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A Dispersion Analysis for Minimum Grids in the Frequency
Domain Acoustic Wave Equation

Jang, Seong-Hyung", Shin, Chang-Soo,” Yoon, Kwang-Jin®”, Suh, Sang-Young", and Shin, Sung-Ryul’
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Abstract : A great deal of computing time and a large computer memory are needed to solve wave equation in a large
complex subsurface layers using the finite difference method. The computing time and memory can be reduced by
decreasing the number of grid points per minimum wave length. However, the decrease of grids may cause numerical
dispersion and poor accuracy. In this study we performed the grid dispersion analysis for several rotated finite difference
operators, which was commonly used to reduce grids per wavelength with accuracy in order to determine the solution
for the acoustic wave equation in frequency domain. The rotated finite difference operators were to be extended to 81,
121 and 169 difference stars and studied whether the minimum grids could be reduced to 2 or not. To obtain accuracy
(numerical errors less than 1%) the following was required: more than 13 grids for conventional 5 point difference stars,
9 grids for 9 difference stars, 3 grids for 25 difference stars, and 2.7 grids for 49 difference stars. After grid dispersion
analysis for the new rotated finite difference operators, more than 2.5 grids for 81 difference stars, 2.3 grids for 121
difference stars and 2.1 grids for 169 difference stars were needed. However, in the 169 difference stars, there was no
solution because of oscillation of the dispersion curves in the group velocity curves. This indicated that the grids couldn't
be reduced to 2 in the frequency acoustic wave equation. According to grid dispersion analysis for the determination of
grid points, the more rotated finite difference operators, the fewer grid points. However, the more rotated finite difference
operators that are used, the more complex the difference equation terms.
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Introduction memory requirements in finite-difference methods entailed

the use of high order finite-difference approximations to spa-

Explicit schemes that were widely used in the finite dif- tial and temporal derivatives (Dablain, 1986) as well as the

ference method for the solution of wave propagation were use of the weighted average method which was developed

expensive and required a great deal of computer memory to by Jo, et al. (1996). The conventional method uses the

model exploration scale problems. The methods of reducing neighboring 5 points to determine the solution of finite dif-
the central processing unit (CPU) time and the direct-access ference modeling of wave propagation.
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When the grid points per minimum wave length were
reduced to save computing time and memory, the grid dis-
persion became larger and the solution of the wave field
may have had more error. To overcome this problem, Jo, et
al. (1996) developed the new method that reduced the grid
points per minimum wave length. This method weighted the
finite difference equation after the conventional 5 difference
stars were transformed to 45°. The grid points per minimum
wave length were reduced to 9 with this method, but the
conventional 5 point method required more than 13 grid
points. Shin and Sohn (1998) extended this 9 point weighted
average method to 25 points which transformed the coordi-
nates to 0° 45° in 5 points and to 0°, 22.5°, 45°, 62.5° in 25
points. They reduced the grid points perminimum wave
length to 3 and maintained accuracy while simultaneously
saving computing time and memory. Stekl and Pratt (1998)
also applied rotated operators in the viscoelastic media to
save computing time and core memory.

According to the weighted average methods it can be
deduced that the more finite difference stars, the greater the
possible reduction of the grids per minimum wave length
with the maintenace of accuracy and resolution. Could the
grids be reduced to 2 ? In this study dispersion analysis per-
formed for the weighted average method with 81, 121 and
169 finite difference stars. The study will indicate which
weighted average method is optimal and whether the mini-
mum grids can be reduced to 2 or not.

FDM formulation using the weighted
average method

In the Cartesian coordinate system, the scalar wave equa-
tion in the frequency domain can be written as follows:

2
Zu+VPu=0 (1)

v
where u is the pressure of the wave field, @ is the angular
frequency and v is velocity of the medium. The conventional
finite difference expression of the eq. (1) by the explicit
second-order difference scheme can be written as follows:

gy =20+ Uy Uy =2u; Uy o _
2 ' 2 Fu 0 @)
Ax Az v
where u;; is compressional field at x=xo+(i—1)Ax, z7zeH(j~1)
Az, Ax, Az is the grid distance and @ is the angular frequency.

