bet-
ter explained by log normal distribution. Data entry
allows input of patient's dose history, measured
plasma drug level, and population parameter
values with a mean and coefficient of variation
according to defined distribution. Numbers of dose
history and drug level can be accomodated without
limit.

The non-linear regression section is automatical-
ly called on completion of data entry. Then, the
program iterates until the objective function is mini-
mized. The two microconstants, ki, and ko;, are
assumed constant for only Bayesian two compart-
mental model over the entire population (Vozeh et
al. 1989), therefore, individual estimates need to
be obtained only for CL, Vc and ki. Drug levels of
peripheral compartment can be predicted and
graphically simulated by choosing the option. The
predictive routine can be used after optimization of
parameters or simply with population value. The
predictive section for optimal dosage is designed to
choose loading dose and/or maintenance dose for
specific therapeutic goal with flexible route of admi-
nistration. An experienced user can enter a realistic

case and obtain individual parameters and forecast
optimum dose within five minutes.

RESULTS AND DISCUSSION

The purpose of the results section is to illustrate
the versatility of the FLEX-FIT program. Simulation,
individual parameter estimation and future optimal
dosing selection examples are presented and com-
pared with other programs for specific use.

Simulation: Example 1. Simulation of a com-

plex dosage regimen protocol.

Plasma and peripheral compartment drug level
of a complex theophylline treatment protocol from
Sebaldt and Kreeft (1987) is simulated assuming
the appropriateness of two compartmental model
with population average value for Vc = 99 L, CL
= 4574 Uhr, F = 0.8, ki, = 3.90/hr, ko; =
2.16/hr and ka = 0.5/hr (Powell et al. 1978). Dos-
age regimens assumed such as; initiation with 375
mg of theophylline orally 4 times daily (irregulary at
8, 12, 18, 22 h each day) for 2 days, 2 doses
missed due to vomiting, admitted to hospital, and a
rapid intravenous infusion of 180 mg over a period
of 1 hr at 17 h of 3rd day and maintenance infu-
sion starting at 18 h of 3rd day at a rate of 30
mg/hr for 30 hr and restarted same oral dosage
regimens with 250 mg at 8 h of 5th day. The
simulation is shown in Fig. 3a. The simulation
above situation shows that serum concentrations-
time course could well have been in non-toxic
range (Fig. 3a). However, if we assume that the
patient has pneumonia and abstinence of smoking,
patient's parameter estimation will be Vc = 6 L
and CL = 2.1 Uhr. The modified simulation shows
toxic levels during initial two days of theophylline
therapy (Fig. 3b).

Estimation of individual parameters: Example

2. Two compartmental model — Lidocaine

As a second example, the case treated with lido-
caine from Vozeh et al. (1985) is analyzed with
population mean and coefficient variation values of
log normal distribution (V¢ = 0.64 L'kg, 37% CV,
CL = 0.58 Uhr/kg, 60% CV; intraindividual re-
sidual error = 21%; kj, = 1.35/hr, ky; = 0.53/
hr). This male patient, weighed 60 kg, has a mod-
erate heart failure. Fractional decrease of CL and
Vc in moderate heart failure patient is predicted
45% and 24%, respectively.

Patient was treated with 100 mg intravenous
bolus injection at 20 h of Ist day and 120 mg/hr
constant infusion for 4 hr simultaneously. At 23 h
of that day, a 50 mg intravenous bolus dose was
introduced. Plasma drug levels at 22 h and 24 h
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Fig. 3. Example 1. Time course of theophylline concen-
trations in plasma and peripheral compartment,
after the complex regimen of theophylline.

were 1.5 and 1.9 pg/mi, respectively. Estimated
parameters and predicted plasma levels were pre-
sented and typical future dosage regimen for 3.5
ng/mi of objective goal at 24 hr was simulated in
Fig. 4. Difference between measured and predicted
plasma level during parameter estimation was
smaller than those of Vozeh et al. (1985) (pre-
dicted plasma levels, 1.7 and 2.1 xg/ml; estimated
CL = 50.4 L/hr, Vc = 36.2 L).

