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Abstract: Power-line communication (PLC) has an advantage of no additional wiring for communications, but it may not be suitable for high speed signal transmission due to the nature of power-line. In this paper we consider the use of adaptive CPFSK modulation scheme robust to harsh power-line channel condition. The modulation parameters are initialized and adjusted during the data transmission without interrupt. The performance of the proposed scheme is analyzed and verified by computer simulation.
Keywords: PLC, CPFSK, adaptive modulation
Ⅰ. Introduction
In recent, power-line communication (PLC) has been considered as one of promissiong solutions for rapidly increasing demand for multimedia services, because it can use existing power-line network without additional wiring. However, since the power-line is designed for transmission of the electricity, it does not provide channel characteristics of good quality suitable for high-speed communications. In particular, the characteristics of the power-line significantly vary depending upon the switch status (i.e., on/off) of the electrical loads [1]. As a result, it may be desirable to employ a modulation scheme robust to time-varying channel characteristics.

Recent studies have considered the use of continuous phase modulation (CPM), spread spectrum (SS) and multi-carrier modulation (MCM) as an efficient modulation scheme for the PLC.  Since the SS scheme requires large bandwidth to obtain a large processing gain, it may not appropriate for high-speed communications and it has inferior performance compared to the MCM [2]. The MCM modulates each sub-channel independently, it may be suitable for frequency selective PLC channel, appropriate for high-speed communication. However, the implementation complexity is high compared to single carrier schemes and it may require expensive analog-front-end due to high peak-to-average power ratio (PAR). In addition, the MCM is susceptible to impulsive noise in PLC environment [3]. Although the CPM has low spectral efficiency, it features low system complexity and favorable performance due to low PAR and robustness to amplitude variation and impulsive noise [3]. The CPM decreases the sidelobe of the power spectrum by means of continuously connecting the phase that contains the information. In this paper, we consider the use of CPFSK modulation as a robust modulation scheme to the variation of signal amplitude.

The research on an adaptive modulation scheme has been adopted to utilize the transceiver bandwidth efficiency in voice-band modems from late 1980’s. In wireless systems, the use of adaptive QAM modulation has been studied by changing the modulation level, channel coding rate and transmit power [4][5]. In the MCM, an adaptive modulation is employed by allocating the subcarrier bits and power depending upon the channel condition [6][7]. However, the use of CPFSK with fixed modulation parameters has been studied as a robust modulation scheme under harsh channel condition. In this paper, an adaptive CPFSK modulation scheme is designed so as to maximize the transmission rate, while providing the desired bit error rate (BER) without any interruption of the transmission when the channel condition is changed.

Ⅱ. Channel probing
It is well understood that the characteristics of the power-line channel is abruptly changed due to the switch operation of electric loads. To obtain the optimum performance, it is required to adjust the transceiver parameters according to the channel condition. As a practical channel estimation method, the use of line probing (LP) has already been applied to QAM-based voice band modems [5]. Since the CPFSK modulation scheme is much simpler than QAM, the line probing technique can effectively be applied to the PLC environment. 

It is desirable for the LP signal to be generated in a simple way, while having a minimum PAR. Since we consider the use of bandwidth between 4 and 12 MHz and symbol rates of up to 1 Mbaud, it may suffice to use tone signals spaced by 0.5 MHz. The PAR of the LP tone signal can be minimized by controlling the phase of each tone. For ease of implementation, we consider the use of tone signals having 
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 phase. Fig. 1 depicts the frequency response of the designed LP signal, yielding a PAR of 2.56dB.

For line probing, a periodic LP signal with a period of 
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where 
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 denotes the additive noise term. Taking the discrete Fourier transform (DFT) of 
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where 
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where 
[image: image18.wmf]M

 is total averaging number. The power spectrum of the signal component can be estimated as
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Assuming that the additive noise is a zero-mean random process and uncorrelated with the signal, 
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 is an unbiased estimate with variance inversely proportional to 
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The power spectrum of the noise can be estimated by eliminating the power spectrum of the signal from the power of the received signal. The power spectrum of the received signal can be estimated as  
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The power spectrum of the noise signal can be estimated as
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Fig. 1 Frequency response of the LP signal
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Fig. 2 Block diagram of the channel estimation module
Fig. 2 depicts a block diagram of the channel estimation module. Since we consider the use of 4- or 2- level CPFSK with a symbol rate of up to 1 Mbaud, the information required for determining the modulation parameters can be obtained by the LP method. 