In order to obtain an accurate solution for eq. (2), 13 grids per

minimum wavelength are requireder minimum (Alford et all,
1974). Due to much of grids a great deal of computing time
and memory is needed to find out the wavefield for a large
and complex geological model. To overcome this problem, the
rotated finite difference operator method was developed by Jo,
et al. (1996). They used the 9 points weighted average finite
difference stars that rotated the coordinate system to 45
degrees. After that 25 and 49 points weighted average finite
difference stars were developed to reduce the computing time
and memory for a complex geological model. This means that
if we have a greater finite difference stars in the weighted
average method we have the possibility to reduce grids to 2
per minimum wavelength. In this study, the 81, 121 and 169
point weighted average methods were introduced, of which
their rotated angles and number of coefficients are shown in
Table 1. These methods were to determine whether it is
possible to reduce the grids per minimum wavelength to 2 in
the frequency domain or not and which is the best optimum
method.

Fig. 1 shows the transformed coordinate systems from 9
difference stars to 169. After summing the finite difference
equation from 5 points to 169, the Laplacian term was
obtained. The new Laplacian term by the weighted average
method when we used 169 difference stars is shown below:

2 2 2
Vou=r V-u,+r,V-u,

2 2
+rVous+r,Vu,

2 2
g Vg trp Vg €)

Table 1. Transformed coordinates according to several finite
difference stars

Finite difference 5 9 25 49 81 121 169
star points points points points points points points

0 0 0 0 0 0 0

45 45 45 45 45 45

2656 1843 14.04 1130 218
Coordinate 63.44 33.69 2657 21.80 1843
transformation 5630 36.87 3096 2656
angle (degree) 7156 53.13 38.66 33.69
63.43 51.34 39.80
7596 59.04 50.19
68.20 56.31
78.69 6343
71.57
80.75

No. trans. coord. 2 4 6 8 10 12

No. of coeffs. 2 5 13 25 41 61 85




41

A.-Dispersion Analysis for Minimum Grids in the Frequency Domain Acoustic Wave Equation

i
-1,j i+1,] i+2,
{(a) 9 points (b) 25 points
—
i+3
i-3,j i-4,j
—
(c) 49 points
A
ij+5
45, i+6,j

i-5,)

>
o« el
D] )

Yy

r}
0
s
SN
)
.

ij-5
(e) 121 points (f) 169 points

Fig. 1. Computational stars of Laplacian operator which have rotated codrdinate systems from 5 to 169 points.
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where 7, refers to the coefficients of difference stars according

to each weighted average method, and Vu, is the Laplacian
g k p

term,
2 Mg et Uivg g~ AUt U g T U g
Viuy,= Yy .
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k, the constant, is 20 for 81 stars and 30 for 121 stars. In
order to apply the weighted average method, the mass accelation
term of eq. (1) must be expressed with liner combinations of
formula wise, that is the lumped mass matrix and consistent
mass matrix (Marfurt, 1984). That is

[u; J=yr; (1=, ] 4)

where 7 is the argument that the mass accelation term is
determined by the point collocation term and the average
term, u* is the point collocation term, [u] is the average term.
The substitution eq. (4) into eq. (1) result in eq. (5):
22 2 2

Iu U O (1 -y ul-0, (5)

dx~ 9z~ v v

The average term is composed with finite difference approx-
imation of the Laplacian term. In 5 point difference stars, the
point collocation term which includes the average term can be
represented with the weighted average term as shown below:

[ul-,j]:Yu,-,ﬁ(l - ’Y)[uj,j]
=aui,j+b(ui+1+ui_1‘j+uixj+1 +u; ). 6)

The new mass accelation term for 169 stars by the weighted
average method is as follows:

[u; 1=yu; +(1-7)
=au;;

tay (g j+uy ;g )

tag(Uig jre+ Uig 6+ Uig jr6T Uisg j—6) Q)
where a, are the weighted average coefficients for the mass
term according to each rotated coordinate system. The constant
k is 21 for 81 stars and 31 for 121.

