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MULTI-DIMENSIONAL LIMITING PROCESS
FOR TWO-DIMENSIONAL COMPRESSIBLE FLOWS

Heeseok Koo, Sung-Hwan Yoon, Chongam Kim, and Kyu-Hong Kim

ABSTRACT Through the analysis of conventional TVD limiters, a new multi-dimensional limiting
function is derived for an oscillation control in multi-dimensional flows. And, Multi-dimensional
Limiting Process (MLP) is developed with the multi-dimensional limiting function. The major
advantage of MLP is to prevent oscillations across a multi-dimensional discontinuity, and it is readily
compatible with more than 3™ order spatial interpolation. Moreover, compared with other higher
order interpolation schemes such as ENO-type schemes, MLP shows a good convergence
characteristic in a steady problem and it is very simple to be implemented. In the present paper, 31
and 5™ order interpolation schemes with MLP, named MLP3 and MLPS5, are developed and tested for
several real applications, and it is verified that MLP combined with M-AUSMPW+ numerical flux
substantially improves accuracy, efficiency and robustness both in continuous and discontinuous
flows.

1. INTRODUCTION

At present stage, one of challenges in CFD is to provide an accurate and efficient solution
in the analysis or design of three-dimensional aerodynamics. In order to cope with the
requirement, a numerical scheme should be able to describe multi-dimensional flow
phenomena as much as possible. However, up to now, most successful numerical methods,
including spatial discretization and interpolation schemes, have been developed based on
one-dimensional flow physics. Although this approach allows the rigorous analysis of
numerical schemes, straightforward extension to two- or three-dimensional flows by
dimensional splitting eventually leads to insufficient or excessive numerical dissipation,
which in turn badly influences on the accuracy, robustness and convergence of numerical
solutions. In other words, physically unacceptable interruption in numerics always results in
the inaccurate representation of real physics.

In order to incorporate multi-dimensional physical phenomena, numerous approaches have
been tried and developed by considering flow information along additional directions. Most
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notably, by modeling wave-speeds [1], rotating fluxes at a cell-interface [2, 3, 4, 5], or by
introducing fluctuation splitting and so on [6, 7, 8], various versions of multi-dimensional
upwind fluxes have been developed. Obviously, a multi-dimensional scheme should bring
noticeable improvement over conventional schemes in terms of accuracy. However, some
degree of accuracy enhancement is compromised by robustness problem and computational
cost, which is one of the obstacles in practical implementation. For example, most multi-
dimensional schemes do not show monotonic behavior across a multi-dimensional
discontinuity. When they are applied to high speed flow problems involving strong shocks,
severe oscillations across strong shock are frequently generated and finally they may lead to a
failure. One of the fundamental reasons, according to the authors’ experience, is that there is
not an appropriate oscillation control method for a pure multi-dimensional problem. Thus, it
is important to develop an oscillation control process based on multi-dimensional flow
phenomena.

Concerning oscillation control schemes, so many studies have been carried out since the
late 1970s and several important concepts, such as TVD, TVB, ENO and etc, have been
proposed for better convergence and stable calculation. The concept of TVD (Total Variation
Diminishing) was proven to be extremely successful in solving hyperbolic conservation laws
[9, 10]. Although TVD criterion provides fundamental idea for oscillation control and is still
very popular, conventional TVD schemes are somewhat unsatisfactory near extrema in terms
of accuracy and convergence. In order to overcome this limitation, ENO (Essentially Non-
Oscillatory) schemes [11] and the concept of TVB (Total Variation Bounded) [12] were
introduced. The key idea of ENO schemes is to use the smoothest stencil among several
candidates in evaluating fluxes at a cell boundary which should yield higher order spatial
accuracy and essential non-oscillatory profile near shocks. TVB concept allows oscillations
only if spurious oscillations do not grow unboundedly large as time evolves. Although TVB
or ENO avoids unphysical clipping at extrema and enhances accuracy, it is inevitable to yield
undershoot and/or overshoot which in turn influences convergence badly. Most oscillation-
free schemes have been based on the mathematical analysis of one-dimensional convection
equation. Also, they are applied to multi-dimensional applications with dimensional splitting.
Although they may work successfully in many cases, it is insufficient or almost impossible to
control oscillations near shock discontinuity in multi-space dimensions. For that reason, the
need of oscillation control method for multi-dimensional applications is obvious.

The objective of the present paper is to develop a higher order limiting process which can
control oscillations in multi-dimensional situations and be applicable to both unsteady and
steady problems. In this respect, convergence is an important factor. Firstly, we derive a
multi-dimensional limiting function to control oscillations. For that purpose, we adopt TVD
concept as a starting point since it shows a better convergence characteristic among available
oscillation control methods. And, a higher order polynomial interpolation combined with the
multi-dimensional limiting function, called Multi-dimensional Limiting Process (MLP), is
developed which possesses a higher degree of accuracy, computational efficiency and
convergence.
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2. GOVERNING EQUATIONS
e))

The two-dimensional Navier-Stokes equations in a conservative form is used as
R E F_(E, &K
E3 0}

a & &
where the flow and flux vectors are
P pu pv 0 0
4 T T
0= P JE = puTp JF= /Zvu JE, = x ,F, = v , )
pv puv pv+p Ty T,
pe, (pe, + plu (pe, + pp e, /,
For calorically perfect gas, the equation of
3)

with e, =ur, +vr —q, f, =ur +vr
state is given by
p=(r-1)pe =(7—1)p(e, _5(” +v ))
with y =14 for air.
3. MULTI-DIMENSIONAL LIMITING PROCESS (MLP)
3.1. High order TVD interpolation

