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Abstract 

 

An analytic solution to the extended mild-slope equation is derived for long waves 

propagating over an axi-symmetric pit, where the water depth decreases in proportion to 

a power of radial distance from the pit center. The solution is obtained using the method 

of separation of variables and the method of Frobenius. By comparing the extended and 

conventional mild-slope equations for waves propagating over conical pits with 

different bottom slopes, it is shown that for long waves the conventional mild-slope 

equation is reasonably accurate for bottom slopes less than 1:3 in horizontal two-

dimensional domains. The effects of the pit shape on wave scattering are discussed 

based on the analytic solutions for different powers. Comparison is also made with an 

analytic solution for a cylindrical pit with a vertical sidewall. Finally, wave attenuation 

in the region over the pit is discussed. 
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1. Introduction 

 

Wave transformation in a nearshore area is of primary importance to provide the 

coastal engineers with the input wave condition for design of coastal structures and 

beaches. Numerical models are frequently used to calculate the transformation of waves. 

However, since numerical solution techniques inherently involve approximations, it is 

necessary to test the models against both analytic solutions and laboratory and field data 

from representative cases. The most rigorous test cases would involve comparisons with 

laboratory and field data, because they are the physical systems of interest. However, it 

is difficult to measure all the necessary boundary and forcing conditions, especially in 

field experiments. Comprehensive measurements are somewhat easier to obtain (and 

repeat) in a laboratory test, yet difficulties arise when trying to reproduce the laboratory 

wave generating and absorbing systems in numerical models. Also, experimental data 

always contain a certain amount of measurement errors. 

Analytic solutions are another avenue for testing numerical models. Although 

analytic solutions are available only for special situations, they are generally developed 

at reduced cost, time, and labor in comparison to experiments, and comparisons with 

analytic solutions are a direct test of the numerical model scheme under idealized 

conditions. In addition, it is often simpler to use the analytic solution as a basis for 

evaluating the influence of specific forcing or boundary conditions on the problem. 

A frequently considered problem in analytic studies of wave transformation is the 

long wave motion around a circular island mounted on an axi-symmetric shoal. Homma 

[5], Vastano and Reid [15], Jonsson et al. [7], and Zhu and Zhang [18] studied long 

waves around a circular island mounted on a parabolic or conical shoal. Also, Zhang 

and Zhu [17] and Fujima et al. [4] presented the solution around a conical island or over 

a parabolic shoal. Recently, Yu and Zhang [16] presented a more general solution by 

describing the radial bathymetry of the shoal by a power of the radial distance. More 

recently, Liu et al. [8] extended the Homma’s solution to intermediate depth water 

waves by using Hunt’s [6] approximate direct solution of the implicit wave dispersion 

equation to explicitly express the coefficients of the mild slope equation. 

On the other hand, Suh et al. [13] presented the analytic solution for long waves 
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propagating over a parabolic pit, in which the water depth varies in proportion to the 

second power of the radial distance from the pit center. The present study is to extend 

the Suh et al.’s solution by easing the restriction on bathymetry. First, it is extended to a 

pit with a different shape by describing the radial bathymetry of the pit by a different 

power of the radial distance; the first power corresponds to a conical pit, and the pit 

approaches to a cylindrical pit as the power increases. Second, in order to resolve the 

effects of rapidly varying bathymetry associated with the increase of the power, the 

extended mild-slope equation (EMSE) is used, which includes additional terms 

proportional to bottom curvature and square of bottom slope compared to the 

conventional mild-slope equation (MSE).  

In the following section, we derive an analytic solution to the EMSE for long waves 

propagating over an axi-symmetric pit using the method of separation of variables and 

the method of Frobenius. The convergence of the solution is then examined with respect 

to the number of terms in the eigenfunction series and the Frobenius series. The 

accuracy of the mild-slope equation with respect to bottom slope in horizontal two-

dimensional domains is examined by comparing the extended and conventional mild-

slope equations for waves propagating over conical pits with different bottom slopes. 

We also discuss the effects of the pit shape on wave scattering using our analytic 

solution. Finally, wave attenuation in the region over the pit is discussed, and then we 

summarize the main conclusions. 

