
Runtime encapsulation of nested

process models supports flexible

workflow management in a

distributed heterogeneous

environment. Through its

modular design, the WW-flow

system provides a hierarchical

control scheme over complex

processes and subprocesses.

Implemented in Java, the

workflow engine and client

interfaces are portable and

platform-independent.

WW-FLOW:
Web-Based Workflow Management
with Runtime Encapsulation

YEONGHO KIM, SUK-HO KANG, AND DONGSOO KIM

Seoul National University
JOONSOO BAE

LG-EDS Systems
KYUNG-JOON JU

Computer & Software Technology Laboratory, ETRI

We use the term workflow to describe a business process that is
executed and managed automatically by a computer system.
The definition usually includes all the tasks, tools, procedures,

and organizations involved, as well. A workflow management system
(WfMS) is an application that uses a computer representation of the work-
flow logic to define, manage, and execute the process.1

Consider the workflow process in a collaborative engineering strategy
for new product development. It may involve cooperation among design,
manufacturing, assembly, testing, quality control, and purchasing depart-
ments, and may include both suppliers and customers.2 While some of
these functions are performed internally, others are carried out by exter-
nal organizations that might, for example, design specialized components
or develop numeric controller machine codes for computer-aided manu-
facturing work. Not only is such a workflow process complex, but it is also
subject to change due to interim results—prototype test and engineering
change request processes, for instance. Moreover, when subprocesses for
developing component parts proceed in parallel, new requirements can be
introduced along the way.

Interoperable WfMSs would enable these organizations to cooperate
more effectively by readily sharing information and keeping pace with each
other throughout the development process. To this end, we identify two
main requirements for a WfMS: modular design/execution and Internet
compliance. To support modularity, we have adopted an IDEF0-like nest-
ed modeling technique to model the workflow processes.3 This method,
which we call nested process modeling, allows the process manager to
break a complex business process into several subprocesses and provide a
structure for hierarchically arranging them. If the WfMS is also fully com-
pliant to Internet protocols, users can have ready access to the system from
any location. Moreover, maintenance is straightforward in a Web-based
system, and client programs can be easily updated because they need not
be installed for each user. Our Web-based workflow management system,
WW-flow, was designed to manage complex business processes in a dis-

55IEEE INTERNET COMPUTING 1089-7801/ 00/$10.00 ©2000 IEEE h t tp ://computer.org/in terne t/ MAY • JUNE 2000

W
O

R
K

FLO
W

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

I N T E R N E T - B A S E D W O R K F L O W

56 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

tributed and heterogeneous environment, such as
the World Wide Web.

SYSTEM DESIGN
Figure 1 shows WW-flow’s overall architecture. The
system has five main components: the process
designer, process database, workflow engine, work
item manager, and workflow client.

The process designer is a stand-alone client appli-
cation that lets a user model business processes. It
translates process models into a format the work-
flow engine can interpret and exports them to the
database using Open Database Connectivity
(ODBC) to communicate. The process designer

also supports nesting, which allows a model in the
process database to be imported, modified, and then
embedded into other processes as a subprocess.

The workflow engine creates or updates the
process’s control schedule according to the process
execution status. It dispatches each task to the
appropriate performers according to correspond-
ing process definitions in the process database. One
of WW-flow’s distinguishing features is that mul-
tiple workflow engines can interact with each other
using our runtime encapsulation mechanism,
which means that a task performer can even be
another workflow engine at a remote site.

The system in the figure is installed at two sites,

Process DB

Process
designer

Import
export
(ODBC)

Work item
manager

Client applet
repository

Web serverServlet API
(JSDK)

Administration
and monitoring

Supervisory
control

Task
dispatch

Task
schedule

Process manager

Workflow engine A

Work item
manager

Web
browser

(IBM compatible)

Web
browser

(workstation)

Web
browser

(Macintosh)

Client A Client B Client C
Client applet
repository

Web server

Servlet
API

Administration
and monitoring

Supervisory
control

Task
dispatch

Task
schedule

Process manager

Workflow engine B

Process definition/control data (JDBC)

Internet/intranet
In

te
rn

et
/i

nt
ra

ne
t

In
te

rn
et

/i
nt

ra
ne

t

N
es

te
d

pr
oc

es
s

di
sp

at
ch

/r
et

ur
n

re
su

lts

Process DB

Process
designer

Import
export

(ODBC)