MUSCL approach{15] — a method for the generation of second-order upwind schemes — with
(4a)

/N

TVD limiter is written as follows
v -7 +l{o o) s] L@ <),
. [(1 ) chf L), ()
2 E_El

where @ is a property vector, #, = 5 _(-5’_] and 1, -y
The bar means cell averaged value and ¢ is a TVD hmxter which monitors the local
gradient of property and determines local slope under monotonic condition. The calculated

=1/3, As known well, if TVD limiter is

value has third order spatial accuracy with x
symmetric, Eq.(4) is independent of & and simplified as follows

o, =B, +0.56(r B - D), (Sa)

20580~ (5b)

D,
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where ¢(r)=rg(l/r).
In flows including physical discontinuities, ¢ is definitely employed to yield monotonic
distribution. Equations (6) to (8) show well-known existing TVD limiters.

Minmod limiter : #(r) = max(0, min(r,1)). 6)
Van Leer limiter: o(r)= i . Q)
Superbee limiter: #(r) = max(0, min(ZV,lll min(r,2)). ®

Interpolation step is generally considered to be independent of flow physics and only
related to mathematics. Thus, up to now, the entropy condition has been considered only at
evaluation stage. However, if we use the same limiter both in isentropic compression and
isentropic expansion flows, one of cases definitely brings negative entropy variation at
interpolation step. In many applications, negative entropy variation is not amplified and
makes no serious problem. However, it can not be guaranteed in cases involving strong
expansion. Therefore, flow physics such as the entropy condition is critical both at evolution
stage and at interpolation stage.

When 2™ order MUSCL approach is applied, there is no concrete information on the
varigtion of 4@,,.|, except for the monotonic constraint of minlA® _,,A® ) <A®,,.| <
maxTA(DI_E,,A(I)H_; . Therefore, it is intrinsically problematic in the 2™ order interpolation
schemes. Let optimal variation be A4®P,,..} =,5'A¢,”;_ , where S has to be specified.
Improper choice of B would yield dissipative or entropy-violating result as in case of
minmod or superbee limiter. In order to determine £ based on flow physics, more than 3™
order spatial interpolation is essential because the second order interpolation cannot reflect
the curvature of & .

3.1.1 3" order interpolation with TVD limiting:

Similar to reconstruction by the primitive function in ENO [11], 3 order interpolation
which satisfies the conservation requirement is applied. For equally spacing grid points, @
is given by

¢(x)=ax2+bx+c. 9

And, the cell-averaged value is (see Fig. 1)

x=0

Fig.1 Cell center point and cell-interface
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| = _
Zx—(m_{)z(x)dx =9, (m=-10]1), (10)

Then, from Egs.(9) and (10), the value of @ at a cell-interface is written as,

5 > D _ AD +2M’.¢ _
@, =-2?'_ﬂ%& -3 +0.5—’—*3——== B +055(- )00 , , ¢9))
r®

1+2 wh
where ,b’=——3—r’ and 7=

To suppress oscillations across a discontinuity, TVD limiting condition of
max(0,min(2,2r)) is applied to Eq.(11) [10]. Then, the higher order interpolation filtered by
TVD limiting can be written as ¢(r)=max(0,min(2,2r,ﬁ)), Finally, left and right cell-
interface values are obtained as follows.

@, =0,+0.54(r,)40_, =@ +05 max(0, min(2,2r,,, 5, 40, | (12a)

¢R = 6;*—1 - 0'5¢(rR,n+l )A¢,+% = anl - 05 max(o’ min(z’zrk,m > ﬁR ))A¢,4_;, . (12b)

In Eq.(12), B. and B, are given as follows.

Ad AP
1+ 2r, 1+ 2r, . o +y
B, = 3 2 B =—§R"—*',w1th v . T = g (13)

3.1.2 5™ order interpolation with TVD limiting;

In a similar way, 5th order interpolation can be obtained as @(x)=ax* + bx’ +cx* +dx+e.
And, the interpolated value @ at a cell-interface is given by

— 2‘61—2 - 133:—1 + 476: + 276:01 — 33&2

:+% 60

. 240 | +114D | + 244D | -3AD

=® +0.5 o o i s (14)
30
= a—: + O'Sﬂ(’;—nrr’rm )A¢,_1
AD AD AP
~2/r +11+24r -3 4 ! o .

where 8= /r 30 A T T andr,+.=z5—. It is noted that B

of 5™ order interpolation is the function’ of 7., 7 and .. I"‘inally, the fifth order

interpolation scheme filtered by TVD limiting can be written as follows.

@, =B, +0.54(, )40, =D, +0.5max(0, min(2,2r,,, 8, 4o, (15a)

@, =B, ~0.5(r )40 , =&, -0.5max(0, min(2,2r, ... B, A0, (15b)

In Eq.(15), B, and B, is given as follows.
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ﬁ _ _2/rL,z—l +11+ 24'2.: - 3rL‘,rJ.m _ 'Z/rk,mz +11+ 24rR,n+| - 3rR‘n+er,n 16
L 30 s ﬂR - 30 » ( )
A¢r—l A¢r+l A¢1+l A¢,+l A¢,+L A¢,_1
- = = Ly = TRas2 = ! Ry = : ' = :
where .- a0 " ae, " e, and e N LT

i+

3.2 Development of Multi-dimensional Limiting Process (MLP)

Since the late 1970s, numerous ways to control oscillations have been studied and several
limiting concepts have been proposed. Most representatives would be TVD, TVB and ENO.
In case of scalar convection equation, rigorous mathematical analysis unveils their good
characteristics. However, it looks very difficult to prove similar behaviors in non-linear
systems of equations. Thus, the successful application of these approaches to multi-
dimensional systems is largely based on some linearization step and some practical
experience. Even though they can be applied successfully in many cases, some weakness is
still observed in calculating shock discontinuity in multi-dimensional flow. Therefore, it is
believed that the previous limiting concept based on one-dimensional flow physics has to be
improved and a new limiting process has to be introduced based on multi-dimensional flow
physics.