 

 

2. Analytic solution 

 

Consider an axi-symmetric pit situated in an otherwise constant depth region as 

shown in Fig. 1, where the origin of the horizontal coordinate system is taken to be the 

center of the pit, r  is the radial distance from the origin, and θ  is the angle measured 

counterclockwise from the positive x -axis. The incident wave is assumed to be a long-

crested wave propagating in the positive x  direction. The water depths at the origin 

and in the constant depth region are denoted by 0h  and 1h , respectively. The water 

depth in the pit is assumed to decrease from the center to the edge, according to the 

equation, )/1(0

 arhh  , where a  is the radial distance from the pit center to the 
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imaginary edge of the pit extended to the water surface and the power   is a positive 

integer. Denoting the radial distance to the actual edge of the pit as b , the water depth 

is given by 
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Fig. 2 shows the water depth along the x -axis for various values of  . The pit has a 

conical shape for 1 , and the pit approaches to a cylindrical pit with a vertical side 

slope as   increases. 
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Fig. 1. Definition sketch of an axi-symmetric pit located in an otherwise constant depth 

region. 
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Fig. 2. Cross-sectional views along the x -axis of axi-symmetric pits of various values 

of  . 

 

 

EMSE’s have been developed by Massel [10], Chamberlain and Porter [2], Suh at al. 

[14], and Chandrasekera and Cheung [3], all being equivalent for a monochromatic 

wave without evanescent modes. Among these, the second and fourth papers present 

simpler forms of the coefficients of the bottom curvature and slope-squared terms. In 

this study, we use the EMSE of Chandrasekera and Cheung given by 
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where   is the complex water surface elevation, C  the phase speed, gC  the group 

velocity, k  the wave number,   the wave angular frequency, g  the gravitational 

acceleration,   the horizontal gradient operator, and )(1 khf  and )(2 khf  are the 

coefficients of the curvature and slope-squared terms given, respectively, by 
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Without the last two terms in the bracket of Eq. (2), it reduces to the conventional MSE. 

For long (shallow water) waves, ghCC g   and hgk 22  , so that Eq. (2) 

becomes 
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In principle, the functions )(1 khf  and )(2 khf  could be expanded as power series 

of kh . In the limit of shallow water, they show behaviors of even and odd functions, 

respectively, as shown in Fig. 3. These functional behaviors can also be shown by their 

asymptotic forms as kh  approaches zero. By using the first two terms in each of the 

Taylor series expansions of the hyperbolic functions for small kh  and taking the 

leading order terms in the numerator and denominator of Eqs. (3) and (4), we obtain 

2

1 ))(6/1()( khkhf   and khkhf )6/1()(2  , which are even and odd functions, 

respectively. Therefore, we expand )(1 khf  and )(2 khf  as 
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with 0.00 b . Keeping the first three terms of each function and determining the 

coefficients by the least-square method, we get 0.00 a , 16636.01 a , 

14428.02 a , 0.00 b , 16640.01 b , and 19259.02 b . Fig. 3 shows comparisons 

between the exact and approximate functions of )(1 khf  and )(2 khf . The difference is 

unnoticeable within the limit of long waves, i.e., 10/kh , so we use the approximate 

functions with the first three terms in the following derivation. Now Eq. (5) can be 

approximated as 
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Fig. 3. Comparison between exact and approximate functions of )(1 khf  and )(2 khf . 
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In the pit area where )(rhh  , this equation can be expressed in polar coordinates as 
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  Using the method of separation of variables, i.e., by assuming   as a product form: 

 

)()(),(  rRr  (10) 

 

we obtain an eigenvalue problem for  , which leads to  
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where nC1  and nC2  are arbitrary constants. The function )(rR  corresponding to 

each eigenvalue n  can then be shown to satisfy the following ordinary differential 

equation: 
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where 0Q  if 3 , 2

*/ hQ   with 
ahh /0*   and gh /*

2   if 3 , and 

iP ’s are given in Table 1 for different values of  . 

   Since Eq. (12) is a second-order ordinary differential equation with variable 

coefficients, Frobenius-type series solution could be sought. It is noted that the point 

0r  is a regular singular point of Eq. (12), and ar   is an irregular singular point. 

According to Frobenius theory, if )(rRn  is expanded at the point 0r , the series 

converges for all r  being in the disk ar  . Since the pit region, br  , always lies 

within the disk ar  , the convergence of the solution is ensured. 

Assuming the Frobenius series solution, 





0 ,)(

m

cm

nmn rarR , and substituting it 

into Eq. (12) give 
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Table 1 

Definitions of iP ’s for different values of  . 
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Comparing the coefficients of the term of mr , we obtain nc  , which, in turn, gives 

two linearly independent solutions: 
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Imposing the condition that water surface elevation must be finite at the origin, 2,nR  

can be omitted. Substituting Eq. (14) into Eq. (13), we obtain the coefficients nm ,  as 

follows for different values of  . 

