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Abstract 

 

   In order to verify modified mild-slope equation models in a horizontal two-

dimensional space, a hydraulic experiment is made for surface wave propagation over a 

circular shoal on which water depth varies substantially. A horizontal two-dimensional 

numerical model is also constructed based on the hyperbolic equations that have been 

developed from the modified mild-slope equation to account for the substantial depth 

variation. Comparison between experimental measurements and numerical results 

shows that the modified mild-slope equation model is capable of producing accurate 

results for wave propagation in a region where water depth varies substantially, while 

the conventional mild-slope equation model gives large errors as the mild-slope 

assumption is violated. 
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1. Introduction 

 

   The mild-slope equation (abbreviated as MSE hereinafter) developed by Berkhoff 

(1972) has been widely used to compute the transformation of surface gravity waves in 

coastal regions. It has not only been used in its original form of elliptic equation but also 

provided the basic governing equation for the development of other wave propagation 

models such as parabolic model (Radder, 1979), hyperbolic model (Copeland, 1985) 

and angular spectrum model (Dalrymple et al., 1989). 

   The MSE assumes that the water depth varies slowly over a wavelength, that is, 

1/  khh , where   = horizontal gradient operator, h  = water depth, and k  = 

wave number. A few studies have attempted to extend the MSE to account for 

substantial depth variation. Kirby (1986) extended the mild-slope approximation to 

include rapidly varying, small amplitude deviations from a slowly varying topography 

and applied the resulting equation to a two-dimensional problem involving wave 

reflection from sinusoidal beds. Tsay et al. (1989) subsequently applied Kirby’s 

extended equation to three-dimensional bedforms. O’Hare and Davies (1992) developed 

a new model to simulate wave transformation in rapid undulations by approximating the 

bed as a series of horizontal shelves. A similar technique was also used by Guazzelli et 

al. (1992) and Cho and Lee (2000). 

   Recently efforts have been made to improve the MSE by including the higher-order 

bottom effect terms proportional to the square of bottom slope and to the bottom 

curvature, which were neglected in the derivation of the MSE (Massel, 1993; 

Chamberlain and Porter, 1995; Suh et al., 1997; Chandrasekera and Cheung, 1997). 

Neglecting the evanescent wave modes, for a monochromatic wave, the equations of all 

these authors, in spite of different approaches of derivation, reduce to a same equation, 

which will be referred to as the modified mild-slope equation (abbreviated as MMSE 

hereinafter) in this paper as named by Chamberlain and Porter (1995). More recently, 

Lee et al. (1998) recasted the MMSE into the form of a pair of first-order equations, 

which constitute a hyperbolic system. All of these authors applied the MMSE to two-

dimensional problems involving wave reflection from sinusoidal beds or a submerged 

bar. On the other hand, Chandrasekera and Cheung (1997) applied the MMSE to three-
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dimensional bedforms. First they computed the wave transformation over a circular 

shoal for which the experimental data of Sharp (1968) are available. They compared the 

solutions of the MSE and the MMSE with the experimental data, but the difference 

between the MSE and the MMSE was not significant. Both solutions showed reasonable 

agreement with the experimental data, because the effects of the higher-order bottom 

effect terms are minor. To evaluate the significance of these terms, they performed a 

numerical experiment using circular shoals of different configuration, for which they 

found that the two solutions showed significant difference. 

   Chadrasekera and Cheung (1997) performed only a numerical experiment for the 

circular shoals for which the MSE and the MMSE showed significant difference. In the 

present study, we carry out a hydraulic experiment for wave transformation over one of 

the shoals used in the numerical experiment of Chadrasekera and Cheung. We also 

construct a horizontal two-dimensional numerical model based on Lee et al.’s (1998) 

hyperbolic equations that were developed from the MMSE. The experimental 

measurements are then compared with the numerical model results. In the following 

section, the hydraulic experiment for wave transformation over a circular shoal is 

described. In section 3, Lee et al.’s (1998) equations are briefly summarized and the 

finite difference formulation of the equations is made in a horizontal two-dimensional 

space. In section 4, the hydraulic experimental data are compared with the numerical 

model results. Comparison with the MSE model is also made to elucidate its limitation 

in the situations of substantial depth variation. 