One of the fundamental difficulties in handling multi-dimensional problems is that it is
difficult to define monotonic characteristic [16] and especially, the definition of monotonic
distribution is ambiguous near a saddle point. In addition, Goodman and LeVeque showed
TVD scheme in two space dimensions can not be more than first order accurate {17]. Thus, it
looks nearly impossible to develop an oscillation control scheme with global higher order
accuracy in multi-space dimensions. However, if we focus on more specific issue, the
limitation of the previous oscillation control concept can be improved. For that reason,
Spekreijse defined his own version of multi-dimensional monotonic condition, and derived a
second order monotone upwind scheme which satisfies his multi-dimensional monotonic
condition in steady case. The monotone scheme was analyzed based on a non-linear scalar
equation [18]. Although it shows good performances in scalar convection equation, it does
not seem to be good enough to control oscillations in multi-dimensional shock discontinuity
and requires some unknown parameter.

In the present paper, we mainly focus on oscillation control across a multi-dimensional
shock discontinuity to sidestep the difficulty in defining multi-dimensional monotonic
distribution exactly. Then, a multi-dimensional limiting function is derived using nine point
stencil as in Fig.2. It is based on oscillation control concept because this is more flexible to
deal with multi-dimensional situation than strict monotonic concept. TVD is adopted for that

purpose.

3.2.1 Derivation of a multi-dimensional limiting function

One-dimensional limiting condition using TVD constraint can be written as follows [10].
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0 < ¢(r) < min(2r,2). )

Since the extension of Eq.(17) in a dimensional splitting manner is insufficient to prevent
oscillations in multi-dimensional flow, it needs to be modified and/or extended with
appropriate consideration of multi-dimensional situation. From Eq.(17) and Eq.(5), the
property at a cell-interface  satisfies P <®,, <P, and @ <®,.<®, Thus, the dimen-
sional splitting extension of this distribution is

W S@, SP, B <0, <P, & 30 SO, O <P <@, (18)

It is noted that Eq.(18) does not possess any information on the property distribution at cell
vertex points, which would be essential when property gradient is not aligned with grid lines.
Thus, as an extended condition of Eq.(18) which includes the missing information, we require
Eq.(19) on compact stencil in Fig.3.

¢n‘:‘:hbur < ¢ < ¢n.::;:bor . (1 9)

Since Eq.(17) does not automatically imply Eq.(19), Eq.(17) as well as Eq.(19) has to be

satisfied to control oscillations in multi-space dimensions. In order to realize Eq.(19), the
values at vertex points, @,, @,, D, and P, in Fig.3, are required to satisfy

min(qT,,,,E*,,,a o l)<¢b <max(¢7l,75ﬂl,av!_,,5+,,,) (20a)
nin(@, 3.8, ,)<®, <nx(®.8, B .8, ), (20b)
min(@, 8., .8.,..8.,,.)<®, <mx(®_,8_ .0, ,.5,,,.), (20c)
min(®, .8, .8 ,.8._,,,)<®, < max(®, ,,,o,”,q»,,_],q)_,“) (20d)

And, a multi-dimensional limiting function which is compatible with Eq.(17) and at the same
time yield the distribution of Eq.(20) has to be formulated.

If discontinuity is inclined by €, asin Fig.3 and 0<6, <90°, Eq.(20) becomes

D <P<D, | (21a)

¢ <¢ <¢:+l]+l’ (2]b)

G-Li+0 [OFEH) [(EANES))

«-1p (+Ly)
(%))

[(ANE )} (VR3] [(RINER)]

Fig. 2 Neighboring cells to derive the multi-dimensional limiting function
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, <P, <P, ., (21¢)

>,
o, <D <D (214d)

i-1,7-1

The case of 90° <@, <180° is symmetric with respect to 7=0 line, the case of
180° <8, <270° is the same as the case of 0° <6, <90° and the case of 270" <@, <360° is
symmetric with respect to & =0 line. Now, let us consider the values at four vertex points
which are evaluated as

D =P +APD; +AD] (22a)
®, =B, + A0, + 40; =B, + 1+ tand A, (22b)
D, =P +AD; + 4D (22¢)
@, =B+ 40; + 40; =B, + {1+ tand 1o (22d)

+

~ . 5 4P, . s o .
where ¢ is defined as tand, =—=% in Fig.3. 4®;, are the variations from center point to

cell-interface as in Fig.4. Thus, 4¢* has an opposite sign with each other: when 0<8, <90°,
A+ is positive and 4~ is negative and tand > 0.

From Eq.(18), the interpolated value ?.,.. and ®.., should satisfy the following
conditions.

