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Abstract 

   This paper presents a mathematical model which computes the hydrodynamic 

characteristics of a curtainwall-pile breakwater using circular piles, by modifying the 

model developed for rectangular piles by Suh et al. in 2006. To examine the validity of 

the model, laboratory experiments have been conducted for curtainwall-pile breakwaters 

with various values of draft of curtain wall, spacing between piles, and wave height and 

period. Comparisons between measurement and prediction show that the mathematical 

model adequately reproduces most of the important features of the experimental results. 

The mathematical model based on linear wave theory tends to over-predict the reflection 

coefficient as the wave height increases. As the draft of the curtain wall increases and the 

porosity between piles decreases, the reflection and transmission coefficient increases 

and decreases, respectively, as expected. As the relative water depth increases, however, 

the effect of porosity disappears because the wave motion is minimal in the lower part of 

a water column for short waves. 
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1. Introduction 

 

In general, the width of gravity-type breakwaters increases with water depth, leaving 

a large footprint and requiring a great amount of construction material, especially when 

built in deeper water. Often they block littoral drift and cause severe erosion or accretion 

in neighboring beaches. In addition, they prevent the circulation of water and so 

deteriorate the water quality within the harbor. In some places, they obstruct the passage 

of fishes and bottom dwelling organisms. A solid soil foundation is also needed to 

support such heavy structures. 

   In order to resolve the above-mentioned problems, porous (permeable) structures 

have been introduced especially in small craft harbors. The simplest porous structure 

may be a curtain wall breakwater, which consists of a vertical wall extending from the 

water surface to some distance above the sea bed, or a pile breakwater, which consists of 

an array of closely spaced vertical piles. Recently, Suh et al. (2006) proposed a 

curtainwall-pile breakwater (CPB hereinafter), the upper part of which is a vertical wall 

and the lower part consists of an array of vertical piles. They developed a mathematical 

model to predict wave transmission, reflection, run-up, and wave force acting on a CPB, 

using the eigenfunction expansion method. They conducted large-scale laboratory 

experiments to examine the validity of the developed model, showing that the model 

adequately reproduces most of the important features of the experimental results. 

   A CPB is being constructed at the Yeoho Port in the south coast of Korea, the cross-

section of which is shown in Fig. 1. The vertical pile indicates the CPB, and the right 

inclined pile is constructed more sparsely than the vertical pile to support the breakwater. 

The curtain wall is installed in front of the vertical piles and is extended to 1.1 m below 

the datum level. The sea bed is located at 1.6 m below the datum level so that only 0.5 m 

above the sea bed is open. The trapezoidal concrete pedestals between 1.1 and 1.6 m 

below the datum level (see Fig. 1) are attached to the piles and support the curtain wall 

so that an opening is formed between adjacent piles. The CPB of the Yeoho Port uses 

circular piles, and the thickness of the curtain wall is smaller than the pile diameter. Suh 

et al. (2006) used square piles, the side length of which is the same as the thickness of 

the curtain wall. Also they tested CPB’s only for one spacing between piles. In this paper, 

we modify Suh et al.’s (2006) model to be used for circular piles. To examine the validity 

of the model, laboratory experiments are conducted for CPB’s with various values of 
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draft of curtain wall, spacing between piles, and wave height and period. In the following 

section, the modification of the mathematical model of Suh et al. (2006) for circular piles 

is described. In Section 3, the laboratory experiment is described. In Section 4, the 

predictions of the model are compared with the experimental results. The major 

conclusions then follow. 

 

2. Mathematical model 

 

Let us consider the CPB sketched in Fig. 2, in which h  is constant water depth in 

still water, d  draft of the curtain wall, b  thickness of the wall, and D  is the diameter 

of the pile. This CPB is different from the Yeoho Port breakwater in that the curtain wall 

is not located in front of the piles but located between the piles. This difference, however, 

may not significantly change the hydrodynamic characteristics of the breakwater. A 

Cartesian coordinate system ),( zx  is defined with the positive x  directing downwave 

from the crest line of the breakwater and the vertical coordinate z  being measured 

vertically upwards from the still water line. The distance between the centers of two 

neighboring piles is denoted as A2  and the width of an opening is a2  so that the 

porosity of the lower part of the breakwater at 0x  is defined as Aar /0  . A regular 

wave train with wave height iH  is incident in the positive x -direction. We divide the 

fluid domain into region 1 ( 0x ) and region 2 ( 0x ). 

