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ABSTRACT: Following the approach used by Penney and Price in 1952, analytical solutions are 

derived for water wave scattering by a semi-infinite breakwater or a breakwater gap of partial 

reflection. The water depth is constant and a regular wave train is normally incident to the 

breakwater. Wave scattering is studied based on the linear potential wave theory. The governing 

equation is transformed into ordinary differential equations by using the method of variation of 

parameters and coordinate transformation. Using the analytic solution, the tranquility of harbor 

entrance is investigated by changing the reflection coefficient at the breakwater. As expected, the 

wave height is reduced at the harbor entrance as the wave reflection from the breakwater 

decreases. 
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1. Introduction 

 

Numerous numerical models have been developed that predict the transformation of waves from 

the deep ocean to the coast. Since numerical models inherently involve approximations, it is 

necessary to test these models against both analytic solutions and laboratory and field data from 

representative cases. In theory, the most rigorous test cases would involve comparisons with 

laboratory and field data, because they are the physical systems of interest. However, such 

comparisons can be problematic, since it is difficult to measure or reproduce all the necessary 

boundary and forcing conditions in the experiments. Also, experimental data always contain a 

certain amount of measurement errors. Analytic solutions are another avenue for testing 

numerical models at reduced cost, time, and labor in comparison to experiments. 

Wave scattering by semi-infinitely long breakwaters has long been a subject of coastal 

engineering researchers. Penney and Price (1952) proposed an analytic solution for diffracted 
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waves around a semi-infinitely long impermeable breakwater based on Sommerfeld’s (1896) 

solution for diffraction of light. They also obtained the solution for the waves transmitted through 

a gap in a breakwater by superposing the solutions for the semi-infinite breakwaters. Recently, Yu 

(1995) derived the boundary condition for a thin porous wall based on the formulation of Sollitt 

and Cross (1972), and used it to find an approximate solution for diffraction of water waves 

normally incident to a semi-infinite porous breakwater. More recently, McIver (1999) extended 

the analytic solution to obliquely incident waves using the Wiener-Hopf technique. 

The solution of Penney and Price (1952) could be used for a vertical caisson breakwater, 

whilst those of Yu (1995) and McIver (1999) could be used for a rubble mound breakwater or any 

other porous breakwaters such as curtain wall or pile breakwaters. Nowadays, to reduce wave 

reflection from and impulsive wave pressure acting on a vertical caisson breakwater, a 

horizontally composite breakwater (i.e., a vertical caisson breakwater covered with wave-energy-

dissipating concrete blocks) or a perforated-wall caisson breakwater is often used, which has a 

partially reflective front and solid back. Such type of breakwaters can also improve the 

conditions for vessel navigation in harbor entrance area, resulting in a safer approach to a harbor 

entrance or maneuvering within the entrance itself (see McBride et al., 1994). In the present study, 

following the approach of Penney and Price (1952), we derive analytic solutions for waves 

scattered by a semi-infinitely long breakwater of partial reflection. The solutions for the waves in 

the vicinity of a breakwater gap are then obtained by superposition from the solutions for the 

semi-infinite breakwater already considered. Finally, the derived solutions are used to test the 

tranquility of harbor entrance by changing the reflection coefficient at the front face of the 

breakwater. 

 

2. Analytic Solutions 

 

2.1. Semi-infinite breakwater 

 

The plan view of a semi-infinitely long breakwater and the associated coordinate system are 

shown in Fig. 1. Cartesian coordinates x , y , and z  are chosen with origin by the mean free 

surface at the tip of the breakwater, the x - and y -axes lie in a horizontal plane and the z -axis 

is directed vertically upward. The water depth is constant as h , and the breakwater is placed 

along the positive x -axis. A regular wave train is normally incident to the breakwater from the 

negative infinity in the y -direction. 

 



 Fig. 1  

 

Assuming incompressible fluid and irrotational flow motion, the velocity potential exists, 

which satisfies the Laplace equation. Linearizing the free-surface boundary conditions, the 

following boundary value problem for the velocity potential ),,,( tzyx  is obtained. 
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The velocity potential satisfying the no-flow bottom boundary condition is represented by 

 

         tieyxFhzkAtzyx ,c o s h,,,                                          (5) 

 

where k  and   are the wave number and wave angular frequency, respectively, and ),( yxF  

is a complex function. Substituting Eq. (5) into the Laplace equation yields the Helmholtz 

equation in ),( yxF : 
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   To solve this equation, we closely follow the approach of Sommerfeld (1896), which is also 

summarized in Lamb (1945, p. 538). The readers could also refer to Kim (2007) for more detailed 

procedure. The general solution to the preceding equation can be expressed as the sum of two 

solutions: 

 

        yxFeyxFeyxF i k yi k y ,,, 21                                                (7) 

 

