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= Abstract = Immunocytochemical methods, employing a specific antiserum against
human corticotropin releasing factor (CRF) and dopamine beta hydroxylase, were appli-
ed to investigate the distribution patiern of CRF and norepinephrine fibers in the cerebel-
lar cortex of squirrel monkey. CRF fibers were present mainly in the molecular layer
throughout the major regions of cerebellar cortex. However, the most intensely labeled
axons were sirikingly clustered within particular regions and parasagittal domains. In
the vermis and intermediate zone, intensely labeled axons were present only within
parasagittal zones similar in location to those defined by climbing fiber innervation from
the medial accessory olive. Intensely labeled axons were also densely but uniformly dis-
tributed within the uvula, the medial region of the dorsal paraflocculus, and the dorsal
region of the pyramis, areas that receive their climbing input primarily from the medial
accessory olive. Labeled fibers were much less dense and were not clustered in the la-
teral hemispheres. Norepinephrine fibers were found throughout the cerebellar cortex,
and the prominent population of norepinephrine fibers in cerebellar cortex was localized
within the granular layer and Purkinje cell layer. In the vermis, the great density is seen
in posterior lobules, especially lobules VII-X. In the hemispheric region, a dense plexus
of norepinephrine fibers was present throughout the granule cell layer, and the immu-
noreactive density in this region was greater than the density in the vermis. These
results indicate that (1) CRF is the main neurotransmitter in the molecular layer and
norepinephrine is the important transmitter in the granular layer (2) there were signifi-
cant differences in the laminar distribution in different lobules of the cerebellum between
CRF and norepinephrine.
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INTRODUCTION

Classically the cerebellum has served as a
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model system for synaptic interaction because
of the rigorous homogeneity evident in the
geometry of its neuronal networks. However, the
chemical correlates of these well-defined net-
works remain largely undefined. Only recently
has a profile of the neurochemical organization
of the cerebellum begun to emerge. That pro-
file, in contrast to the homogeneity of the mor-
phological relationships, appears to be hetero-
genous.
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Corticotropin releasing factor (CRF) is a 41-
aminc acid peptide that is known to act as a hy-
pothalamic releasing factor, stimulating the se-
cretion of adrenocorticotropic hormone and be-
ta-endorphin from the anterior pituitary { Vale et
al, 1983). In addition, several lines of evidence
(biochemical, histochemical, and electrophysio-
logical} indicate that CRF may function as a
neurctransmitter in extrahypophyseal neuronal
pathways. For example, there have been several
immunohistochemical studies characterizing the
anatomic distribution of CRF-like immunoreactivi-
ty {CRFLI) in rat brain(Bloom et al., 1982; Mer-
chenthaler et al,, 1982; Olschowka, 1982; Cum-
mings et al, 1983; Joseph and Knigge, 1983,
Swanson et al, 1883; Fellman et al, 1984; Mer-
chenthaler, 1984; Skofitsch and Jacobwitz, 1985,
Sakanaka et al, 1987). These reports have des-
cribed extensitve, widely distributed systems of
CRFLI in extrahypophyseal neuronal perikarya
and fibers. However, limited information is avail-
able concerning the distribution of CRF in pri-
mate brain.

Recently, certain observations have suggested
that CRF is contained in neuronal perikarya in
the inferior olive and in the axons projecting
from this nucleus into the cerebellum. These ax-
ons constitute the olivocerebeliar pathway which
provides climbing-fiber input throughout cerebel-
lar cortex, as well as collateral innervation of
deep cerebellar nuclei. In most early immunohis-
tochemical studies, CRFLI was either not observ-
ed in the olivocerebellar system or only weak im-
munoreactivity was evident { Merchenthaler et al,
1982, 1984; Cummings et al, 1983, Schipper et
al., 1983). Howsver, recent lignt-microscopic ob-
servations in rat (Palkovits et al., 1987 Sakana-
ka et al, 1987), cat(Cummings et al, 1988; Ki-
tahama et al, 1988}, and sheep (Cummings et
al.,, 1988) have demonstrated substantial CRFLI
in inferior olive perikarya and in axons in cere-
bellum. This is compatible with reports of high
levels of CRF in inferior olive as measured by ra-
dioimmunoassay (Palkovits et al, 1983, 1985)
and with demonstrations of CRF mRNA in these
neurons by in situ hybridization in rat(Young et
al.1986; Palkovits et al., 1887), baboon, and hu-
man ( Young et al, 1986} One electron-micros-

copic study has shown CRFLI in axons terminat-
ing on rat Purkinje cell dendritic spines (Palko-
vits et al, 1987), and one immunohistochemical
study has reported CRFL! in human olivary neu-
rons and in axons in cerebellar cortex (Powers
et al, 1987). Taken together, these observations
suggest that CRF may be a neurotransmitter in
the olivocerebellar system of at least several
species.