   Assuming incompressible fluid and irrotational flow motion, the velocity potential 

  exists, which satisfies the Laplace equation. In addition, the wave height is assumed 

sufficiently small so that   is subjected to the linearized free-surface boundary 

condition. Then the velocity potential ),,( tzx  in water of constant depth h  [see, for 

example, Dean and Dalrymple (1991)] may be expressed, using complex notation, as 

 

   








 )e x p (),(
)c o s h (

1

2
Re),,( tizx

kh

igH
tzx i 


                         (1) 

 

where   is the wave angular frequency, g  the gravitational acceleration, 1i , 

and the symbol Re represents the real part of a complex value. The wave number k  

must satisfy the dispersion relationship: 
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The spatial variation of the velocity potential ),( zx  should be determined in each 

region. 

   We assume that the wall thickness is very small compared with the wave length, so 

that the wall has no thickness mathematically. Then ),(1 zx  and ),(2 zx  must satisfy 

the following matching conditions at 0x : 
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where the subscripts indicate the regions of the fluid domain. The first matching 

condition describes that the horizontal velocities vanish on both sides of the upper 

impermeable wall of the breakwater. The second one for the lower part of the breakwater 

describes that the horizontal velocities in the two regions must be same at the breakwater 

and that the horizontal velocity at the opening is proportional to the difference of 

velocity potentials, or the pressure difference, across the breakwater. The proportional 

constant G , often called permeability parameter, is in general complex. There are 

several ways to express the constant G . In the present study, we adopt the method of 

Mei et al. (1974) and G  is expressed by 
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G









1
                                                        (5) 

 

where   is the energy dissipation coefficient derived by linearizing the nonlinear 

convective acceleration term in the equation of motion, and   is the length of the jet 

flowing through the gap between piles. The real part of the denominator in (5) 

corresponds to the resistance of the breakwater and the imaginary part is associated with 

the phase difference between the velocity and the pressure due to inertial effects. 
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The linearized dissipation coefficient   is given by Kim (1998) as 
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where kP  ,  /kR  , and   is the head loss coefficient. The preceding equation 

was derived for a pile breakwater without a curtain wall, but it could be used for a CPB 

because the mechanism of energy dissipation between piles must be same for these two 

breakwaters. Rearrangement of (6) gives a quartic polynomial of  , which can be 

solved by the eigenvalue method [e.g., Press et al. (1992)].  

Suh et al. (2002) showed that the jet length   is related to the blockage coefficient 

C  by 

 

   C2                                                             (7) 

 

Kakuno and Liu (1993) proposed the blockage coefficient for circular piles as 
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Park et al. (2000) proposed a formula for the head loss coefficient: 
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where the ad hoc porosity r  is given by  
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with the spatially varying porosity 



 6 

 

   

a
D

x
D

xr














2

2
1)(

2

2

                                              (11) 

 

and cC  is the empirical contraction coefficient, for which Mei et al. (1974) suggested 

using the formula: 
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To obtain the solutions for 
1  and 

2 , we use the eigenfunction expansion method. 

We closely follow the method of Isaacson et al. (1998), which was also used by Suh et al. 

(2006). The velocity potential is expressed in a series of infinite number of solutions: 
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where )exp()](cosh[ ikxzhki   is the incident wave potential. The wave numbers 

m  are the solution of the dispersion relation, )tan(2 hg mm   , which has an 

infinite discrete set of real roots m  ( 1m ) for non-propagating waves and a pair of 

imaginary roots ik0  for propagating waves. We take ik0  so that the 

propagating waves in (13) and (14) correspond to reflected and transmitted waves, 

respectively. We also take the positive roots for 1m  so that the non-propagating 

waves die out exponentially with the distance from the breakwater. 

   Now the solutions (13) and (14) satisfy the free surface boundary condition and the 

bottom boundary condition. Also, they automatically satisfy the requirement that the 

horizontal velocities must be matched at the breakwater. In order to solve for the 
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unknown coefficients mA ’s, we use the matching conditions at the breakwater.  First, 

(13) and (14) are substituted into (3) and (4), respectively. Multiplying each resulting 

equation by )](cos[ zhn  , integrating with respect to z  over the appropriate domain 

of z  (i.e., dz   to 0 , or hz   to d ), and finally adding them, we obtain a 

matrix equation for mA : 
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Once the wave potentials are calculated, we can obtain various engineering wave 

properties. The reflection and transmission coefficients are given by 
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and 
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respectively. The wave run-up on the upwave face of the breakwater is given by 
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Since the vertical distributions of wave pressure on both upwave and downwave 

sides of the breakwater are known, the wave force and overturning moment about the 

mud line can also be calculated. The maximum horizontal wave force maxF  and the 

maximum overturning moment about the mud line maxM  per unit width of the 

breakwater are given by 
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and 
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respectively, where   is the density of fluid. 