Since the procedure for solving the equation is the same for both solutions, the procedure is 



described only for one solution. Substituting the first solution into Eq. (6) gives 
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It is convenient to introduce the following parameters 

 

   22  kx , 2ky                                     (9) 

22  kr                     (10) 

 

where r  is the distance from the origin. We easily find 
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Using these relations, Eq. (8) can be expressed as an equation of   and  : 
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This equation can be transformed into an ordinary differential equation of a single variable   

by using the relation )()(  ffu  : 
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Solving this equation, the following solution can be obtained: 
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Similarly, the second solution in Eq. (7) can be obtained as 
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   The unknowns  ,  ,  , and   can be obtained by applying the partial reflection 

condition in front of the breakwater (  0y ) and the perfect reflection condition behind the 

breakwater (  0y ), i.e. 
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The coefficient b  in Eq. (18) is complex, i.e., 21
ibbb  . Assuming that there is no phase 

difference between incident and reflected waves, we have 
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where r
C  is the reflection coefficient at the breakwater, and   is the incident wave angle. In 

the case of perfect reflection, 1
r

C  so that 0b , which yields Eq. (19). Using the boundary 

conditions, Eqs. (18) and (19), the unknowns  ,  ,  , and   are obtained as 
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Substitution of Eqs. (16) and (17) with these coefficients into Eq. (7) gives 
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where 
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and 22 yxr  . The signs of   and '  in the yx   plane are as shown in Fig. 2. 

 

 Fig. 2  

 

2.2 Breakwater gap 

 

The plan view of a breakwater gap and the associated coordinate system are shown in Fig. 3. The 

origin of the horizontal coordinates is located at the center of the gap whose width is B . The 

solution is obtained by superposition from the solutions for the semi-infinite breakwaters located 

along the x -axis at 2/Bx   and 2/Bx  , respectively. 

 

 Fig. 3  

 

   To find the solution for the semi-infinite breakwater located at 2/Bx  , we use the 

parameters: 
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where 1
r  is the distance of the point ),( yx  from the tip of the breakwater. The solution 

procedure is the same as that given in section 2.1. The solution is given as Eqs. (23) and (24) with 



1
r  in the place of r . Using Eqs. (25) and (26), 1

r  is obtained as 
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The signs of   and '  in the yx   plane are the same as shown in Fig. 2. Similarly, for the 

semi-infinite breakwater located at 2/Bx  , we use the parameters: 
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where 2
r  is the distance of the point ),( yx  from the tip of the breakwater. Again, the solution 

is given as Eqs. (23) and (24) with 2
r  in the place of r , and Eqs. (28) and (29) can be used to 

obtain 2
r  as 
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In this case, the signs of   and '  are given as the symmetric transposition of Fig. 2 with 

respect to the y -axis. 

   The final solution is obtained by superposing the above two solutions for semi-infinite 

breakwaters. Because the signs of   and '  are different between the two solutions, it is 

necessary to make them unified. For this, Eq. (23) for the semi-infinite breakwater located at 

2/Bx   is changed to 
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Now 1
  and '

1
  have minus signs in the whole domain. The solution for the semi-infinite 

breakwater located at 2/Bx   can also be modified similarly. Finally, the superposition of the 

two solutions yields the solution for wave scattering by a breakwater gap as 
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Again 2
  and '

2
  have minus signs in the whole domain. 

 

3. Results 

 

Fig. 4 shows diffraction coefficients (i.e. wave amplitude relative to the incident amplitude) 

around a semi-infinite breakwater in the cases of 0.1
r

C  and 0.5. The results are presented in 

terms of dimensionless coordinates, Lx /  and Ly / , where L  is the wavelength. The solution 

of 0.1
r

C  becomes the solution of Penney and Price (1952). As expected, the diffraction 

coefficient behind the breakwater is not affected by the reflection coefficient of the breakwater. In 

the sea side of the breakwater, however, in addition to the decrease of standing wave height in 

front of the breakwater ( 0x ), the area of larger wave height decreases in the open area ( 0x ), 

as the reflection coefficient decreases. 

   Fig. 5 shows a comparison of diffraction coefficients at Ly 4  between 0.1
r

C  and 0.5. 

As the reflection coefficient decreases from 1.0 to 0.5, the reflected wave height reduces to a half 

so that the diffraction coefficient decreases from about 2.0 to 1.5 in front of the breakwater. The 

diffraction coefficient shows less variation for smaller reflection coefficient in the open area 

( 0x ) as well. 

   Fig. 6 shows diffraction coefficients around a breakwater gap of width LB 2  in the cases 

of 0.1
r

C  and 0.5. Again, as expected, the diffraction coefficient behind the gap is not affected 

by the reflection coefficient of the breakwater. In the seaward side of the gap, however, in 

addition to the decrease of standing wave height in front of the breakwaters ( 1/ Lx  and 

1/ Lx ), the agitation in front of the gap ( 1/1  Lx ) also reduces, as the reflection 

coefficient decreases. 