 

2. Hydraulic experiment 

 

   The experiment was conducted in the wave tank at the Coastal Engineering 

Laboratory of Seoul National University. The wave tank is 11 m wide, 23 m long, and 1 

m high. The wave paddle is only 6 m wide, so guide walls were installed along the tank 

and wave absorbers at both ends of the tank as shown in Fig. 1. Waves are generated 

with a piston-type wave maker. The wave generation and data acquisition are controlled 

by a personal computer. Water surface displacement was measured with parallel-wire 

resistance-type wave gauges. 

   The circular shoal was patterned after that used in the numerical experiment of 
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Chandrasekera and Cheung (1997). It was made by milling acrylic resin and was pasted 

on the bottom of the tank. The water depth on the shoal at a distance r  from the center 

is given by 
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where 0h  = 0.3 m is the water depth on flat bottom, b  = 0.18 m is the height of the 

shoal at its center, and R  = 0.45 m is the radius of the shoal. Since the water depth on 

the shoal is defined by a quadratic equation, the curvature h2  over the shoal is 

constant as 
2/4 Rb , while the square of the slope 2)( h  ranges from zero at 0r  to 

22 /4 Rb  at Rr  . 

   The center of the shoal was located at 6 m apart from the wave maker. Wave 

measurements were made along the five lateral transects as well as the centerline as 

shown in Fig. 2. Surface elevation time histories were measured using an array of five 

wave gauges. They were spaced 5 cm apart in a steel frame that minimized the amount 

of interference from support legs. For the same wave condition, therefore, wave 

measurements were made three times along each lateral transect and nine times along 

the centerline at different locations. For the purpose of normalizing, the incident wave 

was measured at a point in front of the shoal where the effect of the shoal is minimal. 

The incident wave height was 3 cm, and three different wave periods, 1.259, 0.791, and 

0.636 s, were used, which correspond to 00hk  = 1.0, 2.0, and 3.0, respectively, where 

0
k  is the wave number on flat bottom. Even though the tests were made for regular 

waves, the wave measurements were made for 51.2 s at the sampling rate of 40 Hz to 

obtain 2048 data for each of the wave gauges. The wave height averaged over the 

sampling duration excluding the leading waves was then used for later analyses. Wave 

reflection from the shoal or the downwave absorber was negligible. 

 

3. Numerical model 
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3.1. Governing equations 

 

   Following the procedure outlined in Copeland (1985), Lee et al. (1998) recasted the 

MMSE into the form of a pair of first-order equations, which constitute a hyperbolic 

system. The resulting equations are given as follows: 

 

   0

)(

1

2

2

2

1









Q

hRhR
C

Ct g


                                  (2) 

   0



gCC

t

Q
                                                  (3) 

 

where   is the water surface elevation, C  and gC  are the phase speed and group 

velocity, respectively, and Q  is the volume flux defined as 
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Here g  is the gravitational acceleration, and 
~

 is the velocity potential at mean 

water level, which is related to   by 
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where 1i  and   is the wave angular frequency. In Eq. (2), 1R  and 2R  are 

the parameters determining the higher-order bottom effects, which are given by 
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The expressions of iW , iU , and iI  are given in the appendix. The wave number, k , 

is determined from the dispersion relationship given by 

 

   khgk tanh2                                                      (8) 

 

Without the 2)( h  and h2  terms, Eqs. (2) and (3) reduce to the Copeland’s (1985) 

mild-slope hyperbolic equations. 