Example 3. One compartment model — The-

ophylline.

Application of FLEX-FIT on theophylline therapy
is tested with one compartmental model. The re-
sults are compared with those from OPT package
of University of Glasgow (Kelman et al. 1982). Dose
Regimens are slightly modified to more realistic
situation, especially duration of intravenous drug
administration. The results are almost same with
assuming rapid intravenous bolus injection as Kel-
man et al. did. The 35 yr old patient (72 kg), who
was a heavy smoker, with an episode of bron-
chospasm was given 500 mg aminophylline in-
travenously over 20 minutes, followed by 250 mg 6
hr later with same infusion period. Oral theophylline
was started (Fig. 5). Blood samples were drawn at
6 hr after 2 nd oral dose. Plasma theophylline level
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was 9.0 xg/ml. At this point, the expected values
for kinetic parameters were driven. Bayesian esti-
mates based on population parameters from Jusko
et al. (1979) and Peck et al. (1980) (ka = 0.35/hr,
F =079 CL=471Uhr,Vc =3601L, o¢ =
0.5 (CL), oy. = 0.2 (Vc), 0., = 0.5 (ka), coeffi-
cient of variation of model and measurement error
= 15%). On the following day, theophylline level
was 14.5 pg/ml 2 hr after 8th dose. Anticipated
theophylline concentration predicted with one plas-
ma level were 8.87 and 13.37 uxg/mi at both sam-
pled times. The anticipated steady-state peak and
trough level predicted with two plasma levels,
assuming continuous oral dosing of 450 mg 6
hourly were 16.78 pg/ml and 14.24 pg/ml, re
spectively. The results were very similar to those of
OPT package (predicted value with single plasma
level: Ist plasma level = 8.84 pg/ml, estimated CL
= 3.83 Lhr, Ve = 3596 L, ka = 0.36/hr; pre-
dicted value with two plasma levels: estimated CL
= 3.64 L/hr, Vc = 3553 L, ka = 0.42/hr,
steady-state peak = 17.3 pg/ml, trough = 14.4
pg/ml). The different estimation between this
program and OPT package is due to the difference
of weighing factor.

In this paper, the overall features of FLEX-FIT
are described. Universal dosing approach with
Bayesian forecasting algorithm can successfully ap-
plied in FLEX-FIT program. This program can be
also used as non-linear fitting program withou*
modification for pharmacokinetic research of single
or multiple dose of regular or irregular interval. The
most important feature of this program is an ability
to utilize non steady-state data and the ease which
complex dosage regimens can be handled. These
features have particular advantages for analysis of
data from different drug and different situations.
Although Bayesian forecasting is known to be su-
perior to alternative non stochastic methods (Shein-
er and Beal 1982; Yuen et al. 1982), there are
some points on most Bayesian forecasting prog-
ram, which affect effectiveness of that system. For
example, parameter distribution, weighing factor for
serum level, etc. However, for the maximum effec-
tiveness of Bayesian forecasting algorithm, slight
modification of those factors according to individual
drug characteristics can improve over all effective-
ness of its use: these will be a subject of future
communication.

This program would be useful in the general area
of clinical pharmacology, especially applied phar-
macokinetic area for dosage individualization; by
simulation of time-course of compartmental drug
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222 Dosing Protocol 3133
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No.of Dose Type Time-interval Inf.Time Dose
(hr) (hr) (mg)
1 IV Inf 0 0.33 500(amino.)
2 IV Inf 8 0.33 250 (amino.)
3 Or 4 450
4 or 12 450
5 Oor 8 460
6 or 6 450
7 or 10 450
8 or 6 450
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22 Plasma Level 32

No. Time(Dose) C (ug/ml) Bst. C (ug/ml)
1 6(4) 9.0 9.19
2 2(8) 14.8 13.88
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ka (1/hr) 0.35 0.37
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Fig. 5. Example 3.: Theophylline, Bayesian parameter estimation and graphic simulation of plasma concentrations
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level with different dosing protocol; by parameter
estimation from measured plasma concentration,
even from single plasma level, and forecasting
optimal future dose.
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