   Fig. 7 shows a comparison of diffraction coefficients at Ly 4  between 0.1
r

C  and 0.5. 



As the reflection coefficient decreases from 1.0 to 0.5, the reflected wave height reduces to a half 

so that the diffraction coefficient decreases from about 2.0 to 1.5 in front of the breakwaters. The 

diffraction coefficient in front of the gap ( 1/1  Lx ) also reduces a little with smaller 

reflection coefficient. 
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   To examine the effect of reflection coefficient upon the tranquility of harbor entrance, the 

diffraction coefficients for different reflection coefficients are plotted in Fig. 8 along three 

transects of 0/ Lx , 1 , and 2  in the case of a semi-infinite breakwater (cf. Fig. 1). First, 

it can be seen that the diffraction coefficient significantly reduces as departing from the tip of the 

breakwater. The difference between the maximum and minimum of diffraction coefficient 

decreases as the reflection coefficient decreases. In the transect passing the tip of the breakwater 

( 0/ Lx ), the maximum diffraction coefficient decreases from about 1.45 to 1.2 as the reflection 

coefficient decreases from 1.0 to 0.5. In the area far from the breakwater, though the diffraction 

coefficient itself is small, the relative effect of reflection coefficient is still significant. For 

example, at the transect of 2/ Lx , the maximum diffraction coefficient decreases from about 

1.1 to 1.04 as the reflection coefficient decreases from 1.0 to 0.5. 

   Fig. 9 shows the variation of diffraction coefficients for different reflection coefficients along 

transects of 0/ Lx  and 1  in the case of a breakwater gap (cf. Fig. 2). In the transect 

passing the center of the gap ( 0/ Lx ), the maximum diffraction coefficient increases as going 

away from the gap because the waves reflected from the breakwater diffract toward the area in 

front of the gap. On the other hand, in the transect passing the tip of the breakwater ( 1/ Lx ), 

the maximum diffraction coefficient increases with the distance from the breakwater in the area 

near the breakwater, and it decreases when 2/ Ly  and increases again when 5/ Ly . As 

with the semi-infinite breakwater, the difference between the maximum and minimum of 

diffraction coefficient decreases as the reflection coefficient decreases. In the transect passing the 

center of the gap ( 0/ Lx ), the maximum diffraction coefficient decreases from about 1.5 to 1.2 

at 6/ Ly  as the reflection coefficient decreases from 1.0 to 0.5. The same can be seen at 

2/ Ly  of the transect passing the tip of the breakwater ( 1/ Lx ). 

 



 Fig. 8  

 Fig. 9  

 

4. Conclusions 

 

In this study, we have derived analytic solutions for water wave scattering by a semi-infinite 

breakwater or a breakwater gap of partial reflection. The derived solution has been used to 

examine the effect of the reflection coefficient at the front face of the breakwater upon the wave 

climate near the breakwater or gap. It has been shown that the reduced reflection coefficient not 

only reduces the standing wave height in front of the breakwater but also reduces wave agitation 

at the entrance of a harbor.  

   In this study, it was assumed that the front face of the breakwater is of partial reflection while 

the back face is of perfect reflection. However, the boundary condition at the back face of the 

breakwater would not affect the solution because the wave height is essentially zero there and 

also the waves propagate parallel to the breakwater. Therefore, the present solution could be used 

for a breakwater of arbitrary reflection coefficients at both front and back faces. The present 

solution is limited to normally incident waves. An extension to oblique incidence may be 

necessary. 
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Figure 1. Definition sketch of a semi-infinite breakwater 
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Figure 2. Signs of   and   for a semi-infinite breakwater located at 0y , 0x  
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Figure 3. Definition sketch of a breakwater gap 
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Figure 4. Contours of diffraction coefficients in the vicinity of semi-infinite breakwater: (a) 

0.1
r

C ; (b) 5.0
r

C  
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Figure 5. Comparison of diffraction coefficients for different reflection coefficients at Ly 4  

of a semi-infinite breakwater 
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Figure 6. Contours of diffraction coefficients in the vicinity of a breakwater gap: (a) 0.1
r

C ; 

(b) 5.0
r

C  
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Figure 7. Comparison of diffraction coefficients for different reflection coefficients at Ly 4  

of a breakwater gap 
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Figure 8. Comparison of diffraction coefficients along different transects parallel to y -axis for 

semi-infinite breakwater with different reflection coefficients: (a) 0/ Lx ; (b) 1/ Lx ; (c) 

2/ Lx  
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Figure 9. Comparison of diffraction coefficients along different transects parallel to y -axis for 

breakwater gap of LB 2  with different reflection coefficients: (a) 0/ Lx ; (b) 1/ Lx  

 