 

3.2. Finite difference method 

 

   In order to numerically generate the waves at the open boundary, the internal wave 

generation technique (Larsen and Dancy, 1983; Madsen and Larsen, 1987) was adopted, 

which generates the waves along a line inside the model domain while permitting the 

waves propagating toward the wave generation line to freely pass across the line so that 

unwanted addition of wave energy in the model domain can be avoided. For the waves 

propagating in the positive x -direction, the value of *  as given below is added to the 

surface elevation at the wave generation line: 

 

   
x

tC
I
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                                                      (9) 

 

where I  is the water surface elevation of the incident wave, and x  and t  are the 

grid size in x -direction and time step, respectively. 

   Sponge layers are placed at both upwave and downwave boundaries to minimize 

wave reflection from the boundaries by dissipating wave energy inside the sponge 

layers. The thickness of the sponge layer, S , was taken as 2.5 times the local 

wavelength, which was found to reduce the amplitude of the incident wave to almost 

zero at the boundaries. In order to model the waves inside and outside the sponge layer 

continuously, Eq. (3) is modified as 
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The damping coefficient, sD , is given by 
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where d  is the distance from the starting point of the sponge layer. 

   Eqs. (2) and (10) are discretized by a leap-frog method in a staggered grid in both 

time and space, which yields 
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where P  and Q  are the volume flux in the x - and y -direction, respectively [i.e., 

),( QPQ ]. The variables are located in the rectangular grid shown in Fig. 3. In the 

preceding finite difference equations, the subscripts i  and j  increase in the x - and 

y -direction, respectively, with their integral values at the center of each grid where the 

surface elevation   is located. Superscript n  indicates elevation at time tn . It is 

apparent from the finite difference equations that the values of P  and Q  are 

calculated at a time 2/t  ahead of the corresponding values of  . All the values of 

 , P , and Q  at the initial time step are set to be zero. For the slow start of wave 

generation, Eq. (10) is multiplied by )/5.0tanh( Tt  where T  is the wave period. In 
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this study, the same grid spacing was used in x - and y -directions (i.e., yx  ). 

The grid spacing x  was chosen to be 1/30 of the wavelength on flat bottom. The time 

step was chosen for the Courant number xtCCr  /  to be 0.2 so that a stable 

solution is guaranteed. In order to achieve a steady state of wave field, the waves were 

generated for T20  or T30  depending on the wave period. The numerical test 

conditions used are summarized in Table 1, in which M  and N  are the number of 

grid in the x - and y -direction, respectively. 

   The computational domain for the numerical model is shown in Fig. 4. The pure 

computing domain (from the wave generation line to the starting line of the downwave 

sponge layer) was taken to be the same as the domain in the hydraulic experiment 

( 0.675.16   m as shown in Fig. 1). The sponge layers of thickness of 2.5 times the 

local wavelength were placed in front of both upwave and downwave model boundaries. 

The upwave sponge layer was separated by x  from the wave generation line. Along 

all the boundaries, perfect reflection is assumed, but at both upwave and downwave 

boundaries the reflected wave becomes negligible because the sponge layer 

significantly reduces the incoming wave energy.  

 

4. Comparison of experimental measurements and computational results 

 

   Contour lines of the wave amplitude computed by the MMSE model relative to the 

incident amplitude are shown in Fig. 5 for different wave periods. The shoal boundary is 

indicated as a dashed circle. The crest of the shoal is located at (6.0, 3.0) m with its 

radius of 0.45 m. Wave focusing on or behind the shoal, generation of side depressions, 

and wave reflection by the shoal are clearly observed. It is also seen that the focal point 

moves downwave with decreasing wave period, probably because the wave refraction 

over the shoal becomes insignificant as the wave period decreases. 

   Results of the MMSE and MSE models along the centerline are shown in 

comparison with the experimental data in Fig. 6 for different wave periods. In each 

figure, the MMSE and MSE model results are indicated by solid and dashed lines, 

respectively, while bullets indicate experimental data. While fairly good agreement is 

observed between the MMSE model results and experimental data, the MSE model 
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results deviate largely from the experimental data near and behind the shoal crest 

especially for the long-period wave (T  = 1.259 s) which feels the bottom more strongly. 