   In the case of 1 , n,0  is an arbitrary constant, and 
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In the case of 2 , n,0  is an arbitrary constant, and 
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In the case of 3 , n,0  is an arbitrary constant, and 
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Finally, for long waves over an axi-symmetric pit, the water surface elevation is given 

by 
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where nA  is an arbitrary constant. 

The long-crested incident wave propagating in the positive x  direction can be 

represented by  
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where ia  is the incident wave amplitude and 1i . It is known that 0  can be 

expanded into 
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where nJ  is the Bessel function of the first kind of order n , and the Jacobi symbols 

1n  for 0n  and 2n  for 1n , respectively. 

  In order to obtain the full solution, we apply the method of matched eigen-expansions. 

Accordingly, we divide the fluid domain into two regions in the horizontal plane: the 

finite region with variable depth )( br  , and the semi-infinite far region with constant 

depth )( br  . In the far region, the general solution of the complex surface elevation 

satisfies the Sommerfeld radiation condition at infinity as well as the symmetry 

condition about the x  axis and can be written as 
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where nD  is a set of complex constants to be determined, and 
)1(

nH  is the Hankel 

function of the first kind of order n . 

  In the finite region with varying depth, the water surface elevation can be written as 
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follows: 
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where nnn CAB 1  is again a set of complex constants to be determined. The terms 

associated with nsin  have been dropped based on the symmetry condition. 

  At br   where the slope of bottom is discontinuous, the continuity of surface 

elevation and mass flow conservation require (Porter and Staziker [11]) 
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respectively, where 
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and 
1h  and 

2h  are the water depths in the regions of br   and br  , respectively. 

Substituting Eqs. (30) and (31) into Eqs. (32) and (33) while noting that  ncos  

form an orthogonal set, we have 
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where the prime denotes derivatives. Solving for nB  and nD , we find 
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Substituting these coefficients back into Eqs. (30) and (31), we can compute the water 

surface elevation for the whole domain. 

 

3. Results and discussions 

 

3.1. Convergence of solution 

 

The analytic solution for   involves an infinite series, but in practice this must be 

properly truncated. In other words, we must use an integer N  that is large enough such 

that the infinite series in Eqs. (29), (30) and (31) are approximated with the desired 

accuracy. The number of terms, M , of the truncated Frobenius series of Eq. (14) 

should also be large enough to give accurate results. Numerical tests showed that inside 

the region of the pit, a required value of N  increases with r , but the results show 

little difference for 6N . Outside the region of the pit, however, a larger N  was 

necessary as leaving apart from the pit to calculate correct incident waves. It was also 

shown that the value of M  required for the convergence of the Frobenius series 

increases with both the radial distance r  and the power  . On the other hand, the 

required value of N  was little affected by  . In this study, therefore, with 40N  

fixed, M  was determined for br   and 40n  such that 
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40,
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40, 10/ 
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 
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m
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m

M

M bb   is satisfied. This M  was then used for the 

calculation of nR  or 
'

nR  in Eqs. (31), (36), and (37). The Bessel functions in the 

analytic solution were computed using the subroutines in [12]. 

 

3.2. Accuracy of the mild-slope equation 
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Booij [1] argued that accurate predictions of wave reflection using the MSE were 

limited to bottom slopes of less than 1:3 by showing that the MSE solution does not 

agree with the exact finite element method (FEM) solution to the Laplace equation for 

bottom slopes greater than 1:3. Later, Suh et al. [13] found that the MSE solution does 

not agree with the exact FEM solution even for slopes less than 1:3. They found that 

this disagreement is primarily due to the slope discontinuity at both ends of the slope 

that can be represented by the bottom curvature term of the EMSE. They also found that 

when only the bottom slope is concerned the MSE is accurate up to 1:1 rather than 1:3 

slope. The aforementioned arguments are based on the numerical tests in a horizontal 

one-dimensional domain.  

In this section, we compare the analytic solutions to EMSE and MSE in horizontal 

two-dimensional domains. Computations were made with 1 , 0h  = 9.6 m, 1h  = 

3.2 m, 
11hk  = 0.167, and three different values of b ; 3.2, 6.4, and 19.2 m, which give 

constant bottom slopes of the pit of 2:1, 1:1, and 1:3, respectively. These cone-shaped 

pits are beneficial to test the accuracy of the wave equations with respect to the bottom 

slope because the slope is constant in the pits. However, the bottom curvature is not 

constant.  