Figure 1. Overall architecture of WW-flow. Workflow engines can interoperate with others using nested process models
and runtime encapsulation. All client programs are downloaded from the workflow engine via Web interfaces, so any
client user can participate in the workflow system.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

W W - F L O W

57IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 2000

for example, and system A can dispatch a task (which
is actually a subprocess) to system B while executing
a process. System B then executes the subprocess and
returns the results to system A. All the workflow
engine’s functions are implemented in pure Java to
ensure platform independence, which is vital to
interoperability. The engine also provides superviso-
ry control services for active process monitoring, sta-
tistical reporting on completed processes and tasks,
and expediting, aborting, or suspending certain tasks.

Once the workflow engine releases the tasks,
the work item manager takes control of them,
checking them out to users upon request. In addi-
tion to this pull approach, the engine uses a sim-
ple push technique whenever a task is released to
a user by automatically e-mailing them an alert.
Since e-mail can be read using portable devices
like PDAs and mobile phones, this approach par-

ticularly aids mobile and infrequent users.
The workflow clients provide interfaces for users

classified according to their roles and responsibili-
ties. Classifications include initiators, task perform-
ers, supervisory managers, and system administra-
tors. All the user interfaces are developed using Java
applets and can be downloaded via any Web brows-
er, which provides location transparency. We use
servlets for communication between the workflow
engine and clients.4 The client interface is interlinked
with a Web-based document management system.

NESTED PROCESS MODELING
Nested process modeling is key to the runtime
encapsulation method we employ in the WW-flow
system. It allows the process designer to break a
complex business process into several subprocesses
and provides a structure for hierarchically arrang-

Rapid technological advances in Web-based WfMSs have
extended the workflow environment across the Internet. One
of the first Web-based WfMSs, WebWork, was developed
at the University of Georgia’s LSDIS Lab and implemented
using CGI and JavaScript.1 Dartmouth College’s DartFlow,
on the other hand, uses transportable agents, as well as
CGI, and Java technologies.2 There are now several com-
mercial WfMSs, including InConcert 2000, Staffware
2000, Metro, and Ultimus, that provide client interfaces for
the Web environment. Some systems, such as i-Flow, imple-
ment a Java workflow engine as well as Web interfaces.

As for workflow standards, the international Workflow
Management Coalition (WfMC) has proposed a reference
model for a WfMS framework.3 The model consists of five
components (all of which are incorporated into WW-flow):

■ process definition tools,
■ workflow enactment service,
■ workflow client applications,
■ invoked applications, and
■ administration and monitoring tools.

WfMC has recommended standards for interfacing these
components with workflow engines. They also define four
interoperability models for communication among hetero-
geneous workflow systems:

■ connected discrete,
■ hierarchical,
■ connected indiscrete, and

■ parallel synchronized.

Our nested process modeling approach adopts and gen-
eralizes the hierarchical model, which allows a parent-child
relationship between processes.

The Process Interchange Format (PIF) working group is
researching an interchangeable format for process speci-
fications, enabling different WfMSs to transparently
exchange process definitions.4 The Internet Engineering Task
Force (IETF) SWAP working group has also proposed using
the Simple Workflow Access Protocol (SWAP).5 This proto-
col is designed to integrate work providers and asynchro-
nous services and provide for their interaction across the
Internet. The integration and interactions consist of control-
ling and monitoring the work using HTTP and transferring
structured information encoded in XML.

References
1. J. Miller et al., “The Future of Web-Based Workflows,” Proc. Int’l Work-

shop on Research Directions in Process Technology, Nancy, France, 1997.

2. T. Cai, P.A. Gloor, and S. Nog, “DartFlow: A Workflow Management

System on the Web using Transportable Agents,” Tech. Report PCS-

TR96-283, Dartmouth College, Hanover, N.H., 1996; available online

at http://www.cs.dartmouth.edu/reports/authors/Cai,Ting.html.

3. D. Hollingsworth, “The Workflow Reference Model,” Workflow Man-

agement Coalition Spec., WfMC-TC-1003, Jan. 1995.

4. J. Lee et al., “The PIF Process Interchange Format and Framework,” PIF

Working Group, May 1996.

