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Abstract

Background: The aim of this study was to investigate the role of the estrogen receptor 1 (ESR1) genetic poly-
morphisms for early menopause that was classified as premature ovarian failure (POF) and early menopause
(EM) and to examine whether the associations of ESR1 genetic variants are different for POF and EM.
Methods: We selected 100 POF cases and matched 100 EM cases and 200 normal menopause (NM) controls from
the Korean Multi-Center Cohort. Among them, we restricted idiopathic POF and EM cases vs NM controls by
excluding POF=EM cases with medical=surgical causes. The XbaI (rs9340799) and PvuII (rs2234693) in the ESR1
gene were genotyped. The single-nucleotide polymorphism (SNP) and haplotype effects were analyzed by
multivariate logistic regression and haplotype analysis. Also nominal polytomous logistic regression was used to
find whether ESR1 genetic variants are differently associated with POF and EM.
Results: The global p values for idiopathic POF and EM were 0.08 and 0.39 (SNP-based), and <0.001 and 0.12
(haplotype-based), respectively. The XbaI genetic variant containing the X allele was marginally significantly
associated with a reduced risk of idiopathic POF (OR¼ 0.6, 95% CI 0.3-1.0). The P-x haplotype and diplotypes
significantly decreased the risk of idiopathic POF (OR¼ 0.5, 95% CI 0.2-0.9; OR¼ 0.4, 95% CI 0.2-0.9, respec-
tively). In contrast from POF, the P-x haplotypes and diplotypes insignificantly increased the risk for both
idiopathic EM ( ppolytomous¼ 0.009 for P-x haplotype; ppolytomous¼ 0.02 for P-x diplotypes).
Conclusion: Our results suggest that the ESR1 gene including PvuII and XbaI polymorphisms may modify the
risk of idiopathic premature ovarian failure (POF) but not idiopathic early menopause (EM) risk.

Introduction

Age at menopause, as well as overall years of menstru-
ation, has major implications for women’s health. The

time of menstruation cessation is an important contributing
risk factor for postmenopausal diseases.1–5 In general, men-
opause at an early age implies greater susceptibility to various
disorders. Previous studies reported that early menopause
(EM) before the age of 45 was associated with a greater risk of
osteoporosis, fractures, heart disease, cancer, and all-cause
mortality.6–12 The definition of early menopause from previous

studies, however, was a more inclusive definition that in-
cluded both premature ovarian failure (POF) and early men-
opause, not exclusively POF.

POF is a disorder defined as the cessation of menstruation
that occurs before the age of 40.13 The exact mechanism of
POF is unclear, but several hypotheses have been proposed,
such as an abnormality of the ovary or of genetic function.14–16

In contrast, early menopause that occurs before the age of 45
years is assumed to be due to hormonal changes rather than a
genetic effect. The etiology of these related conditions is un-
known, because most previous studies do not distinguish
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between POF and early menopause. Additionally, because of
the broader definition of early menopause used in previous
studies, the actual POF risk may be underestimated and
misinterpreted. Therefore, we classified early menopause into
two separate categories: POF and EM. As defined in previous
studies, POF is menopause that occurs before the age of 40,
and EM is defined as menopause that occurs between ages 40
and 44.17

Studies have investigated the association between genetic
factors and age at menopause.18–28 Genetic polymorphisms of
estrogen receptors (ERs) expressed by ER-a (ESR1=estrogen
receptor 1) and ER-b (ESR2=estrogen receptor 2)29 have been
examined.21–28 The two most widely studied polymorphisms
of ESR1 are XbaI and PuvII, which are located on the first
intron 397 and 351 bp upstream of exon 2, and have a high
degree of linkage disequilibrium.30 Though many studies
suggest that genetic polymorphisms of ESR1 modify suscep-
tibility to women’s disorders, including osteoporosis, endo-
metriosis, preeclampsia, and breast cancer, few studies have
demonstrated the association of ESR1 and the risk of POF
and=or EM.