Figs. 4 to 6 show the values of the diffraction coefficients, or the wave amplitude 

relative to the incident amplitude, along the x - and y -axis, calculated by the EMSE, 

MSE, MSE with the bottom curvature term, and the MSE with the slope-squared term, 

for cone-shaped pits with different bottom slopes. The results are presented in terms of 

dimensionless coordinates, 1/ Lx  and 1/ Ly , where 1L  is the wavelength in the 

constant depth region. Along the x -axis, the spatial variations of the diffraction 

coefficients of all the equations are in phase for the bottom slopes of 1:1 and 1:3, 

whereas for the slope of 2:1 the result of the MSE and MSE with the slope-squared term 

is out of phase with others. Along the y -axis, the EMSE and the MSE with the bottom 

curvature term are in opposite phase with other two equations for the slopes of 2:1 and 

1:1. It is interesting to note that the MSE with the slope-squared term gives greater 

difference from the EMSE than the MSE does. This is because the bottom curvature 

term in the bracket of Eq. (5) is positive but the slope-squared term is negative, 

everywhere inside the pit. Note that both )(1 khf  and )(2 khf  terms are always 
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negative as shown in Fig. 3, while h2  and  2h  are negative and positive, 

respectively, inside the pit. Therefore, the bottom curvature term and the slope-squared 

term behave to cancel out each other, the former dominating the latter in general.  

Finally, to examine the accuracy of the MSE with respect to the bottom slope, the 

MSE with the bottom curvature term is compared with the EMSE, which includes the 

full ( h  and  2h ) effect of bottom slope as well as the effect of bottom curvature. 

The comparison of these two equations would elucidate the difference of the effect of 

bottom slope between the MSE and EMSE because the MSE includes the effect of 

bottom slope of only h . If they show only a little difference for a certain bottom 

slope, we could say that the MSE is accurate up to that bottom slope. As shown in Figs. 

5 and 6, the MSE with the bottom curvature term shows only reasonable agreement with 

the EMSE for 1:3 slope and poor agreement for 1:1 slope, which is different from the 

results in a horizontal one-dimensional domain where the agreement was almost perfect 

up to 1:1 slope. Based on these numerical tests, we could conclude that the MSE is only 

reasonably accurate up to the slope of 1:3 in horizontal two-dimensional domains. 
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Fig. 4. Diffraction coefficients along (a) x -axis and (b) y -axis for a cone-shaped pit 

with 0h  = 9.6 m, 1h  = 3.2 m, 11hk  = 0.167, and b  = 3.2 m: ―― = EMSE; …… 

= MSE; - - - - - = MSE plus bottom curvature term; ― - ― = MSE plus slope-squared 

term. 
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Fig. 5. Same as Fig. 4 except for b  = 6.4 m. 
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Fig. 6. Same as Fig. 4 except for b  = 19.2 m. 
 

 

3.3. Effect of pit shapes 

 

As the power   increases from one to infinity, the pit changes from a conical 
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shape to a cylindrical shape as shown in Fig. 2. In this section, we examine the effects 

of the shape of the pit based on the analytic solutions for different values of  . 

Computations were made with 6.90 h  m, 2.31 h  m, 167.011 hk , and 
15.0 Lb  . 

Fig. 7 shows diffraction coefficients along the x - and y -axis for the case of 

,4,2,1 8, and 16. As   increases, the partial standing wave (due to reflection) in 

front of the pit increases and more energy is also scattered laterally due to refraction; 

thus, there is more of a reduction of wave heights in the shadow zone. The location of 

the smallest wave height in the shadow zone is shifted backwards as   increases, but 

the location of the small peak in the pit, which is due to wave reflection from the rear 

wall of the pit, remains almost constant at 4.0/ 1 Lx . The lateral variation of the 

diffraction coefficient also increases with  , showing the locations of its maxima and 

minima be shifted farther from the pit as   increases. It is noticeable that a new local 

peak starts to appear near the upwave boundary of the pit (i.e., 4.0/ 1 Lx ) as   

increases probably due to re-reflection of the waves from the steeper upwave slope of 

the pit. 
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Fig. 7. Diffraction coefficients along (a) x -axis and (b) y -axis for axi-symmetric pits 

with different  ’s: 0h  = 9.6 m, 1h  = 3.2 m, 11hk  = 0.167, and 15.0 Lb   are used, 

and the Longuet-Higgins [9] solution for a cylindrical pit is also shown. 
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   Longuet-Higgins [9] has studied wave propagation over a submerged circular sill. 

His solution can be used without modification for a cylindrical pit, the depth of which 

can be described by Eq. (1) with  . The Longuet-Higgins’ solution for a 

cylindrical pit is shown in Fig. 7 along with the present solutions with different  ’s. As 

expected, the present solution approaches the Longuet-Higgins’ solution as   

increases.  