The cerebellar cortex receives not only the
classical afferents systems terminating as mossy
fibers and climbing fibers, but also a third af-
ferent system originating from norepinephrine
containing neurons located particularly in the
locus coeruleus (Bloom et al., 1971; Olson and
Fuxe, 1971; Chu and Bloom, 1974, Pickel et al.,
1974; Pasquier et al, 1980; Foote et al, 1983).
This coeruleo-cerebellar projection, which s
mainly ipsilateral, reaches the whole area of the
cerebellar cortex including the cerebellar vermis
{(cf. Dietrichs, 1988). The early observation that
the noradrenergic afferents to the cerebellar cor-
tex terminate on Purkinje neurons(Fuxe, 19865;
Hokfelt and Fuxe, 1969) has been confirmed
by later studies showing that these fibers make
synaptic contacts primarily on Purkinje cell den-
drites in the molecular layer and, to a lesser ex-
tent, on the Purkinje cell body and superficial
granules cell layers{Bloom et al, 1971; Olson
and Fuxe, 1971, Chu and Bloom, 1974 Pickel et
al, 1974; Landis and Bloom, 1975; Yamamoto
et al, 1977; Kimoto et al, 1981 ; cf. Powers et al,
1989, in humans).

At present, there are no detailed description
of the lobular and laminar distribution of CRF
and norepinepbrine in the cerebellar cortex of
monkey. It is important to investigate the distribu-
tion of CRF in the cerebellar cortex and com-
pare this with the distribution of norepinephrine
because CRF is the main neurotransmitter in the
molecular layer and norepinephrine is the impor-
tant neurotransmitter in the granular layer of
cerebellar cortex.

MATERIAL AND METHODS

Immunohistochemical material was obtained
from five adult New World squirrel monkeys.




The animals were deeplty anesthetised with
ketamine (25 mg/kg, IM) and sodium pentobarbi-
tatl{15mg/kg, IP). They were then perfused tran-
scardialy with ice-cold 1% paraformaldehyde in
phasphate buffer (0.15M) for 1.0 minute follow-
ed by perfusion with ice-cole 4% paraformal-
dehyde in phosphate buffer for 9 minutes at a
flow rate of 250~ 500 ml/minute {depending on
body size). The brain was removed immediately
and cut into blocks 3~5mm thick. These blocks
were immersed in cold fixative for 6-2 hours
and then washed in a series of cold sucrose
soluticns of increasing concentration. They were
then stored in 18% sucrose in phosphate buffer
for 1-7 days. Forty-micron frozen sections were
cut in the coronal plane and incubated, freely
floating, for 48-72 hours at 4T in primary an-
tiserum. The primary anliserum was visualized
with the avidin-biotin-complex (ABC) method by
using an ABC kit available from Vector Labs
(Burlingame, CA, USA). These kits ulilize as a
secondary antiserum biotinylated antirabbit I1gG
that is subsequently bound to bioctinylated hor-
seradish peroxidase by use of an avidin bridge.
The sections were developed from peroxidase
reactivity wity 3, 3-diaminobenzidine {LaVail et
al, 1973).

The distribution of perikarya and fibers exhibit-
ing CRF-LI was evaluated by careful comparis-
on of the immunohistochemical sections with ad-
jacent Nissl-stained sections.

The primary antiserum used in these studies
was raised in rabbits and was directed against
the human form of CRF which is identical to the
rat form (Vale et al, 1981 ; Rivier et al,, 1983; Shi-
bihara et al, 1983) The antiserum was
genourously furnished by W. Vale and J. Rivier
of the Salk Institute. For the antiserum utilized in
the present studies, a dilution series of 1:1,000,
1:2,000 and 1:4,000 was evaluated. The staining
from the 1:2,000 dilution was found to be op-
timal. The optimal dilution of the antiserum
against dopamine-beta-hydroxylase was the
same. As controls for nonspecific immunoreactiv-
ity, as sample of sections was incubated without
primary antiserum and a different sample was
exposed to a 3% hydrogen peroxide solution pri-
or to the HRP reaction. Sections processed
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without primary antiserum did not exhibit any im-
munoreactivity, while those exposed to hydrogen
peroxide, to destroy endogenous peroxidase ac-
tivity, exhibited the same immunoreactivity as
normally treated sections. Also, 25 sections from
different levels throughtout the cerebellum were
exposed to 1:2000 primary antiserum which
had been preabsorbed for 24 hours with human
CRF (Penninsula Laboratores, Belmont, CA, USA)
at a concentration of 01 mg/mi(2.1x10° M).
Sections from this sample did not exhibit any im-
munoreactivity.