5. G.A. Bolcer and G. Kaiser, “SWAP: Leveraging the Web to Manage Work-

flow,” IEEE Internet Computing, vol. 3, no. 1, Jan./Feb. 1999, pp. 85-88.

Research on Web-Based Workflow

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

I N T E R N E T - B A S E D W O R K F L O W

58 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

ing them. The database schema supports the nest-
ed model and the task status types used for design-
ing the control mechanism.

Nested Processes
A workflow process is conventionally defined by its
constituent tasks and the precedence relations
among them. A task is thus considered a compo-
nent of the process. In a nested process, on the
other hand, a task can further be mapped onto
another process model with more detailed specifi-
cations. The task then becomes both a parent of
one process and a child of another higher level
process.

As shown in Figure 2, tasks in the nested process
structure are classified into two types: primitive and
nesting. A primitive task cannot be broken down into
smaller elements. Nesting tasks are all deployed into
subprocesses. That is, task details are modeled in the
subprocess. In Figure 2, the root task T0 is at the
uppermost level, and its detail is modeled in process
P1. Within P1, the nesting tasks T12 and T14 are again
deployed to processes P2 and P3. This type of hierar-
chical relationship can appear at an unlimited num-
ber of levels. The figure also illustrates how a process

definition, such as P4, can be used several times.
Many traditional WfMSs rely on one-dimension-

al, flat process models, in which a process definition
includes every detail of the process from beginning
to end. Nested process modeling provides several
advantages for use in a distributed environment.

■ The simple top-down method enables the
design and analysis of very complex processes.

■ Its theoretical background exploits object-ori-
ented approaches (for example, encapsulation,
polymorphism, and inheritance) to modeling
processes and developing workflow manage-
ment systems.

■ Frequently used process models can be provid-
ed in libraries, which increases the reusability
of process models and thus reduces the efforts
needed to design processes.

■ Since each process is an autonomous unit that is
manageable and controllable in a distributed
environment, it forms the basis of encapsula-
tion during runtime.

■ The nested model can be easily extended to a
model for interoperability between heteroge-
neous and distributed workflow systems.

Root task

Nesting task

Nesting task

Nested process

Nesting task

T0

P1

P2

Main process

T11

T22

T23

T12 T13 T14 T15

T21 T24

Nested process

T41 T42 T43

Nesting task

Nested process

P3

P4

T33

T34

T31 T35 T32

Primitive task

Nesting task

Process

Figure 2. An example of a nested process structure.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

W W - F L O W

59IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 2000

In our approach, a manager in charge of the whole
process can design a model at the top level that
includes several subprocesses, which are represent-
ed as abstracted tasks. At that level, they can be
defined simply according to their required inputs
and outputs. A participant with expertise in each
area can then create the detailed definitions of the
subprocesses. With our system they can also exe-
cute and control the nested processes.

Runtime Encapsulation
Runtime encapsulation requires that each sub-
process have an interface to its nesting task. There-
fore, the parent process model containing the nest-
ing task defines the input and output of the
subprocess. The model does not have to include the
features specific to the subprocess because they can
be defined at the site that executes it.

When a subprocess is called, the nesting task
contacts the workflow engine that will execute and
manage the subprocess, and the engine controlling

the parent process forwards certain required infor-
mation, including the input, due date, and output.
If the engine does not have a process model for the
subprocess, a new one must be created unless a
model with the same format can be delivered from
the parent engine. In either case, a subprocess
model can be freely modified at the child workflow
engine. Because encapsulation localizes the modi-
fication, it does not affect the parent process. Upon
completion, the engine sends the results to the
higher level engine.

Runtime encapsulation facilitates cooperation
among different departments and organizations,
and it improves WfMS scalability by enabling dis-
tributed workflow engines to manage subprocesses
independently. Separating complex processes into
sets of smaller units also improves stability within
the WfMS: problems are isolated and thus cannot
influence other processes. By localizing definition
modifications, runtime encapsulation makes it easy
to dynamically adapt process models.