As the wave period becomes short, the focal point moves downwave and the maximum 

amplitude decreases, again because the shorter wave feels less the bottom so that the 

wave focusing becomes weak. 

   Results of the MMSE and MSE models along the lateral transects are shown in 

comparison with the experimental data in Figs. 7 to 9 for different wave periods. 

Acceptable agreement is observed between the MMSE model results and experimental 

data. The MSE model results, however, deviate largely from the experimental data as 

moving downwave from the shoal especially for the long-period wave for which the 

bottom effect is more significant. The MSE model over-predicts the wave amplitude in 

the focusing area, while under-predicting it at the side depressions. At the beginning of 

the shoal (i.e., at Rx  ), there is almost no lateral variation of wave amplitude except 

for the longest wave (T  = 1.259 s) for which the wave amplitude in front of the shoal 

slightly increases due to the wave reflection from the shoal (see Fig. 7a). As the wave 

passes over the shoal, the lateral variation of wave amplitude becomes large, and then it 

reduces as the wave propagates far downwave from the shoal. The location of the side 

depression also moves away from the centerline as the wave propagates downwave 

from the shoal. 

   Finally, in order to examine the relative importance of the bottom slope squared 

term and the bottom curvature term, we have tested the MSE model by including only 

either the bottom slope squared term or the bottom curvature term. A similar numerical 

test has been made by Chandrasekera and Cheung (1997) for the same circular shoal as 

that used in the present study. Our results are very similar to those of them. The results 

of the MSE model plus the bottom curvature term closely follow those of the MMSE 

model, while the inclusion of the bottom slope squared term does not significantly 

modify the results obtained by the MSE model. Without showing the results, we 

conclude that the bottom curvature term plays much more important role than the 

bottom slope squared term within the experimental conditions we used. The relative 

importance of these terms depends on not only bathymetry (i.e., bottom slope and 

curvature) but also relative water depth, having been described in other papers (e.g., 

Chandrasekera and Cheung, 1997; Lee et al., 1998). 
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5. Conclusions 

 

   In order to verify the MMSE model in a horizontal two-dimensional space, we have 

made a hydraulic experiment for surface wave propagation over a circular shoal for 

which the effects of bottom slope squared term and bottom curvature term are not 

insignificant. We have also constructed a horizontal two-dimensional numerical model 

based on Lee et al.’s (1998) hyperbolic equations that were developed from the MMSE 

and thus include the higher-order bottom effect terms. By comparing the experimental 

measurements with the numerical results, we have shown that the MMSE model is 

capable of producing accurate results for wave propagation in a region where the depth 

varies substantially, while the MSE model gives large errors as the mild-slope 

assumption is violated. 
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Appendix. Components of terms of R1 and R2 
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Table 1 

Numerical test conditions 

 

 00
hk    x  (m)    t  (s)    r

C      Duration of       ),( NM  

                                wave generation 

 1.0   0.062818   0.00834   0.2        T20          (388, 139) 

 2.0   0.031406   0.00524   0.2        T30          (671, 241) 

 3.0   0.020937   0.00420   0.2        T30          (908, 325) 
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Captions of figures 

 

1. Illustration of experimental setup. 

2. Wave measurement transects. 

3. Finite-difference grid. 

4. Computational domain. 

5. Amplitude contours relative to incident wave amplitude. (a) T  = 1.259 s, (b) T  = 

0.791 s, (c) T  = 0.636 s. 

6. Comparison of numerical model results with experimental data along centerline: solid 

line = MMSE model; dashed line = MSE model;  = experimental data. (a) T  = 

1.259 s, (b) T  = 0.791 s, (c) T  = 0.636 s. 

7. Comparison of numerical model results with experimental data along lateral transects 

for the case of T  = 1.259 s: solid line = MMSE model; dashed line = MSE model;  

= experimental data. (a) Rx  , (b) 0x , (c) Rx  , (d) Rx 2 , (e) Rx 3 . 

8. Same as Fig. 7, but for T  = 0.791 s. 

9. Same as Fig. 7, but for T  = 0.636 s. 

 