RESULTS

1. Distribution of CRF fibers in the cerebellar
cortex

The most prominent population of iabeled ax-
ons in cerebellar cortex was localized within the
Purkinje cell and molecular layers and had the
general appearance of climbing fibers (Fig. 1, 2).
These axons were evident within and adjacent
to the Purkinje cell layer as thick, isolated
processes that typically bifurcated within the
deep portion of the molecular layer and then ar-
borized profusely as they ascended toward the
surface of the cerebellum. They were generally
contained within the deepest 80% of the molec-
ular layer, with only a few branches extending
as far as the cerebellar surface. In frontal sec-
tions, they appeared as parallel pairs of labeled
processes extending across the molecular layer,
often within the plane of section. The processes
were of larger caliber in the deep portions of the
molecular layer, and often formed thick, ring-like
structures in the superficial portion of the Purk-
inje cell layer.

A much less dense population of immunoreac-
tive processes was observed in the granular lay-
er(Fig. 1, 2). These processes were most often
evident as efflorescences at various levels
between the white matter and the Purkinje cetll
layer. Each efflorescence was composed of an
extremely compact cluster of axonal varicosities
and Intervaricose segments, which appeared to
arise fram an individual labeled axon. Other la-
beled processes with the appearance of fibers
cut in cross section or of small rosettes were
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also evident in the granular layer. Within and ad-
jacent to the Purkinje cell layer, there were often
small-caliber, varicose axons that surrounded
Purkinje cell perikarya. Occasional labeled fibers
were observed in white matter.

As noted above, labeled axons in cerebellar
cortex were most prominent within the molecular
layer. For this population, there were striking vari-
ations in the intensity of axon labeling and in
the clustering of fabeled processes in various re-
gions of cerebellar cortex. Certain cortical areas
contained dense collections of intensely labeled
axons, while other areas contained sparse popu-
lations of moderately of lightly labeled axons.
The regions of dense innervation were generally
confined to the vermis and intermediate zone.
For example, the uvula exhibited a uniform, high
density of intensely labeled fibers. The dorsal re-
gion of the pyramis and the medial regicn of the
dorsal paraflocculus contained large zones com-
posed of dense collections of intensely labeled
axons.

In other portions of the vermis and intermedi-
ate zone, labeled axons were organized into
parasagittal stripes{Fig. 3). These stripes were
evident in frontal sections as alternating regions
of dense and sparse populations of immunoreac-
tive axons within the molecuse and sparse popu-
lations of immunoreactive axons within the
molecular layers of individual folia. Patches for
adjacent folia were aligned to constitute parai-
tute parasagittally oriented stripes acorss multi-
ple folia. Labeled axons were also evident
between stripes, but these axons were less
densely clustered and not as intensely labeled.
In these areas between stripes, clearly labeled
processes were often evident within the Purjinje
cell layer. These usually appeared to have a
similar morphology to the basal portion of label-
ed fibers within stripes, ie., they were smoother
and of larger caliber than the more highly arbor-
ized fibers in the superficial portions of the
molecular layer.

The organization of densely labeled zones
into parasagittal stripes was clear throughout
the mediclateral extent of the vermis in frantai
sections through both the anterior and posterior
lobes. The stripes of dense labeling were of vari-

able width within a given frontal section, and a
given stripe varied in width along its rostral-cau-
dal extent. As noted above, the uvula was dense-
ly innervated throughout, and the pyramis con-
tained a large zone of densely labeled axons. In
certain portions of the pyramis, stripes were also
evident. Usually, one additional stripe of dense
staining was evident in the intermediate zone,
the parasagittal organization of this stripe being
clear only in the anterior lobe. In the intermedi-
ate zone of the posterior lobe, a circumscribed
area of dense innervation was evident along the
medial edge of the dorsal paraflocculus.