Sfuﬂ,] . (233)

-[S¢ <¢, < [N (23b)

ny -5 =

where @,,,=®,+49; and ?,.=9,+49;  From Eqs.(22) and (23), @, is always greater

than @, and less than @, because A¢* ispositive and Ae- is negative. Similarly, @

is always greater than @_,, and less than @, ...

f""‘ <® ., <§J TAD +AP; =B, <D, < @,J , (24a)
P, < D, <P + AP, + AP =D, < qul <P .. (24b)

(i, j+1/2) cell-interface

(i+1/2, j) cell-interface

Fig.3 Distributions of cell averaged values and cell vertex values
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Thus, ®, and @, always satisfy Eqs.(21a) and (21¢). Now, let us check the cases of @,
and @,. In case of @,, from &, <®, =0, +[+tand Jad; Eq.(21b) is satisfied only if @,
would be less than @,,,,.,.

D,=0 + (1 +tané, )Adi; <@, .= + Acbl_ﬂ_; + AQ%M . (25)
a9, , tan@
—tand =tand — 1 = ¥
Ad?‘%’l” = tanBMAdi‘_ﬁ_; =tand S 4 = Py ’I Adim%, (26)
.,,4-;- .74

'
"+, g+l

_ 4 ad |
where @ is defined as tané,, = o~ and T = —=% Thus, from Egs.(25) and (26),

3 A¢ 3
L _ L1+3
{1 . tanéd ]
Ad* < s Jap @7
"7 {i+tand, e

And, from Egs.(5) and (17), the maximum variation of 49, is determined as

a0; =40 {r,>1), 49;= a0 o<r, <1), (28)

where 1, = e Thus, by limiting the maximum variation of A®, all of the
R,; C

Eqs.(21) can be realized as follows.

When rL,j >1 Py
The maximum variation is modified as 4%, =0.5049 _ instead of 49, =4%, . Then,
from Eq.(27), we can determine the value of @ (1<a <2) which satisfies Eq.(24b).

[Htanﬁmj

r,

05-% 40 < P A (292)
T (l+tang)

+ [+4
where 49, =05a¢4® , =05—48 . (1<a<2). Thus, we have

rL +)

tand "
2r, |1+ 5
-
1<a <min|2, by J

1+tan5l

(29b)

/— Cell-interface

~~——— Cell center

Fig. 4 Definition of property variations within a cell
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When 0<rL,} <1’
Similarly, the maximum variation is modified as 4%, =0.5249, , instead of 429, =49, .
By inserting 49, <0524®, , (1<a<2)into Eq.(27),

(1 L 6, ]
0.504® | <S F ) Ap (30a)
w4 (+wang)

ot

Then, we obtain

tand, )

2{1 +
r +,
1<a < min| 2, R

1+tang, (30b)

Equations (29b) and (30b) always make @, lessthan @,,,., and Eq.(21b) is realized.

_ Next, let us consider the case of x4 <0 in Eq. (27). From Eq.(26), it is the case where
P, is less than @, . If the case of 7z, <0 is ignored, @ is restricted too much and a
computed solution can be undesirably diffusive. Thus, the condition, that @, should be less

than @, instead of ?..,. when 7,1 <0, is introduced. When 7z, <0, we require

®,=3,, +(+ang o, <F,, =5, + 40, (31a)

Lyt

. 1
AQ” < mAdj""Ji . (3 lb)

Similar to the above procedure, the range of the restriction coefficient @ is derived for the
following cases.

Then,

When 7, >1 and 7z, <0,

2r,
1< a < min SR 32
{ 1+tant9/:' (32)
When 0<r, <1 and 7z, <0, )
1€a< =
**{+mnd)- (33)

Finally, by combining Egs. (29b), (30b), (32) and (33), the range of @ can be formulated

as follows.
tan @
2max(l,r,, {l + max(o, ——"'D
rR,]+l

1<a <min| 2, (1 tn 53 . (34)

Equation (34) expresses the information of the restriction coefficient @ for rr_1ulti-
dimensional monotonicity. If we choose the maximum value of @, the multi-dimensional
limiting function is obtained as follows.
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The value of @ contains two angles related to property variation, § and @ , defined at
each cell. Although ¢ and & are defined separately for the purpose of rigor, the difference
is negligible in real computations, which will be shown well through test problems in Section
4. Thus, for computational efficiency we introduce the representative angle, €. It can be

reasonably assumed that the three angles ( §, 8, @) are the same. From the definition of
g and @,

~ A} ~ 49,
tnf,="2F and @, =- o=, (35)
7 Lty

where 0°<0,<90", These are simply the ratios of variations in the ¢ and 7 directions
defined at each cell. Similarly, we define the following representative ratio of variation as
($:+I,, - 3:--l,_/ )

tanf, = = = >0, (36)

[N =)

_ Figures 5 show the definitions of three angles. When 90" <6, <180°, the maximum value is
®,_,,, inFig. 3 with 49, >0, A® >0, Thus,

- AP;
tand, = yr >0, 37

“+
n

In this case, tand, is written as follows.

(awl —E:—I )
ng, = et “8eu) . (38)
1,7+ - ¢',/--l
The cases of 180" <8, <270° and 270" <6, <360 can be handled in the same way. Finally,
we have the following expression for the representative angle

(awl.; - §‘|J

tanf =|r=
e D

(39)

ny+l - 1,171

As a consequence, the one-dimensional limiting condition and the multi-dimensional
limiting function are compared as follows.

One-dimensional limiting condition: ~ max (o, min(2r,2))_ (40)
Multi-dimensional limiting function: ~ max(0,min(ar,a ). 41)

@, requires the same condition.