Substitution eq. (3) and eq. (7) into eq. (1) yields

*

Z 2 o &
Yy Vv uk+—22akui,j=0. ®)
k=1 Vo

Substitution of the plane harmonic wave u = e % +%d =
ksing and k&, = kcosO into eq. (8), where 0 is the propagation
angle to the normal, yields the following equation,

2
w B
<=2 ©
v A4
where A and B are shown in the Appendix.
Since phase velocity (= V) is the function of the wave

number and frequency (= @/k), and group velocity (= V) is

a derivative of phase velocity with respect to the wave num-
ber (=dw/dk), normalized phase velocity for the weighted
average method is as follow: -

v, 1 [B

b o — 22 10

Vs 277:GA/; (10)
The normalized group velocity V,, for the weighted average
method is

Ve 1 VodB-BA an

Ve 4rmG Von 4%
where A' and B' are the partial derivative of A and B to the
wave number and Vj is the velocity of the medium.

To determine the coefficients for finite difference stars we
set the normalized phase velocity and weighted the average
coefficients to 1, then eq. (10) is:

v
—2h 12
7 1 (12)
m

Y=l (13)
k=1

a+ 3 da,=1 (14)

This yields eq. (15):
47°G’A+B=0
Substitution eq. (13) and eq. (14) into eq. (15) yields
AT G*A+C =4 (16)

where coefficient C is shown in the Appendix. Since A and C
are the function of the number of grid points per wave length,
equation (16) can be represented in matrix form.

1,1 4y T P, 1 4
a
1,2 @, T2 T2
an _
r
al,m—l vt an,m—l rl,m—l o rn,m—l -
r, 4
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Eq. (17) is an over-determined matrix which is dependent on
the number of grid points and propergation angle.

Dispersion Analysis

In order to determine which weighted average method is
optimum the normalized phase and group velocity curves
for the weighté(i average methods were calculated. Letting u
in eq. (1) be thé ﬁfane harmonic wave, the normalized phase
and group Veloci& were obtained.
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Fig: 2. Normalized phase velocity curves for the finite-difference
solution of 2D scalar wave equation in the frequency domain using
(a) conventional 5 points finite difference stars, (b) 81 points, (c)
121 points and (d) 169 points.

V . . . .
f_r _ sinBsinB(2 tGsinB) + cos 951n(27ch<1)s 6) (19)

2[sin*(7Gsin6) + sin*(1Gcos6)]

Dispersion curves for the set parameters defined in eq. (18)
and (19) are shown in Fig. 2 and 3. Fig. 2 and Fig. 3 show
dispersion curves of phase and group velocity to several
weighted average methods. From Fig. 2 and 3, the minimum
grids per wavelength for each weighted average method were
determined (Table 2).

The numerical errors in the phase velocity of less than
1% for accuracy solution 49 points can be archived at 2.7
grid points and for 81 points at 2.5 grid points. In the group
velocity of 49 point error to the vertical propagation direc-
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Fig. 3. Normalized group velocity curves for the finite-difference
solution of 2D scalar wave equation in the frequency domain using
(a) conventional 5 points finite difference star, (b) 81 points, (¢) 121
points and (d) 169 points.
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Table 2. The number of grids per minimum wave length were
required to have less than 1% numerical dispersion error

Diff. stars 5 9 25 49 81 121 169

Grids 13 5 3 2.7 25 23 N.A
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Fig. 4. Relationship between the number of finite difference stars
and the grid points per wavelength in phase velocity. It showed that
the more finite difference stars, the less grid points per wavelength.
However, grids could not be reduced 2 in the frequency domain
acoustic wave equation.