Ⅲ. Adaptive CPFSK modulation
A CPM signal 
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where 
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 represents the symbol energy, 
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 is the symbol duration time, 
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Here 
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 is the peak frequency deviation, 
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 is the modulation index equal to 
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and 
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 is the impulse response of the phase shaping pulse defined as
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The use of 
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 keeps the FSK tone signals orthogonal, appearing to be optimum in additive white gaussian channel. However, this may not be optimum in the frequency selective power-line channel. The use of  
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less than 1.0 may result in a BER performance better than the use of 
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. If the received FSK tone signals have equal power with the use of power control, the use of 
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Although little SNR gain is obtained by controlling the FSK modulation level, the modulation level control can be used to avoid performance degradation due to frequency selective nulls. The SNR gain can be obtained by controlling the symbol rate 
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It can be seen that we can obtain 3dB SNR gain by reducing the symbol rate by half.

To provide optimum performance, the received SNR 
[image: image51.wmf]i

g

 of each tone is estimated using the LP method at the beginning of the operation. The LP finds out the signal bandwidth that provides the maximum average SNR. Since the channel is not ideal, we apply the power control to each tone. After the bin power control, the average SNR can be represented as 
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where 
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If the difference between 
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 needs to be determined by considering the sidelobe effect of the tone to the adjacent tones and the dynamic range of the power amplifier.  If
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the transmit signal power is controlled so that the received signal has tones with equal power. Since the transmit power should be unchanged with the power control, the gain 
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 for each tone should satisfy
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If 
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 is less than the SNR required for specified BER, it is required to control the symbol rate.

Ⅳ. Performance evaluation
To evaluate the performance of the proposed adaptive modulation scheme, we consider a CPFSK based PLC modem with a maximum transmission of 2 Mbps, using frequency band between 4 and 12 MHz.  The PLC modem employs 4- or 2-level CPFSK modulation at a symbol rate of 0.25, 0.5 or 1Mbaud depending upon the channel condition. Fig 3 depicts the structure of the power-line network considered for performance evaluation. Fig. 3 (b) and (c) illustrate the frequency response of the channel when only PC 1 is on and others are all off, and all the loads are switched on, respectively.

Fig. 4 depicts the BER performance when the proposed scheme with 
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 is applied to the channel shown in Fig. 3. It can be seen that the use of bin power control significantly improve the receiver performance and that the use of halved symbol rate can provide an SNR gain of 3dB.  It can also be seen that there is a performance gap of approximately 3dB compared to the AWGN case. This is mainly due to that the orthogonality of tones is corrupted by the intersymbol interference (ISI).

Fig. 5 depicts the receiver performance in terms of the transmission rate and BER when the proposed scheme is applied to the channel condition Fig. 3(b). It can be seen that the adaptive CPFSK system provides the required 
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 BER performance by adjusting the symbol rate and modulation level according to the SNR condition.
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(a) Example of the power-line network
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(b) PC1 on, others off
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(c) All swithes on

Fig. 3 Example of the power-line network
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Fig. 5 Performance of adaptive modulation scheme
Ⅴ. Conclusion
In this paper, we have proposed an adaptive CPFSK modulation scheme that can transmit the data at a maximum rate of 2 Mbps without interrupt under time-varying power-line channel condition. The modulation parameters are initialized by estimating channel information using the line probing technique. The modulation parameters are adjusted to provide a desired BER performance without interrupting the data transmission when the channel condition is suddenly changed.  Simulation results show that the adjustment of each tone power, symbol rate and modulation level can provide performance quite robust to time-varying power-line channel condition.
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