Wf_Link

PostTask (PK, FK)
PreTask (PK, FK)
Condition

Wf_TaskInstance

TaskInstanceID (PK)
ProcessInstanceID (FK)
NestedProcessInstanceID (FK)
StartingTime
FinishingTime
Status
TaskID (FK)
WorkerID (FK)
AttachedDocID

Wf_ProcessInstance

ProcessInstanceID (PK)
ProcessID (FK)
ProcessInstanceName
ProcessInstanceDescription
Initiator
StartingTime
FinishingTime
Status
NestingTaskInstanceID (PK, FK)

Wf_Task

TaskID (PK)
ProcessID (FK)
TaskType
TaskName
NestedProcessID (FK)
SubProcessManager
EngineLocation
CouplingMode
TaskDescription
DueDate
DocumentID
ApplicationName
SplitType
MergeType
Priority
AttControl
AttNest
RoleID (FK)

Wf_Process

ProcessID (PK)
ProcessName
DocumentDirectory
Description
SubProcessManager
EngineLocation
DesignDate
FirstTask (FK)
NestingTaskID (PK, FK)

n

m
m 1

m

1m

m

1

1

Figure 3. Database schema for nested processes. The schema shows the relationship between task, process, task
instance, and process instance. The database tables are designed to maintain the nesting relations and attributes
required for runtime encapsulation.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

I N T E R N E T - B A S E D W O R K F L O W

60 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

Database Schema for Nested
Process Models
Figure 3 shows a database schema, including table
names and major attributes, for storing and main-
taining nested process models. The Wf_Process and
Wf_Task tables store static information concerning
the structural definitions of processes, whereas the
Wf_ProcessInstance and Wf_TaskInstance tables con-
tain operational information that is generated
while a process instance is being executed.

For a nesting task within the Wf_Task table, the
NestedProcessID attribute field points to the corre-
sponding nested process. For a primitive task the
attribute is assigned a Null value. The NestingTaskID
attribute in Wf_Process indicates the task from
which a process is nested. The cardinality of 1 : m
between Wf_Process and Wf_Task indicates that a
process can be nested by multiple nesting tasks,
which supports multiple usage of a subprocess. A
similar relationship exists between Wf_ProcessIn-
stance and Wf_TaskInstance.

The Wf_Process knows only
the first task of a process, which
is specified in the FirstTask
attribute, but all the succeeding
tasks can be identified by refer-
ring to the precedence relations
in Wf_Link. The CouplingMode
attribute in the Wf_Task indicates
the coupling mode between a
nesting task and its nested
process. Together with the Sub-
ProcessManager and EngineLoca-
tion, this attribute is required to

support runtime encapsulation.

Control Mechanism
WW-flow’s component modules interact by
exchanging messages (return codes) and data. Our
control mechanisms are similar to those reported in
Kumar and Zhao5 and Casati et al.6 Table 1 lists the
return codes we use for interactions between the
workflow engine and normal clients. After com-
pleting its assigned work, a normal client replies to
the workflow engine with one of the return codes.

In the nested process model, every subprocess is
associated with a nesting task, and thus both tasks
and processes have the same status codes. All tasks
are initialized as NotReady. When all preceding
tasks are completed, the status changes to Ready.
The workflow engine then assigns a Ready task to a
performer, and the status becomes Doing. Com-
pletion of the task changes the status depending on
the code returned. The state transition diagram in
Figure 4 shows how a task’s final status can be Done,
Failed, or Aborted.

WORKFLOW ENGINE
The workflow engine interprets process definitions
and creates and executes process instances. It also
performs housekeeping of data required for super-
vision and system administration.

Process Control Procedure
A process flow can be either serial or parallel. For
the parallel process flows, we consider four types of
split—concurrent, alternative, exclusive, or condi-
tional—each of which can be associated with the
same type of merge.1 Figure 5 is a flowchart of the
process control procedure, which we have grouped
into five sectors. Each handles certain important
functions.

1. When the engine receives a task return code

Table 1. Return code and task status.
Return code Task status Description
n/a NotReady Initial state
n/a Ready A task is ready to begin, but not executed yet.
Assign Doing A task is currently being executed.
Finish Done A task is normally terminated.
Suspend/Resume Suspended A task is temporarily stopped.
Reject Rejected A task is rejected.
Abort Aborted The whole process is cancelled.
Fail Failed A task is failed, which can start an alternative task.