In the lateral hemispheres, immunoreactive ax-
ons in the molecular layer were usually sparsely
distributed and only moderately or lightly label-
ed. A striking exception was the region of crus |
just ventral to the posterior superior fissure, and
this area contained a dense collection of heavily
labeled axons.

2. Distribution of norepinephrine fibers in the
cerehellar cortex

Norepinephrine fibers were found throughout
the cerebellar cortex. In general, the most prom-
inent population of norepinephrine fibers in cere-
bellar cortex was localized within the Purkinje
cell and granular layer (Fig. 4, 5). However, there
were significant differences in the laminar distri-
bution in different Iobules of the cerebellum. in
addition, the spacial crientation of the fibers in
the molecular layer varied in disparate cortical
regions.

Norepinephrine is present in all folia of the
vermis, however, the greatest density is seen in
posterior lobules, especially lobules VII-X The
immunoreactive fibers present in the granular
layer in the vermis had no special orientation,
but norepinephrine fibers in the molecular layer
tended to orient in the transverse plane of the
cerebellum (Fig. 5, B).

In the hemispheric region, a dense plexus of
norepinephrine fibers was present throughout
the granule cell layer, and the immunoreactive
density in this region was greater than the densi-
ty in the vermis. In the paraflocculus norepi-
nephrine fibers are present predominantly in the
upper part of granule cell layer, immediately sub-




jacent to the Purkinje cell layer. In the crus | and
crus H the distribution of norepinephrine fibers is
similar to that just described for the parafloc-
culus. Characteristically the norepinephrine fib-
ers in the molecular layer of hemispheric region,
especially in the crus Il appear to be oriented
perpendicular to the pial surface in the coronal
plane. In the flocculus few fibers were observed
in the granular and motecular layer.

DISCUSSION

In the cerebellum, immunoreactivity is present
in the molecular layer in axons with the same
morphology as that previously reported for climb-
ing fibers (Scheibel and Scheibel, 1954 Palay
and Chan, 1974). in the sagittal plane, for exam-
ple, individual axonal arbors originate from iso-
lated, thick processes just superficial to the Purk-
inje cell layer and arborize over a wide area
within the sagittal plane in a pattern similar to
the abrorization of climbing fibers. In coronal
sections, radially oriented, parallel pairs of label-
ed axons are evident. Also, examination of the
present malerial in several pianes of section indi-
cales that there is a large-diameter process that
complelely excapsulates the base of the Purkinje
cell apical dendrite. Immuncreactive axons are
also evident as efflorescences in the granular
layer and as apparent terminal arbors in cerebel-
lar nuclei. It has previgusly been reported that
collaterals of climbing fibers project into baoth of
these areas and exnibit the types of terminal
morphology observed in the present study
{Scheibel and Scheibel, 1954; Palay and Chan,
1974). Although morphology alone does not al-
low an unambiguous classification of the variely
of labeled processes observed in the granular
layer, at least a subset of them most likely com-
prises those formed by collaterals of climbing fib-
ers,

The interpretation that CRFLI is contained
within the olivocerebellar system is also support-
ed by the observation in the present study of a
gistinct regional and parasagittal organization
of labeled molecular layer axons. The present
observations indicate that CRF is contained in
immunchistochemically detectable levels in all in-
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ferior olive neurons and their projections in
these species. This is evidenced by the presence
of clear immunoreactivity in all infericr olive peri-
karya examined in counterstained sections and
by the fact that labeled axons are evident in all
those regions of cerebellar cortex examined.
However, the presenl observations also suggest
that there are substantial differences in the intra-
cellular levels of CRF in different subdivisions of
the olivocerebellar projection system. In the mon-
key, the perikarya of the medial accessory olive
are more densely labeled than those of other oli-
vary subdivisions. This congruent with the pres-
ence of parasagittal zones of intensely labeled
terminal axons in the vermis and portions of the
intermediate zone, with the observation of areas
of dense innervation in the pyramis and dorsal
paraflocculus, and with the existence of a uni-
form, dense innervation of the uvula, since these
terminal fields match the known projections of
the medial accessory olive in these species (Bro-
dal and Brodal 1981, 1982; Whitworth and
Hains. 1986). In monkey, the medial accessory
olive is known to project to parasagittal zones A
and C?(Brodal and Brodal, 1981, 1982}, and
these are presumably the zones exhibiting
CRFLI stripes in the present sludy. Dense label-
ing of presumed climbing fibers was also observ-
ed in a limited portion of crus . Although much
of crus | recewves its climbing fiber innervation
from the principal olive, there is evidence that
parts of this area are innervated by the medial
accessory olive {Courville and Faraco-Cantin,
1980 ).