3.2.2 General form of Multi-dimensional Limiting Process (MLP)

With the multi-dimensional limiting function of Eq.(41), a new family of interpolation
scheme to control oscillations in a multi-dimensional flow can be developed.

@, =8 +0.50(r,,,,,5,)A0_, =& +0.5max(0, min{a,r, . @,, b, )40 , , (42a)
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@, =B, -0.50(,.. aR,ﬂR)AdiH% =&, - 0.5max(0, min(ary ... s, ﬂR))AOPM% _ (42b)

The interpolated values of @, and ®, are based on the final form of MLP. By inserting
Eqgs.(42) into Eqgs.(31) and (23) in [14], MLP combined with M-AUSMPW+ are constructed.

Other numerical flux can be employed similarly.
Values of @,; and B.; in Eq.(42) is summarized as follows.

Along the ¢ -direction,

2max(,, {1 + max(o, %D 2max(l, rm{] + max[o, tan 6, D '
rR,H-I rL,I
a, = =
8 [+tang , =g Py N CELY
a0, a0

.

and g(x)= max(l, min(2, x»

y =
where 7., 10

P g =~——
Ratl
i ? A¢ 3
-3/ 5

Along the 77 -direction,

tan @ tan @
2 max(l,rLJ {1 + max(o, and )J 5 max(l, "R,,ﬂ{l + max[o, ; D
¥, rL B

R+l
a, = @r =
L =g 1+tang, » R=8 I+tand,, ’ (43b)
AD @ o .-
. (g,m—g,,-,)l ,

where VL,,=—A;,T, oy = 2%, 2 5
k2 ]

Combining Eqs.(42) and (43) with Egs.(13) and (15) for B, we finally obtain MLP3,

MLPS.
MLP with 3" order interpolation (MLP3):

g T aely

@ @ ©) ) ©

Py
-
<

-

&
£

¢i-l.J (5%} V

A

\j

8
\/
8

)

441

Fig.5 Definition of three angles
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_1+2r, _1+42r,

po=tilis, g ot (442)
MLP with 5" order interpolation (MLPS5):
- - -2 14+ 24 -3
g, = 2, + ll+3?)4r,_,, 3 B = P + +3o Fasr — s, . (44b)

3.3. Comparison between MLP and TVD limiters

To compare MLP with several TVD limiters, all of the limiters are re-written by the A
parameter form as

¢ = max(0,min(B,r,1),min(r, 8,)), 1< B, B, <2, (45)

Let us assume some interpolation function /() is given within second order TVD region.
When 0<r<1, f(r) should be within the region A in Fig.6, that is, r<f()<2r and
J(r)<1.In the A limiter form, it corresponds to

¢ = max(0,min(,7,1),7) = min(8,,1) , B= min(z, max(ﬁln ) (46)

4

When 1<r, f(r) lies within the region B in Fig.6, that is, 1<f(r)<2 and f()<r.And
in the A limiter form, it is

¢ = max(0,1,min(r, 8,)) = min(r,3,), B, = min(2,max(f(r}1)). 47
By combining Eq.(46) and Eq.(47), the A limiter form with f(r) can be expressed as,
¢ = max(0,min(B,r,1),min(r, 8,)), with A, = min(l max(f@l)) B, = min(2,max(/(r}1)). (48)

Thus, if the multi-dimensional limiting function is applied to Eq.(48), we obtain the multi-
dimensional A limiter form as

¢= max(O,min(ﬂ,r,l),min(r,,B2 )), with B = min(a,max(—@,l)j, B, = min(a,max(f(r),l)), (49)

Exploiting Eq.(49), TVD limiters with the multi-dimensional limiting function can be
derived as follows.

MLP with minmod limiter: ¢ =max(0,min(8,r,1),min(r, 5,)), B, =5, =1. (50a)
MLP with van Leer limiter: ¢ =max[0,min(a,or, f(")], 1(r)= lirr i (50b)
MLP with Superbee limiter: $ =max(0,min(ar,1),min(r,@)). (50c¢)
MLP with 3rd order interpolation (MLP3): ¢=max[0,min(a,ar, f(")], f()= +2r . (50d)
MLP with 5th order interpolation (MLPS5): ¢ =max[0,min(a,ar, £()], (50e)

()= =2/r +11+24r —3rr,, .

where 1 3
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It is seen that in (50a), the multi-dimensional minmod limiter is exactly the same as the
original minmod limiter of Eq.(6). It means that the original minmod limiter maintains
monotonic property in multi-dimensional flows.

Figure 7 shows several limiting functions including minmod, van Leer, superbee limiter
and 3" order interpolation with TVD limiting. Those are the results without imposing the
multi-dimensional effect, i.e., =2, Figure 8 is the region of MLP-van Leer, MLP-superbee
limiter and MLP3. It is shown that MLP region is completely within the one-dimensional
TVD limiting condition because the value of @ is always between one and two.

Although @ in the multi-dimensional limiting function is the complicated function of 7,
"z, G0, and B0, it can be roughly compared with TVD limiters by simplifying the
property distribution as 1/r, ~r, ¥r and 6,~6,, on regular mesh. Then, the value of
a becomes

1
When 0<—r——<rL<1’

® 1<azw<2_ (51a)
1 1+ tan &
When —>r>1, ( 9)
Ty 2r{l+ rtan
~ 2’—~—-——~ =2.
“ max( 1+tan @ ) (51b)

In discontinuous region of (r<<1), when @ is zero, ie., the local one-dimensional
assumption is readily acceptable, the value of @ becomes two irrespective of », which is
identical to the range of superbee limiter. When 6 — 45°, the value of @ becomes one,
which is identical to the range of minmod limiter. As a result, the excessively steep slope
based on one-dimensional flow assumption is restricted and oscillations across a multi-
dimensional discontinuity are controlled. On the other hand, in discontinuous region of
(r>>1), the value of @ becomes two regardless of 6 and r.