Reject
Begin

AbortFailFinish Abort

Reject
Suspend

Resume
Suspended

Ready

Doing

Failed Aborted

NotReady

Rejected

Done

Figure 4. State transition diagram.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

W W - F L O W

61IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 2000

from a client, it calls an appropriate function
determined by the return code.

2. When the last task of a process returns the
Finish code, the process terminates and the
nesting task is complete. As every process is
nested to a task, the whole process is complete
if the nesting task is the root task.

3. The engine checks the split type, identifies the
next task to be executed, and changes the status
to Ready.

4. The engine checks the merge type of the next
task to make sure it is executable. If it is a
concurrent merge, for example, the next task’s
execution must be postponed until all
preceding tasks are complete.

5. Runtime encapsulation is implemented in the
nesting task processing sector.

The process control procedure manages the inter-
action between the engine and clients. The proce-
dure runs whenever a task return code is received
from client users, and assigns tasks to relevant
clients. Central to the interaction is the control of
nesting tasks through runtime encapsulation.

Implementation of Runtime
Encapsulation
The pseudocode for processing nesting tasks is pro-
vided in Figure 6. The procedure first checks with
the appropriate workflow engine, and if the engine

Receive
return code

Backtrack to
the nearest XOR

splitting task

Assign tasks to
worklist handler,

notify it and return

Set task status
'Doing'

and resume

Initiation of
encapsulated
subprocess

Find next task
and set status

'Ready'

Select next task
satisfying control

variable value and
set status 'Ready'

Get all previous
tasks linked with

selected tasks
and check status

Get tasks whose
status is
'Ready'

Wait for
unfinished tasks

to finish

Set task status
'Done'

Return 'Finish'
to local engine

Set task status
of returned

task to 'Ready'

Exist?

Task
= Root task?

AttNest
= True?

Abort
process

Select found task,
set status 'Ready'

and get task whose
status is 'Ready'

Set task status to
'Not-ready'

between returned
and current

task and notify it

Set task status
'Suspended'

and suspend until
resume command

arrives

Find all tasks linked
with current task and

set status 'Ready'

All
selected tasks

ended?

Merge type
= AND?

Number of
tasks = 1?

Return code?
Local process?

Split type?

Final task?

Finish process

Process is over

Return 'Finish'
to remote engine

Parent
process
exist?

Fail Reject

Abort

No

Set return code
'Finish'

Set task status
'Doing'

FinishSuspend
Resume

No

Yes

Yes

No

1

2

5

3

4

No Yes

Yes No

OR/XOR,
none

Condition

AND

No

Yes
Yes No

1

2

3

4

5

Handling return codes

Finishing process execution

Searching for the next task(s)

Checking merging types

Processing nesting tasks

Yes

Yes

No

Figure 5. Process control flowchart.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

I N T E R N E T - B A S E D W O R K F L O W

62 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

running the procedure is the same one that will exe-
cute the subprocess, the procedure checks the sub-
process model’s availability. If it is unavailable, a new
model is designed and executed. Once the model is
in place, the procedure creates an instance of the sub-
process, gets its first task, and sets the task’s status to
Ready. Since this task can also be a nesting task, the
procedure calls the Handling_Nested_Process()
function recursively.

If the nested process is to be executed at a remote
engine, the procedure notifies the remote engine
and passes control to it with TaskInstanceID. While
executing this subprocess, the WW-flow system
applies runtime encapsulation. To implement the
mechanism, we have considered three coupling
modes.

■ Tight coupling. The engine executing the nest-
ing task has the authority to control and mon-
itor the nested subprocess in the remote engine.
The control function allows expediting, abort-
ing, suspending, or resuming every task.

■ Intermediate coupling. The engine can monitor
the status of the subprocess in the remote
engine, but cannot control it.

■ Loose coupling. The engine has no controlling
or monitoring authority. The subprocess is exe-
cuted independently, and the execution detail
is completely hidden from the engine, which
must wait for the final results.

A designer specifies a relevant coupling mode as an
attribute of every nesting task. When notifying a
remote engine of a nesting task, the coupling mode
is transmitted in the cmode argument. The other
three arguments transmitted are id, pd, and ntinput,
which respectively contain the nesting task identi-
fication, subprocess model, and other required
information, such as input documents, due date,
and description. Transmitting the subprocess
model is optional because the remote engine can
use the model provided by the host engine or its
own model. It is also possible to create a new
model or modify an existing one before launching
the subprocess.