tion was more than 3%. However, 81 points had less than
1% numerical errors in both phase and group velocities. In
121 difference stars, only 2.1 grid points were required for
accuracy in the phase velocity and 2.3 grid points in the
group velocity. However, in the group velocity of 169 points,
accurate coefficients were not found. As a result of the dis-
persion analysis working to 169 points, the more weighted
the average points, the less grid points per wavelength (Fig.
4). In the 121 point method, the grid points per wavelength
were reduced to 2.3 with an accuracy solution of less than
1% numerical error. This was the minimum grid points per
wavelength which were ever studied in the frequency domain
finite difference modeling for the acoustic wave equation.

Conclusion

The objective of the study described in this paper was to
determine the minimum number of grids per wavelength with
accuracy. Dispersion analysis was performed for 81, 121 and

169 difference stars to find out solution for the scalar wave
equation in the frequency domain. The conclusions are as
follows:

* The new weighted average methods, 81, 121 and 169
points difference stars, were studied. To obtain numerical
errors of less than 1% for accuracy solution 81 points 2.5
grid points per wavelength were determined and in 121
points 2.3 grid points resulted. However, in 169 points there
was no solution because of the oscillation of the dispersion
curves in group velocities.

» The dispersion analysis for the determination of grid
points per wavelength showed that the more rotated finite
difference operators, the less grid points. However, the more
rotated the finite difference operator used, the more complex
difference equation terms. In addition it was not possible to
reduce grids to 2 in the frequency domain acoustic wave
equation.
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Appendix

Coefficient A for eq. (9)( 4% = —-Z)

A ai

a2 * (co3(2rGsind) + cos(2rGeosh))

4a3 * cos(2wG sinf) * cos(2wGeosh)

2a4 * (cos(2wGcosh) + cos(4wGeosh))

4as * cos(2nGcosh) * cos(4rGeosh)

2a¢ * (cos{2mGeosb) + 2nGcosh) + cos(2nGsind) — 4wGeosbd))
2a7 * (cos{2nGcos#) — 2w Gcosb) + cos(2nGsinb) + 4wGcosh))
2as * (cos{6nGsinf) + cos(6rGcosh))

4ag * cos(6wGsind) * cos(6wGeosh)

2a10 * (cos(2mrGcosd — 6w Gcosh) + cos(6rGsind + 4wGcosh))
2a11 * (cos(2nGeosd + 6rGeosh) + cos(6nGsind — 4wGceoshd))
2a12 * (cos(2rGsind — 6wGcosd) + cos(6nGsind + 2wGcosd))
2a13 * (cos(2mGsind + 6w Geosd) + cos(6nGsind — 2rGcosh))
2a14 * (cos(8nGsind) + cos(8wGeosh))

4a15 * cos(8nGsind) * cos(8nGcosh)

2a16 * (cos(2nGsind — 8rGeosh) + cos(8nGsind + 2wGeosd))
2a17 * (cos(2mGeosd — 8wGcosh) + cos(8nGsinb + 4nGceosh))
2a15 * (cos(6mGsind — 8w Geosh) + cos(8wGsind + 6wGeosh))
2a19 * (cos(8nGsind — 6wGcosh) + cos(6mGsind + 8xGeosh))
2a30 * (cos(87Gsind — AnGeos) + cos(2nGeosd + 8wGcosh))
2a91 * (cos(8nGsinf — 2nGcosh) + cos(2nGsind + 8w Geosh))
2a32 * (cos(10mGsind) + cos(10wGeosb))

dass * cos(10mG sind) * cos(10mrGeosh)