It would be interesting to see whether the conventional mild-slope solution would 

approach the Longuet-Higgins’ solution as   increases. Without showing the result of 

the conventional mild-slope equation, we just mention that it is almost same as that of 

the extended mild-slope equation shown in Fig. 7. This might be because the mild-slope 

assumption is satisfied in most of the region except the very edge of the pit. The average 

slope of the pit, 0 1( ) /h h b , is about 0.11 and the effect of higher order terms is 

negligible in most of the region in the pit. 

To visualize the wave transformation inside and around the pit, the three-

dimensional plot of the diffraction coefficient is given in Fig. 8 for the case of 16 . 

It can be seen that in front of the pit a partial standing wave system develops, while in 

the lee of the pit a shadow zone exists in which wave heights are reduced. 

 

 
 

Fig. 8. Diffraction coefficients around a pit with 16 , 0h  = 9.6 m, 1h  = 3.2 m, 

11hk  = 0.167, and 15.0 Lb  . 
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3.4. Wave attenuation inside pits 

 

   Long waves propagating over a submerged island are trapped in the region over the 

island so that the amplitude of each wave mode is amplified at the resonant frequencies. 

On the contrary, in the case of a pit, wave attenuation occurs in such a way that the 

wave amplitude becomes smaller than the incident amplitude in the region over the pit. 

Fig. 9 shows the amplitudes of the first wave modes in the region over the pit relative to 

the incident amplitude as a function of the dimensionless frequency, 0/ ghb , for 

different values of  . The geometry of the pit is the same as that used to produce Fig. 

7. Calculation was made up to the dimensionless frequency of 7.0 to see the behavior of 

the amplitudes with the change of the frequency, but the long wave approximation (i.e. 

10/kh ) is satisfied only up to the dimensionless frequency of about 1.8 for the 

largest water depth at the center of the pit. 
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Fig. 9. Dimensionless amplitudes of the first wave modes in the region of pits with 

different  ’s as a function of dimensionless frequency, 0/ ghb . 

 

As shown in Fig. 9, the dimensionless amplitude of the first wave mode 0( n ) is 

unity for very long waves, decreasing to the dimensionless frequency of about 2.3, and 

bouncing to oscillate around 0.6 for larger frequencies. The oscillation is amplified with 

the power,  . On the contrary, the amplitudes of the higher modes being very small for 
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very long waves increase monotonically with the frequency as shown in Fig. 10. In the 

case of a submerged circular sill, increasing n  leads to higher and sharper resonant 

peaks (see Longuet-Higgins [9]). In the case of a circular pit, however, the amplitudes 

of the higher wave modes are much smaller than that of the first wave mode. In 

conclusion, wave attenuation occurs in the region over the pit, as expected, with greater 

variation with frequency for larger  . 

It may be possible to use the present analytic solution for the wave trapping over a 

submerged mound by modifying the equation for water depth to )/1(0

 arhh   so 

as to represent a mound. 
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Fig. 10. Dimensionless amplitudes of the higher wave modes in the region of pits with 

8   as a function of dimensionless frequency, 0/ ghb . 

 

 

4. Conclusion 

 

We derived an approximated analytic solution to the extended mild-slope equation 

for long waves propagating over an axi-symmetric pit located in an otherwise constant 

depth region. It was found that the conventional mild-slope equation is reasonably 

accurate up to the bottom slope of 1:3 in horizontal two-dimensional domains, which is 

different from the previous finding that the mild-slope equation is accurate up to the 
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slope of 1:1 in a horizontal one-dimensional domain. The effects of the power   were 

also examined, and the variation in wave scattering for different  ’s was described. 

Finally, the wave attenuation in the region of the pit was described. 

In the above statement regarding the accuracy of the mild-slope equation with 

respect to bottom slope, it should be noted that the present tests in two-dimensional 

domains were made for long waves, whilst the previous finding in one-dimensional 

domains was obtained for intermediate-depth water waves. Therefore, the statement that 

the mild-slope equation in a two-dimensional domain is accurate up to the bottom slope 

of 1:3 is effective only for long waves in shallow water. A further study is needed for 

intermediate-depth water waves. Another limitation of the statement is that the extended 

mild-slope equation was not proven to be more accurate than the mild-slope equation by 

comparing their results with a third-party result which can be considered to be exact (as 

Suh et al. [14] have compared the numerical solutions of original and extended mild-

slope equations with the finite element solution for two-dimensional Laplace equation 

for Booij’s [1] ramp problem). We wish our solutions will be compared with an 

accurate third-party solution, e.g., finite element or boundary element solution for three-

dimensional Laplace equation, in near future. 
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