For a primitive task, the engine identifies a per-
former, sets the task status to Doing, and dispatch-
es the task to the responsible user. When the per-
former is defined as a group of people, the engine
chooses one of them by calling a workload balanc-
ing procedure. The engine then e-mails the per-
former a task-notification message. This is imple-
mented using the Java mail API.

WW-FLOW CLIENTS
There are two types of workflow users: build-time
and runtime. A build-time user creates process mod-
els using Process Designer, and a runtime user, or
task performer, carries out actual tasks. For the run-
time user, we provide Web-based client modules.

Process Designer
The process designer provides build-time function-
ality for the system. It is implemented in Visual
C++, and the GUI components were developed
using the Objective Diagram class library from
Stingray Inc. The GUI lets a process designer cre-
ate and edit nested process models.

Figure 7 is an example of a hierarchically nested
model. The overall structure of a process can be
viewed in a tree structure through the designer’s
process hierarchy window, which is similar to a fold-
er structure. Selecting a nesting task in this window
activates the diagram window containing the cor-
responding nested task. The process designer also
includes functions for error checking in process
models, exporting completed models to databases,
and importing subprocesses for nesting.

void Handling_Nested_Process(TaskInstanceID id)
{

TaskInstanceID cid;
ProcessInstanceID pid;
UserID uid;
ProcessDefinition pd;
NestingTaskInformation ntinput;
CouplingMode cmode;
If(Check_If_Nesting(id)) {

If(Check_Responsible_Engine(id)) {
If(Check_If_Designed(id)) {

pid=Create_Process_Instance(id);
cid=Get_First_Task(pid);
Set_Task_Status(cid, READY);
Handling_Nested_Process(cid);

}
Else

Create_New_Process_Model(id);
}
Else

Notify_to_Remote_Engine (id, pd, ntinput, cmode);
}
Else {

uid=Get_Available_User(id);
Assign_Task(id);
Set_Task_Status(id, DOING);
Notify(uid);

}
}

Figure 6. Pseudocode for processing nesting tasks.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

W W - F L O W

63IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 2000

Web-Based Clients
WW-flow’s client modules are
Java applets developed using
JBuilder 2.0 and JDK 1.2. The
system has four client interfaces:

■ The initiator module launch-
es instances of process models.

■ The system administrator
module provides general
functions for managing
users, roles, authority, and so
on.

■ The normal client interface
allows performers to receive
task information from a
workflow engine and
respond to it with their
results.

■ The supervisory control and
monitor module is an autho-
rized user that can monitor
the state of processes being executed and control
the expediting, suspending, resuming, or abort-
ing of tasks. It also provides statistics on finished
processes, including overall performance, task
history, workloads for each task performer, and
so forth.

Figure 8 shows the interface for a normal client
module managing a task list for each user (listed in
the WorkList tab). The navigation links to the right
of the tab let the user view the up-to-date task list,
overall process containing the selected task, and
detailed information. For example, the ProcessFlow
button opens a window that highlights tasks with a
status of Doing. With WW-flow’s document man-
agement system, the user can also relate files to the
task by clicking the Attach button.

High-level managers are generally more inter-
ested in abstracted information about entire
processes, whereas low-level managers often require
more detailed information concerning specific sub-
processes. The runtime encapsulation proposed in
this article supports this type of modularized mon-
itoring service through a zoom in/out function.

Figure 9 shows a monitoring applet with a Process
Hierarchy tree open in the window at the left. In our
example, the user is monitoring a subprocess exe-
cuted by a remote engine, and the information is dis-
played on the main monitoring window, including
general process descriptions, engine location, cou-
pling mode, and input and output packets. The sub-

process model can also be presented in another win-
dow as shown at the bottom of the figure.

The coupling mode determines the abstraction
level for monitoring and control. With tight cou-
pling, the remote engine provides the output packet
status as well as the subprocess model, launch time,
due time, and a list of process managers. The super-
visory control buttons at the bottom of the main win-
dow let the user intervene in the execution of the sub-
process. In other modes, the buttons are disabled.

Figure 7. Process Designer. The user can create and edit a diagram model of a nested
process by a simple mouse click. Task attributes are input through the pop-up window.