Several lines of evidence suggest thal
parasagittal zonation is an essential element of
cerebellar cortical organization. In addition to
the previous demonstrations of parasagittal zo-
nation ol olivocerebellar afferents in monkey,
there have been similar demonsirations in cat
(Groenewegen and Voogd, 1977, Groenewegen
et al, 1979) and ral{Campbell and Armstrong,
1983a, b; see also Brodal and Kawamura, 1980,
for review ). Previous studies have also provided
immunohistochemical evidence for parasagittal
zonation of antigens intrinsic to Purkinje cells
(Chan-Palay et al, 1981, 1982 Hawkes and
Leclerc, 1987 ). It is not clear how the parasagit-
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tal zones defined by CRFLI are spatially or func-
tionally related to the zones defined by other
methods.

The present observations reinforce many previ-
ous reports indicating that CRF is iocalized in ex-
trahypophyseal circuits, where it may serve as a
neurotransmitter (see Vale et al, 1983; Emeric
Sauval, 1986, for reviews). There is also evi-
dence that aspartate and/or glutamate may be
a neurotransmitter in the olivocerebellar path-
way { Wiklund et al., 1982, 1984; Toggenburger et
al., 1983; Matute et al, 1987). Thus, it is possible
that CRF is a catransmitter with ane of these
substances in the oclivocerebellar pathway, with
the peptide playing a relatively greater role in
those projections that originate in the medial ac-
cessory olive. There have been numerous specu-
lations (see Ito, 1986) about the role of climbing
-fiber input in the overall functioning of cerebel-
lar cortex, but for the present the functional phy-
siological effects of this pathway remain unclear,
as do the possible contributions of CRF to these
actions.

Several lines of evidence suggest that CRF-
containing circuits in many brain regions may
serve to coordinate the centrally mediated auto-
nomic and behavioral aspects of stress
responses (see Valentino and Foote, 1986, for re-
view). In this regard, it is of interest that CRF
within the cerebellum is concentrated in the
vermis and the associated fastigial nucleus,
areas previously implicated in arousal and auto-
nomic and affective functions(e.g., Dempesy et
al., 1983; Haines et al., 1984 Albert et al, 1985;
Arneric et al, 1987). Thus, these cerebeliar cir-
cuits may constitute one component of a larger
CRF-containing network that becomes activated
in response to stress-inducing stimuli.

Over a period of many years a fascilitating ef-
fect of norepinephrine on neuronal responsive-
ness to afferent synaptic inputs and putative
transmitter substances has been demonstrated
in the rat cerebellum, cerebral cortex, faciat mo-
tor nucleus, hippocampus, lateral geniculate nu-
cleus and lateral hypothalamus. The results of
these studies suggest that the syof these studies
suggest that the synaptic release of endogenous
norepinephrine may facilitate the transfer of in-

formation through central circuits by enhancing
excitatory and inhibitory components of cellular
responby enhancing excitatory and inhibitory
components of cellular responses to nonmo-
noamine synaptic inputs.

Noradrenergic innervation of rodent cerebel-
lum has been demonstrated with immunochisto-
chemical and histofluorescence techniques, but
similar studies have not reported in monkeys.

The present immunocytochemical study, using
DBH antibody, demonstrates abundant plexus of
noradrenergic axons mainly in the granular lay-
er and, to a lesser extent, Purkine and molecular
layers of monkey cerebellar cortex. Norepi-
nephrine fibers distributed in the molecular ayer
were slightly thicker but smaller number of fibers
were observed compared to the climbing fibers
stained with antisera to CRF. Very high density
of norepinephrine fibers were distributed in the
granular layer, and this is the different finding
with the previous reports of rodents{Kimoto et
al, 1981) in which norepinephrine fibers were
present predominantly in the molecular layer. So
these findings suggest the species difference in
the distribution of norepinephrine in the cerebel-
lar cortex.