 

3. Laboratory experiment  

 

Experiments were carried out in the wave flume at Department of Civil and 

Environmental Engineering of Myongji University. The flume was 30 m long, 0.7 m 

wide, and 1.4 m deep. It was equipped with a piston-type wave generator at one end, and 

a wave absorbing beach at the other. A mortar-covered false bed with a 1/10 fore-slope of 

2.5 m length followed by a 1/30 slope of 6 m length was constructed at the elevation of 

0.45 m from the bottom of the flume. The fore-slope of the false bed started at a distance 

of 6 m from the wave maker. The breakwater model was placed at a distance of 22.5 m 

from the wave maker and 8 m from the beginning of the flat false bed. Steel pipes and 
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acrylic plates were used to make the piles and curtain walls, respectively. Water surface 

displacements were measured with capacitance-type wave gauges. 

   All experiments were conducted at a water depth of 0.37 m on the false bed. Circular 

piles of 7 cm diameter were used with a  = 1.5, 2.33, 3.5, and 5.25 cm, which 

corresponds to 7, 6, 5, and 4 piles, respectively, in the flume of 0.7 m width. The 

corresponding porosity of the lower perforated wall was 0.3, 0.4, 0.5, and 0.6. The 

thickness of the curtain wall b  was 3.5 cm. Five different drafts of the curtain wall were 

used; 12, 14, 16.8, 21.1, and 28.1 cm. The curtain wall was high enough above the water 

level to prevent wave overtopping.  

   Three different wave periods (T  = 0.8, 1.08, 1.5 s) were used except for the cases of 

porosity of 0.5, in which additional tests were made for 1.3 s wave period. For each of 

the wave period, three different wave heights were tested; 7.2, 9.2, and 11.2 cm. The 

relative depth kh  ranges from 0.91 to 2.4, and the wave steepness LH /  ranges 

between 0.0283 and 0.114. 

   To measure the incident and reflected waves, the spatial variation of the wave 

envelope was measured by slowly moving a wave gauge in the uniform depth region in 

front of the breakwater (see Dean and Dalrymple, 1991). The transmitted waves were 

measured using a wave gage behind the breakwater assuming that the wave reflection 

from the downwave beach is negligible. Previous observations indicated reflection 

coefficients from the beach of 0.05 to 0.1 for the wave periods used in these tests. Wave 

measurements were made for 60 s at a sampling rate of 20 Hz immediately after the 

initiation of wave generation. For the analysis of wave reflection and transmission, we 

used 512 data after skipping the first 20 s. 

 

4. Comparison with experimental results 

 

In this section, the mathematical model results are compared with the experimental 

results. The number of terms used in the eigenfunction expansion method was 50, which 

was found to give accurate results over the range of values presented here. 

Comparison of the measured and calculated reflection coefficients is shown in Fig. 3 

for different wave heights, in which the subscripts c and m denote calculation and 

measurement, respectively. Although the overall agreement is acceptable, the model 

somewhat over-predicts the reflection coefficients at larger values, while under-
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predicting them at smaller values. The over-prediction at larger values is more apparent 

for larger wave heights, for which the linear wave theory used in this study becomes 

inaccurate. Fig. 4 shows a comparison of the measured and calculated transmission 

coefficients. Again the overall agreement is acceptable, but the model somewhat over-

predicts the transmission coefficient except at very large or very small values. In this 

case, there is no evidence of the effect of wave nonlinearity. 

   In order to show the effect of the draft of the curtain wall, a selection of results is 

presented in Figs. 5 and 6, which show comparisons of the measured and predicted 

reflection and transmission coefficients, each as a function of kh  for porosity between 

piles 4.00 r  and 0.6, respectively. Comparisons are shown for relative drafts 

324.0/ hd , 0.570, and 0.759. For the experimental data, those of the smallest wave 

height 2.7H  cm were used, which would give good agreement with the linear wave 

theory. In general, the mathematical model adequately reproduces most of the important 

features of the experimental results. The reflection and transmission coefficients, 

respectively, increase and decrease with the relative water depth. As the draft of the 

curtain wall increases, the reflection coefficient increases while the transmission 

coefficient decreases, as expected, in both prediction and measurement. A comparison 

between Figs. 5 and 6 shows that the reflection and transmission coefficient decreases 

and increases, respectively, with the porosity between piles, especially for smaller 

relative water depth. 