Figure 8. Normal client interface.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

I N T E R N E T - B A S E D W O R K F L O W

64 MAY • JUNE 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

LESSONS LEARNED
A standardized process definition format is vital to
complete interoperability among heterogeneous
computing environments, and we believe the con-
cept of nested modeling should be included in that
standard. Our research has only partially achieved
our goals because WW-flow can only interact with
servers using the engine we have developed. True
interoperability requires that all workflow engines
involved in a process support a common set of APIs.
One alternative to our method would be to use the
SWAP-compatible process definitions in XML.

Another important issue for further research is to
incorporate WfMSs into information systems such
as enterprise resource planning, supply chain man-
agement, and order tracking systems so that they are
interoperable. Agent technologies have great poten-
tial for aiding this type of integration.7 ■

ACKNOWLEDGMENTS
This research was supported by the Korean Science and Engi-

neering Foundation (KOSEF) under Grant No. 97-02-00-09-

01-3. The authors would like to thank the anonymous referees

and the guest editors, especially Charles Petrie, for their valu-

able comments in improving this article. Special thanks also go

to Hyerim Bae, Wonchang Huh, Young-Myoung Ko, and

Sangjin Lee for their countless overnight programming sessions.

REFERENCES
1. D. Hollingsworth, “The Workflow Reference Model,”

Workflow Management Coalition Spec., WfMC-TC-1003,

Jan. 1995.

2. C.Y. Kim et al., “Distributed Concurrent Engineering:

Internet-Based Interactive 3-D Dynamic Browsing and

Markup of STEP Data,” Concurrent Engineering: Research

and Applications, vol. 6, no. 1, Mar. 1998, pp. 53-70.

3. P.G. Ranky, Manufacturing Database Management and

Knowledge-Based Expert Systems, CIMware Ltd., Guildford,

Surrey, England, 1990.

4. J.D. Davidson, “Java Servlet API Specification, v2.2,” Sun

Microsystems, Nov. 1998; available online at: http://java.

sun.com/products/servlet/.

5. A. Kumar and J.L. Zhao, “Dynamic Routing and Opera-

tional Controls in Workflow Management Systems,” Man-

agement Science, vol. 45, no. 2, Feb. 1999, pp. 253-272.

6. F. Casati et al., “Deriving Active Rules for Workflow Enact-

ment,” Proc. 7th Int’l Conf. Database and Expert Systems

Applications, Lecture Notes in Computer Science, Springer-

Verlag, 1996, pp. 94-110.

7. C. Petrie, S. Goldmann, and A. Raquet, “Agent-Based Process

Management,” Proc. Int’l Workshop on Intelligent Agents in

CSCW, Deutsche Telekom, Dortmund, 1998, pp. 1-17.

Yeongho Kim is an assistant professor in the Industrial Engineer-

ing Department at Seoul National University (SNU), Korea.

His research interests include workflow management systems,

product data management, and Internet applications in engi-

neering. Kim received a PhD from North Carolina State Uni-

versity at Raleigh, and BS and MS degrees from SNU.

Suk-Ho Kang is a professor in the Industrial Engineering Depart-

ment at SNU. He has a BS in physics from SNU, an MS from

the University of Washington, and a PhD from Texas A&M

University, both in industrial engineering. His research inter-

ests are in intelligent manufacturing systems and CALS/EC.

Dongsoo Kim is a PhD candidate at SNU. He received BS and

MS degrees in industrial engineering from SNU in 1994

and 1996, respectively. His research interests include work-

flow systems, agent technology, database systems, and Web

applications development.

Joonsoo Bae received PhD, MS, and BS degrees from the Indus-

trial Engineering Department at SNU. He currently works

for LG-EDS Systems Inc. in South Korea. His research

interests include system integration, active database systems,

workflow systems, and e-business.

Kyung-Joon Ju received BS and MS degrees in industrial engi-

neering from Korea University. He currently works for

Computer & Software Technology Laboratory, ETRI, in

South Korea. His research interests include workflow sys-

tems, supply chain management, and e-business.

Readers can contact the author at yeongho@snu.ac.kr.

Figure. 9 Remote subprocess monitoring.

Authorized licensed use limited to: Seoul National University. Downloaded on August 24, 2009 at 02:03 from IEEE Xplore. Restrictions apply.