Kimoto et al (1981) have clearly shown that
the noradrenalin-containing terminals of the exi-
ernal surface of glomeruli were in close contact
with granule all dendrites from serial thin sec-
tions of electron microscopy. Thus it is probable
that naoradrenalin-containing terminais in the
granular layer participitate in the functicn of the
cerebellar glomerulus,

It is well known that noradrenalin agents may
modify the discharge of Purkinje-cells. Experi-
ments performed in situ have shown that mi-
croiontophoretic application of norepinephring
(Hoffer et al, 1971, 1974; Freedman et al., 1975,
1977, Moises et al, 1978b), as weil as LC stimu-
lation (Hoffer et al, 1973a; Moises and Wood-
ward, 1980), decreased the spontaneous firing
rate of Purkinje-cells. This effect was associated
with hyperpolarization of the Purkinje-cell mem-
brane (ct. Waterhouse et al. 1982), which was
coupled with an increase in their input resis-
tance, suggesting that these effects were prob-
ably mediated through cAMP(Siggins et al,




1969, 1971a, b, 1973; Hoffer et al, 1973a). On
the” other hand, depletion of norepinephrine in
the cerebellum was associated with slight in-
creases in  Purkinje-cell background activity
(Hoffer et al, 1973b; McElligott et al., 1986 ).

Observations made in the in vivo preparations
have shown that local application of norepi-
nephrine (Siggins et al, 1971b; Freedman et al.,
1976, 1977 : Woocdward et al, 1979; Moises et al,
1979a, 1990) as well as LC stimulation (Hoffer et
al, 1973a; Maoises et al, 1979a, 1981, 1983,
Moises and Woodward, 1980), while depressing
the spontanecus activity of the Purkinje cells,
enhanced the responses of these cells to both
excitatory(mossy fiper and climbing fiver) as
well as inhibitory (basket and stellate cells) in-
puts. Similarly, iontopharetically applied norepi-
nephrine (Freedman et al, 1975, Moises et al.
1979b: Woodward, et al, 1979, Waterhouse et
al, 1982 Yeh et al, 1981 Marshall and Tsai,
1988) or LC stimulation (Moises and Woodward,
1980 Moises et al., 1983) enhanced the respon-
siveness of Purkinje cells to excitatory (gluta-
mate and aspartate) and inhibitary (GABA) neu-
rotransmitters of the cerebellar cortex. These ef-
fects have been reported to be mediated by 8-a-
drenergic receptors{Moises et al, 1981, 1983,
1990; Waterhouse et al, 1982, Yeh and Wcod-
ward, 1983} nowever, it cannot be ruled out that
@-adrenoceptors also contributed to these ef-
fects.

As a result of these findings it has been postu-
iated that ore of the main functions of the NE-
containing input in cerebellar operation is 1o
augment target neuron responsiveness to con-
ventional afferent systems which are directly con-
cerned with detailed information transfer, thus in-
creasing the signal-to-noise ratic of the evoked
versus spontanecus aclivity (¢f. Woodward et al,
1079 Waterhouse et al, 1988). The same input
could also act to gate the efficacy of subliminal
synaptic inputs conveyed by classical afferent
systems ( Moises et al., 1990).

Chemical heterogeneity in anatomically defin-
ed fiber populations is increasingly becoming evi-
dent in cerebellar circuitry, though the functional
relevance of such organization remains 1o be
determined. Electron microscopic analyses of
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chemically coded synaptic relationships with in
cerebellar cortex, as well as iontophoretic stu-
dies, are needed in order to understand interac-
tions within this circuitry.
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Fig. 1. CRF fibers in the cerebellar cortex of monkey. Immunoreactive fibers are predominantly locat-
ed in the molecular layer (M ). P: Purkinje cell layer. G: Granular layer. X100

Fig- 2. CRF fibers in the intermediate lobe of cerebellar cortex of monkey. CRF fibers are mainly dis-
tributed in the molecular layer (M} and Purkinje cell layer (P). G: Granular layer. X100
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Fig. 3. CRF fibers in the vermis of monkey cerebellum. Intensely labeling CRF fibers are characteristi-
cally located in the parasagittal zones ( between the arrows). M: Molecular layer. X100

Fig- 4. Norepinephrine fibers in the cerebellar cortex of monkey. Immunoreactive fibers are predomi-
nantly located in the granular layer (G} and white matter {W). M: Molecular layer. X 100
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Fig. 5. Norepinephrine fibers in the intermediate lobe of cerebellar cortex of monkey. CRF fibers are
mainly distributed in the granular layer (G ). M: Molecular layer. X100

Fig. 6. Norepinephrine fibers in the vermis of cerebsllar cortex of monkey. Immunoreactive fibers are
mainly located in the granular layer {G) and white matter (W). Note the fine fibers (arrow) lo-
cated in horizontal plane in the molecular layer (M) X100.