In smooth region, » is nearly one, ie, 1/r,~r, =1 and @ becomes nearly two
regardless of 6. Since f (r}=1 (r = 1), the limiter function reduces to

= max[O,min(2,2r,f)] =f. (52)

This indicates that MLP3 and MLPS5 can recover the fully 3 and 5™ order spatial accuracy in
smooth region except for local extrema.

4, -
’=2¢ 2r ¢Ir/

rel

Fig. 6 TVD limiter region

>
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4. NUMERICAL RESULTS

In order to investigate the actual performance of MLP, several test cases are carried out.

Computed results by M-AUSMPW+[14] combined with MLP are compared with
AUSMPW-+ or Roe’s FDS with TVD limiter. Furthermore, Roe’s FDS with MLP and several
TVD limiters are also compared. Since MLP is just an interpolation method independent of
spatial discretization schemes, any numerical flux function can be essentially adopted. AF-
ADI or LU-SGS is used for the time integration. Dual time stepping method or 3 order TVD
Runge-Kutta time integration [13] is used for unsteady calculation.
For boundary conditions, free stream values are specified as inflow conditions, and
extrapolation from the inner computational domain is used for outflow condition. At wall,
no-slip condition is specified for velocity, and adiabatic or constant condition is used for wall
temperature.

4.1. Stationary vortex flow

It is relatively amenable to improve the accuracy of problems involving physical
discontinuities only since the steeper variation always leads to the better result. On the other
hand, in continuous flow, optimal variation is definitely necessary. To improve the accuracy
of a vortex flow is one of the main objectives in the present paper since it is a good example
of multi-dimensional continuous flows. If MLP is very prospective interpolation scheme both
in discontinuous and continuous region, it should provide substantially enhanced results in
vortex flows.

A vortex flow is a pure multi-dimensional phenomenon, characterized by the existence of
negative pressure gradient toward core and the curved flow contours. A flow-aligned grid
system is almost impossible in general cases and computed results are very sensitive to the
choice of an interpolation and/or numerical fluxes. Figure 9 shows the typical computed
result. It is Thomson-Rankine vortex model which is composed of the free vortex outside the
core and the forced vortex inside.

2
a. free vortex (outside the core): ¥, -r = const and 12 %,
por r
MUSCL limiter Multi-dimensional Limiting Function
——=—— minmod limiter ————— TVD restriction region
——=—— Van Leer limiter ——+—— MLP-Superbee limiter
——e—— Superbee imiter
3rd order Inmrpoiation ——e—— MLP-van Leer limiter
2 cocoseessusesessesee —— MLP3
r
s 15 :
£ r £ 1f
05 2 :
= [1+rtan 6] 44 a=2[l+rtant9]r:2
1+tan @ 1+ tan @
P} || P R | N} N 5 B y
1 2 4 1 2 3

v r

Fig.7 TVD limiters without multi-dimensional effect; Fig.8 Comparison of several MLPs
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2
b. forced vortex (inside the core): V, =w-r and Z_p = p-—V"— .
‘g r

Angular velocity @ is 2 and core radius is 0.2. Maximum velocity is 0.36c, .
Computational domain is from -2 to 2 with equal spacing. For grid convergence test, 25 by 25,
50 by 50, 75 by 75 and 100 by 100 grid points are emplodyed. Roe’s FDS, AUSMPW+ and
M-AUSMPW+ are used for numerical fluxes and 3" order TVD Runge-Kutta time
integration method is used. CFL number is 0.8 and boundary is fixed as initial values. The
pressure distributions are plotted at the non-dimensional time of 40.

Since viscous diffusion is not introduced, entropy is constant and a vortex flow should be
maintained forever so long as centrifugal force is balanced with pressure gradient toward a
vortex core. Thus, in the Euler equations, the ideal solution is the initial distribution itself.

Figures 10 and 11 show the results using van Leer limiter, MLP3 and MLP5. We can see
the difference depending on interpolation schemes. Figures 12 and 13 show the accuracy
improvement of MLP with M-AUSMPW+. It is shown that MLPs combined with M-
AUSMPW+ can provide more accurate results than 3 order interpolation scheme without
limiting (see Eq.(11)). Figure 11 is the comparison of entropy variation according to
interpolation schemes. In case of superbee, the vortex flow becomes stronger continuously
meaning that entropy decreases without lower bound. As a result, it becomes unstable and
after all, computation fails. As expected, MLP5 yields the least increase of entropy and it
gives the best result among the interpolation schemes. This test case suggests that
interpolation process should be compatible with flow physics.

Generally, interpolation step has been considered irrelevant to flow physics and treated
mainly from the mathematical point of view. In actual computations, however, ideal approach
is that all of the interpolation, spatial discretization and time integration schemes should
follow flow physics faithfully. Among these, spatial discretization scheme is developed to
satisfy the entropy condition. For example, AUSMPW+ and M-AUSMPW+ satisfy the
entropy condition [19]. Entropy may decrease throughout time integration process, such as
the redistribution of residual by an implicit scheme. Lastly, interpolation scheme definitely
decreases entropy in some case as explained in Section 3.1.