2a24 * (cos(2mGsind — 10mGeos8) + cos(10nrGsind + 2w Gcosh))
2a35 * (cos(2mGcosd — 10mGeos) + cos(10mGsind + 4wGcost))
2azs * (cos(6mGsind — 10rGcos8) + cos(10nGsind + 67 Gcosh))
2a27 * (cos(87Gsind — 10mGeosh) + cos(10mGsind + 8nGeost))
2a2s * (cos(10mGsind — 8nGcosh) + cos(8rGsind + 107Geost))
2a29 * (cos(10mGsind — 6w Gcosl) + cos(6rGsind + 107Gcosf))
2a30 * (cos(10mGsind — 4nGeosh) + cos(2nGeosf + 10mGeosb))
2a3; * {cos(10mGsind — 2mGeost) + cos(2nGsind + 10nGeosh))
2a32 * (cos(12wGsind) + cos(12wGcosh))

4aszs * cos(127Gsinb) * cos(127Gcosf)

2as4 * (cos(27Gsind — 12xGcosh) + cos(12nGsind + 2wGcosh))
2a35 * (cos(2mGcosf — 12nGeost) + cos(12nGsind + 4nGeosh))
2a36 * (cos(67Gsind — 127Geosd) + cos(12xGsind + 6xGcosh))
2as7 * (cos(87Gsind — 12nGcosd) + cos(12nGsind + 8wGcosh))
2a3s * (cos(10mGsinb — 121Gcosf) + cos(12nGsind + 10mrGcosh))
2asg * (cos(12nGsinb — 107Gcosd) + cos(10nGsind + 127Gcosb))
2a40 * (cos(127Gsind — 87Gcos) + cos(8nGsind + 12nGcosh))
2a4; * (co8(127Gsind — 6wGeos) + cos(6rGsing + 12nGeosh))
2a42 * (c0s(12nGsinf — 4wGcosh) + cos(2nGeosh + 12nGeosh))
2a43 * (cos(127Gsinb — 2mGcosb) + cos(2wGsind + 12wGcosh))

S A T T o s st SEE R S S S S S s S S e |

Coefficient B for eq. (9)(%:- =-2)

B = 2.r; *(cos(2nGsinb) + cos(2nGcosd) — 4)
+  2.r3 * cos(2wGsind) * cos(2wGcosh) — 2
+ 73/4 x (cos(4nGsinb) + cos(dnGcosh) — 4)
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r4/2 * cos(4nGsind) * cos{4rGcosh) — 4)

r5/5 * (cos(4nGsind — 2xGcosh) + cos(2nGsinb + 4nGeosh) — 4)
r6/5 * (cos(4wGsinb + 2wrGeosh) + cos(2nGsinb — 4wGeosl) — 4)
r7/9 * {cos(6wGsind) + cos(6wGcosd) — 4)

r3/18 * cos(6nGsinb) * cos(6nGeosd) — 4)

r9/13 * (cos(4nGsinf — 67 Gcosl) + cos(6mGsind + 4nGceosd) — 4)
710/13 * (cos(4nGsind + 67 Gcosd) + cos(6nGsind — 4wGeosd) — 4)
711/10 * (cos(2nGsind — 6wGcosh) + cos{6nGsind + 2xGeosb} — 4)
r12/10(cos(2nGsind + 6mGcosh) + cos(6nGsind — 2wGcosl) — 4)
713/16 * (cos(87Gsinb) + cos(8wGcosh) — 4)

714/32 * cos(8wGsind) * cos(8wGcosh) — 4)

r15/17 * (cos(2wGsind — 8w Gcosh) + cos(8rnGsind + 2xGcosh) — 4)
r16/20 * (cos(4nGsind — 87 Gcosh) + cos(8nrGsind + 4wGcosh) — 4)
r17/25 * (cos(6nGsind — 8wGcosh) + cos(8nGsind + 6wGcosh) — 4)
r18/25 * (cos(8nGsingd — 6w Gcosb) + cos(6nGsind + 8xGeosd) — 4)
719/20 * (cos(8nGsinb ~ 4wGcosb) + cos(4nGsind + 8wGeost) — 4)
720/17 * (cos(8nGsinb — 2w Gcosh) + cos(2nGsind + 8wGcosh) — 4)
r21/25 * (cos(107Gsind) + cos(10nGcost) — 4)