   Figs. 7 and 8 show the effect of the porosity between piles, which compares the 

measured and predicted reflection and transmission coefficients, as a function of kh  for 

relative drafts 378.0/ hd  and 0.570, respectively. Comparisons are shown for 

porosities between piles 3.00 r , 0.4, 0.5, and 0.6. Again the experimental data of the 

smallest wave height 2.7H  cm were used. As the porosity between piles increases, 

the reflection coefficient decreases while the transmission coefficient increases, as 

expected, in both prediction and measurement. As the relative water depth increases, 

however, the effect of porosity disappears because the wave motion is minimal in the 

lower part of the water column for short waves. A comparison between Figs. 7 and 8 

shows that the reflection and transmission coefficient increases and decreases, 

respectively, with the relative draft of curtain wall. 

 

5. Conclusions 
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   In this study, we modified the mathematical model of Suh et al. (2006), which was 

developed for a CPB using rectangular piles, to be used for circular piles. The model was 

then compared with the experimental data obtained for various values of draft of curtain 

wall, spacing between piles, and wave height and period. 

Comparisons between measurement and prediction showed that the mathematical 

model was able to adequately reproduce most of the important features of the 

experimental results, even though the reflection coefficients were over-predicted for 

larger wave heights, which violate the linear wave theory. The reflection coefficient 

increased with the relative water depth, whereas the transmission coefficient decreased 

with the relative depth. As the draft of the curtain wall increased, the reflection 

coefficient increased, while the transmission coefficient decreased, as expected. On the 

other hand, as the porosity between piles increased, the reflection coefficient decreased 

while the transmission coefficient increased. As the relative water depth increased, 

however, the effect of porosity disappeared because the wave motion was minimal in the 

lower part of the water column for short waves. 
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Caption of figures 

 

1. Cross-section of the Yeoho Port breakwater. 

2. Definition sketch: (a) side view, (b) front view and top view. 

3. Comparison of the reflection coefficients between measurement and calculation. 

4. Comparison of the transmission coefficients between measurement and calculation. 

5. Comparison of the predicted reflection and transmission coefficients with 

experimental results as a function of kh  for 4.00 r : (a) reflection coefficient, (b) 

transmission coefficient. Predicted: ──, 324.0/ hd ; - - -, 570.0/ hd ; ─ 

• ─, 759.0/ hd . Measured: ●, 324.0/ hd ; ▲, 570.0/ hd ; ◆, 

759.0/ hd . 

6. Same as Fig. 5 but for 6.00 r . 

7. Comparison of the predicted reflection and transmission coefficients with 

experimental results as a function of kh  for 378.0/ hd : (a) reflection coefficient, 

(b) transmission coefficient. Predicted: ──, 3.00 r ; - - -, 4.00 r ; ─ • ─, 

5.00 r ; ─ • • ─, 6.00 r . Measured: ●, 3.00 r ; ▲, 4.00 r ; ◆, 

5.00 r ; ╋, 6.00 r . 

8. Same as Fig. 7 but for 570.0/ hd . 
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Fig. 1. Cross-section of the Yeoho Port breakwater. 
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Fig. 2. Definition sketch: (a) side view, (b) front view and top view. 
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Fig. 3. Comparison of the reflection coefficients between measurement and calculation. 
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Fig. 4. Comparison of the transmission coefficients between measurement and 

calculation. 
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Fig. 5. Comparison of the predicted reflection and transmission coefficients with 

experimental results as a function of kh  for 4.00 r : (a) reflection coefficient, (b) 

transmission coefficient. Predicted: ──, 324.0/ hd ; - - -, 570.0/ hd ; ─ • ─, 

759.0/ hd . Measured: ●, 324.0/ hd ; ▲, 570.0/ hd ; ◆, 759.0/ hd . 
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Fig. 6. Same as Fig. 5 but for 6.00 r . 
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Fig. 7. Comparison of the predicted reflection and transmission coefficients with 

experimental results as a function of kh  for 378.0/ hd : (a) reflection coefficient, (b) 

transmission coefficient. Predicted: ──, 3.00 r ; - - -, 4.00 r ; ─ • ─, 5.00 r ; 

─ • • ─, 6.00 r . Measured: ●, 3.00 r ; ▲, 4.00 r ; ◆, 5.00 r ; ╋, 

6.00 r . 
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Fig. 8. Same as Fig. 7 but for 570.0/ hd . 
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