Vortex flow (AUSMPW+)

Inikial distribution
6 van Laer ke (50x50)
Vortex flow ———— MLP3 (50x50)

——B——  MLP5 (50x50)

(Density contours) — — — = 3rd order Interpolation (50x50)

o 1 1 1 1 aul | adlias
-08 06 04 -02 0 02 04 06 08

Fig. 9 Density contours of vortex flow; Fig. 10 Comparison of density distributions along the line AB
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Figures 14 to 15 are the results of grid convergence test. Figure 15(a) shows the L, norm
of density error when MLP3 is applied to AUSMPW+, Roe’s FDS and M-AUSMPW+. As
expected, due to slope limiting effect by the multi-dimensional limiting function, MLP3 is
slightly less accurate than 3" order interpolation scheme without limiting. As grid system
becomes denser, MLP3 asymptotically approaches that 3" order interpolation scheme. On the
other hand, MLP3 with M-AUSMPW+ shows more accurate result than 3" order
interpolation with AUSMPW+ or Roe’s FDS, i.e., previous conventional upwind schemes.

Similarly, Fig. 15(b) show the L, norm of density error when MLPS is applied to
AUSMPW+, Roe’s FDS and M-AUSMPW+. MLPS5 is seen to provide accuracy between 3
and 5" order spatial accuracy. Especially, MLPS with M-AUSMPW+ is close to 5™ order
interpolation with AUSMPW+.

Based on the previous computations, MLP looks very promising in the computation of
multi-dimensional flows including both discontinuous and continuous regions.

Entropy variation ( Vortex flow ‘
(AUSMPW+) Inkia} distruton ‘
= = — = van Leer limiter ~ ~a MLP3I + AUSMPW + (S0x50)

- —a MLPS « AUSMPWo (50x50)
—o———  MLPI « M-AUSMPW+ (50£50)
——e——  MLPS+ M-AUSMPW+ (50x50)
— — — = 3rd order interpolation + AUSMPW + (50x50)

— = =~ BSuperbee limitar
— MLP3
——s——  MLPS

27374

27372

2 27370 Isantiopia ine
5 27368
27366

27364

i 1 1 ]
10 20 30 40

Elapsed time

L

Fig. 11 Comparison of entropy variations of several interpolation schemes (left); Fig. 12 Comparison of density
distributions of MLPs (right)

Entropy variation
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o 3rd order interpolation + AUSMPW+ \
| -~ MLP3+ AUSMPW+
[ T MLPS+ AUBMPW+
| " MLP3+ M-AUSMPW+
| @ MLP5+M-AUSMPW+ |
|
\
|
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Elapsed time

]

Vortex flow
(M-AUSMPW+)

Initia) distribution
— — — = MLP5(50x50)
————  MLP3(75x75)

——=——  MLP5(100x100)

.

L 1 asal 1 il | |
08 -06 04 02 0 02 04 06
X

Fig. 13 Comparison of entropy variations (MLPs with AUSMPW+ and M-AUSMPW+) (left);
Fig. 14 Comparison of density distributions along the line AB (right)
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4.2. Double shock reflection

The free stream Mach number is two and the deflection angle of the lower wall is 15
degree angle. The grid system is 100 by 30. Slip boundary condition is applied on the upper
and lower walls, and all physical values at the exit are extrapolated. This test problem shows
the advantages of MLP clearly in terms of monotonicity and convergence.

Figures 16 are the comparisons of pressure distribution of superbee, MLP-superbee limiters,
MLP3 and MLPS. The original superbee limiters exhibits pressure oscillations across the
oblique shock and does not maintain a monotonic profile as shown in Figs. 17 and 18. The
result by van Leer limiter also shows similar overshoot phenomenon. On the other hand,
MLP-superbee limiter provides the best result in maintaining a monotonic shock distribution.
MLP3 and MLPS also do not show overshoot phenomenon and yield almost the same
accuracy as MLP-superbee limiter. At a glance, MLP-superbee limiter gives the best
monotonic result across physical discontinuities. However, it shares the same defect of the

Vortex flow (MLP3) Vortex flow (MLP5)

1
|
‘ 0005 —
|

oy - MLP6 + AUSMPW+
|
| oooaf SRS LRI sAUSHEWE ~ MLPG + M-AUSMPW+
|
| — <~ MLP3 + M-AUSMPW+ Siionisr b AUBHE
‘\ g o002 E
|
s —<— 3rd order + AUSMPW+ | g 6th order + AUSMPW +
S 1 ‘ 5
’g 0,001} | g
® AN o
o W\ -
W\ |
| \ |
\
. | ‘
| |
|
s 5 o J ‘ 1
| 008 006 004 002 | 008 006__ 004 002
‘L Grid spacing | Grid spacing

Fig. 15(a) Grid convergence of MLP3 (AUSMPW+ and M-AUSMPW+) (left); Fig. 15(b) Grid convergence of

MLP5 (AUSMPW+ and M-AUSMPW+) (right)

Double shock reflection

(Pressure conours)

(a) Superbee limiter

g i

pr A e

AR il

Fig. 16(a) Comparison of pressure contours (superbee and MLP-superbee limiters) (left); Fig. 16(b) Comparison

of pressure contours (MLP3 and MLPS) (right)
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| (a) MLP3 + M-AUSMPW+
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original superbee limiter in a sense that entropy decreases in a continuous expansion flow,
which is examined in the next test case.