r23/50 % cos(10wGsing) * cos(10mrGeosh) — 4)

r23/26 * (cos(2nGsind — 10mGcosb) + cos(10nGsind + 2xGeosh) — 4)
r24/29 * (cos(4nGsind — 107 Gcosh) + cos(10rGsind + AnGeosh) — 4)
r25/34 * (cos(6nGsinb — 10nGeosh) + cos(10nGsind + 6xGceosl) — 4)
r26/41 * (cos(8nGsind — 107 Gcosh) + cos{10wrGsind + 8wGeosd) — 4)
r27/41. * (cos(10nGsind — 87Gcosh) + cos(8wGsind + 10mrGeosl) — 4)
r28/34 * (cos(10nGsind — 6nGcosh) + cos(6nGsind + 10xGcosd) — 4)
r20/29 * (cos(107Gsind — AwGcosh) + cos(4rGsind + 10rGeosd) — 4)
r30/26 * (cos(10mGsind — 27Geosh) + cos(2wGsing + 10w Geosd) — 4)
r31/36 * (cos(12nGsind) + cos(12xGcosh) — 4)

r32/72 * cos(121GsinB) * cos(12nGeosh) — 4)

r33/37 * (cos(2nGsind — 12nGeosh) + cos(12nGsinb + 2nGceosh) — 4)
r34/40 * (cos(4nGsind — 12w Gcosh) + cos(12nGsind + ArGeosh) — 4)
1r35/45 * (cos(6rGsind — 12wGcosh) + cos(12nGsind + 6xGeosd) — 4)
r38/52 * (cos(8wGsind — 12rGeosh) + cos(12nGsind + 8w Gcosd) — 4)
r37/61 * (cos(107Gsind — 12xGcosl) + cos(12wGsiné + 10nGeosh) — 4)
r3s /61 * (cos(12nGsingd — 10nGeosh) + cos(10mGsind + 12rGceosl) — 4)
r39/52 * (cos(12nGsind — 8w Gcosh) + cos(8nGsinb + 12nGeosh) — 4)
140/45 * (cos(12nGsind — 6mGcosh) + cos(6nGsind + 12nGeosd) — 4)
r41/40 * (cos(12rGsind — 4xGeosh) + cos(4nGsinb + 12xGcosl) — 4)
r42/37 * (cos(12nGsind — 27 Gcosh) + cos(2rGsind + 127Gcosl) — 4)

t++++++ A+t A A A A+t

Coefficient A for eq. (20)( 472G%A +C =4)

C

+H A+ A F A+

r1(2. * (cos(2rGsind) + cos(2nGeost)}))

r2(2. + 2. * cos(2nGsind) * cos(2nGcosb))

ra3(3. + .5 * (cos(4nGsind) + cos(4nGcosd)))

r4(3.5 + .5 * cos(4wGsind) * cos(4nGcosh))

r5{16./5. + .4 * (cos(4wGsind ~ 2wGcosd) + cos(2nGsinb + 4nGcosh)))
re(16./5. + .4 x (cos(4wGsind + 2wGcosb) + cos(2nrGsind — 4nGeosh)))
r7(32./9. + 2./9. * (cos(6nGsind) + cos(6wGcosb)))

r5(68./18. + 4./18. * cos(6xGsind) * cos(6rGcosh))

r9(48./13. 4+ 2./13. * (cos(4nGsind — 67 Gcosb) + cos(6nGsind + 4wGcosh)))
r10(48./13. + 2./13. * {cos(4nGsinf + 67 Gcosb) + cos(6rGsind — 4wGeosh)))
711(36./10. + .2 % (cos(2nGsind — 6nGcos) + cos(6nGsinb + 2rGeosh)))
r12(36./10. + .2 * (cos(2nGsind + 67Gcosd) + cos(6wGsind — 2rGceosh)))
r13(60./16. + 2./16. * (cos(8mG'sind) + cos(8nGcosd)))