Figure 19 shows the error history. CFL number is 3.0 and LU-SGS is used for time
integration. Even if the test case is simple, superbee and van Leer limiters are never
converged due to oscillatory behavior across the oblique shock discontinuity. On the other
hand, MLP-superbee limiter, MLP3 and MLPS show good convergence characteristics.

4.3. Viscous shock tube problem

The viscous shock tube problem [20,21] is revisited to examine the accuracy of MLP in
complex shock viscous flows. The Reynolds number is 200 with constant viscosity and the
initial state is (o,u4,v, p), =(120,0,0,120/y) and (p,u,v,p); =(1.2,0,0,1.2/7). Viscous fluxes are
calculated by 4™ order spatial accuracy, and 3™ order TVD Runge-Kutta method is used.

Figure 20 is the comparison of density contours. Case(a) to (c) are results by van Leer
limiter with AUSMPW+ on coarse (250 x 125), medium (350 x 175) and fine (500 x 250)
grid system, and case(d) to (f) are results by MLP5 with M-AUSMPW+ on the same grid

Double shock reflection Double shock reflection
— = == yanLeer imier (M-AUSMPW+)
A - — = === vanLeer imiter
— —%= - MLP-Superbee imiter ——— Superbes i
MLES — —— - MLP-Superbee kmiter
TERES MER —_— Py
16 —— MRS
15F 18
14F
13F 155
g 5 [
2 2F 2
"
e 1fE e 15t
& a
1B
08 145
08F r
- L 1 1 PEp 14k
05 0 05 1 15
X

Fig.17 Comparison of pressure distributions along the line AB (left); Fig. 18 Comparison of pressure distributions
in circle region (right)
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~ — = = Superbee kmiter
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MLP3 (M-AUSMPW+)
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Fig.19 Error history of double shock reflection
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systems. MLP5 with M-AUSMPW+ on coarse grid system shows a much better result than
van Leer limiter with AUSMPW+ on medium grid system, which has twice more grid points.
Furthermore, it is very similar to the fine grid result which has four times more grid points.
MLP on medium grid system also shows a better result than van Leer limiter with
AUSMPWH+ on fine grid system, and almost reaches the grid converged result (MLP on fine
grid system).

Judging from the direct comparison, MLP5 with M-AUSMPW+ can give about three times
grid point reduction effect. If the influence of iteration number is included, actual grid
reduction effect increases even further. When the same scheme is used, iteration number is
generally proportional to grid size in unsteady flow calculations. For that reason, the total
iteration number for case(c) and case(f) are almost double compared to case(a) and case(d).
Thus, it may say that MLP5 with M-AUSMPW+ saves the total computational cost about six
times in providing the same level of accuracy. Comparison with other interpolation schemes
such as WENO or ACM can be referred to Ref.[24].

Table 1 is the comparison of the primary vortex size. The height and angle of the primary
vortex, which is sensitive to numerical dissipation, is converged to 0.168. Even on fine grid
system, van Leer limiter with AUSMPW+ yields smaller vortex while MLP5 with M-
AUSMPW+ on medium grid system gives the identical results in terms of vortex height and
angle. Comparing vortex size, case(d) to case (f) provide about four times grid point
reduction effect over case(a) to case (c).

(a) van Leer limiter + 4 ; (|| 1) van Loer lmitar + A’[SM " (@W}
I

Density contour
C\
bff”\ 4
A S )
:. Dy

o

A Density contour
A
A

Fig. 20 Density distributions according to grid points and numerical schemes

Table 1. Comparison of the height of the primary vortex
Case(a) Case(b) Case(c) Case(d) Case(e) Case(f)
(250by125) (350by175) (500by250) (250by125) (350by175) (500by250)
Height (h) 0.142 0.155 0.163 0.161 0.168 0.168

Scheme
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5. CONCLUSIONS

By analyzing conventional TVD limiters and exploiting higher order TVD interpolation
based on the information on local curvature distribution, a new multi-dimensional limiting
function is derived. And, a new Multi-dimensional Limiting Process (MLP) is developed by
combining the multi-dimensional limiting function with a higher order polynomial
interpolation. The newly developed method turns out to have several desirable characteristics
such as multi-dimensional monotonicity across a discontinuity, robust convergence and
computational efficiency comparable to conventional TVD limiters. In addition, higher order
interpolation can be easily incorporated.

The most distinguishable property of MLP is to provide non-oscillatory profiles in multi-
dimensional flows and, as a result, a good convergence characteristic. Thanks to the
properties, MLP combined with M-AUSMPW+ can significantly increase accuracy,
convergence/robustness and efficiency both in steady and unsteady multi-dimensional flows
containing physical discontinuities. Through numerous test cases including a vortex flow, a
shock-wave/boundary-layer interaction, shock wave/vortex interaction and viscous shock
tube problem, it is verified that MLP can control numerical oscillations in multi-space
dimensions. In addition to robustness improvement across a discontinuity, accuracy
enhancement in pure multi-dimensional problems such as separated flows or vortex flows is
remarkable, especially combined with M-AUSMPW+. From the numerous computed results,
MLP with M-AUSMPW+ generally provides three or four times accuracy improvement in
terms of grid points, compared with TVD with popular flux functions. Also, it does not show
the entropy decreasing phenomenon in an expansion flow region.

Through the extension of current outcomes to three-dimensional flows, MLP is expected to
bring substantial reduction of computational cost and accuracy improvement simultaneously.
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