A Dispersion Analysis for Minimum Grids in the Frequency Domain Acoustic Wave Equation

N T T T o o s SR S S A S A

r14(124./32. + 4./32. * cos(8wGsinb) * cos(8wGcosh))

r15(64./17. + 2./17 * (cos(27Gsinb — 8w Gcosl) + cos(8wGsinb + 2nGcosh)))
r16(76./20. - 2./20.
r17(96./25. + 2./25.
r18(96./25. + 2./25.
r16(76./20. + 2./20.
ra0(64./17. 4+ 2./17.
r21(96./25. + 2./25.

r22(196./50.
r23(100./26.
r24(112./29.
1‘25(132./34.
r26(160./41
r27(160./41.
r28(132./34.
r20(112./29.
r30(100./26.
r31(140./36.

r32(284./72.
r33(144./37.

ra4(156./40.
r35(176./45.

r36(204./52.

r37(240./61.
r38(240./61.
1‘39(204./52.
r40(176./45.
r41(156./40.
r42(144./37.

+4./50
+2./26
+2./29
+2./34

. +2./41

+2./41
+2./34
+2./29
+2./26
+2./36
+4./72
+2./37
+2./40
+2./45
+2./52
+2./61
+2./61
+2./52
+2./45
+2./40
+2./37

* (cos(4nGsind — 81Gcosh) + cos(8rGsind + 4nGeosh)))

* (cos(6mGsind — 87Gcosh) + cos(8nGsind + 6mGeost)))

* (cos(8mGsind — 61Gcosd) + cos(6nGsind + 8wGeosh)))

* (cos(8nGsind — dwGeosh) + cos(4nGsind + BnGceosh)))

* (cos(8mGsind — 21Gcosh) + cos(2mwGsind + 8wGeosb)))

* (cos(10wGsinf) + cos(10mGcosh)))

. % cos(10wGsind) x cos(10wGeosb))

* (cos(2nGsing — 107Gcosh) + cos(10mGsind + 2wGeosh)))
. * (cos(4nGsind — 107G cosh) + cos(10nGsind + 4xGeosb)))
. * (cos(6w@sind — 10rGcosh) + cos(10rGsind + 67wGeosb)))
. * (cos(87Gsinh — 10w Gcosh) + cos(10nGsind + 8rGeosb)))
. * (cos(10nGsin® — 8w Geosh) + cos(8wGsinh + 107rGeosh)))
. * (cos(10nGsind — 67Gcosd) + cos(6nrGsind + 10wGcosb)))
. * (cos(10nGsin® — 4wGcosh) + cos(dwGsinb + 107 Geosh)))
. * (cos(10mGsind — 2nGcosh) + cos(2rGsinb + 10rGeosh)))
. * (cos(12nGsinb) + cos(12wGeost)))

. % cos(12nGsinb) * cos(12nGcosb))

. * (cos(2mGsind — 121Gcosh) + cos(12nGsind + 2wrGeosh)))
. * (cos(dnGsind — 12mGcosh) + cos(12nGsinfd 4 4wGcosh)))
. * (cos(6nGsind — 127Gcosd) + cos(12rGsind + 6wGeosh)))
. * (cos(8mGsinf — 121 Gcosb) + cos(12nGsinb + 8w Geosh)))
. * (cos(10nGsinf — 127Gcosf) + cos(12rGsind + 10rGceosh)))
. * (cos(127Gsind — 107rGcos@) + cos(10rGsinb + 12rGcosh)))
. * (cos(12rGsind — 87CGcosh) + cos(87Gsinb + 121Gcosh)))
. * (cos(12nG sinf — 67 Gcosb) + cos(6wGsinb + 12rGeosb)))
. * (cos(127Gsinf — 4nGcos) + cos(4nGsinb + 12xGcosh)))
. * (cos(127Gsin® — 2nGeosh) + cos(2nGsinb + 127Geosb)))
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