ESR1 genetic polymorphisms seem to play a role in de-
veloping POF and=or EM, but the exact mechanism is still
unclear. Thus, we hypothesized that genetic variants of ESR1
underlie the association with POF and=or EM, and the effect
of ESR1 in POF may differ from that of EM. In this study, we
classified early menopause into two groups (POF and EM),
and examined whether ESR1 genetic polymorphisms are as-
sociated with only POF or both POF and EM.

Materials and Methods

Study population

Our study population was selected from the Korean Multi-
Center Cancer Cohort (KMCC), a prospective cohort of par-
ticipants recruited from four urban and rural areas in Korea
(Haman, Chungju, Uljin, and Youngil). The study protocol for
the KMCC was approved by the institutional review boards
of Seoul National University Hospital and the National
Cancer Center of Korea (H0110-084-002). Detailed informa-
tion about the KMCC study has been described else-
where.17,31 We chose four districts from Chungju, one of the
local centers, and performed community surveys. To maxi-
mize the participation rate, additional telephone surveys were
also performed for women who did not participate in the
community survey. A total of 2,668 women between the ages
of 30 and 79 were recruited; the participation rate was 70.2%.
We included postmenopausal women (n¼ 1,919) and ex-
cluded subjects over age 70 (n¼ 51) because of recall bias and
subjects with no information on their age at menopause.
(n¼ 132). Menopause was defined as a period of amenorrhea
greater than 12 consecutive months. We defined three meno-
pausal groups: POF (n¼ 137) was defined as cessation of
menstruation before age 40; EM was defined as menopause
between the ages of 40–44 years (n¼ 281); normal menopause
(NM) controls (n¼ 1,318) were defined as menopause be-
tween the ages of 45–60. Idiopathic POF and EM were defined
as POF and EM not due to any medical causes or relevant
surgical causes for cessation of menstruation. Fifty-three
women from the POF group and 20 from the EM group had
surgical or medical menopause related to hysterectomy,
oophorectomy, cancer therapy, and various other hormonal

diseases. Eighty-four idiopathic POF and 261 idiopathic EM
cases were identified from our eligible population. After ex-
cluding subjects without blood samples, 103 POF and 187 EM
subjects remained. We matched one POF case to one EM case
and two NM controls, according to age (�60, >60 years old)
and the number of years from menopause (�10, >10 year).
Finally, we selected 100 POF cases, 100 EM cases, and 200 NM
controls, including 46 idiopathic POF and 86 idiopathic EM
cases.

Data collection

All participants signed a consent form and completed a
detailed standardized interview-based questionnaire that in-
cluded information on demographic characteristics, family
history, medical history, reproductive factors, use of oral
contraceptives, physical activity, use of agricultural chemi-
cals, cigarette smoking, alcohol consumption, and other en-
vironmental risk factors.

Genomic DNA was prepared from whole blood samples
using the genomic DNA purification kit (Core-One� Blood
Genomic DNA Isolation Kit, Seoul, Korea). PCR amplification
was performed using 50 ng of genomic DNA in a 30ml reac-
tion volume that contained 2.5 mM dNTP 0.5 ml, 2 U of Taq
DNA polymerase (Neurotics, Seoul, Korea), and PCR primer
sets. Samples were subjected to 35 amplification cycles in
GeneAmp PCR system 2700 (Applied Biosystems, Foster,
CA). The PCR products were digested by PvuII (rs2234693)
and XbaI (rs9340799) under conditions specified by the en-
zyme supplier (New England Biolabs, Beverly, MA). The PCR
primers were sense strand5’-ctgccaccctatctgatatcttttcctattctcc-
3’ and antisense strand 5’-tctttctctgccaccctggcgtcgattatctga-3’.
Restriction fragments were separated by agarose gel electro-
phoresis and ethidium bromide staining. The presence of the
restriction site for each endonuclease was conventionally in-
dicated with a lowercase letter ( p or x, respectively, for PvuII
and XbaI endonucleases), whereas the absence of the restric-
tion site was indicated with a capital letter (P or X).

Statistical analysis

Multiple logistic regression analysis was used to estimate
odds ratio (OR) and associated 95% confidence interval (CI)
for environmental factors. We conducted univariate analysis
to identify significant covariates from the total study popu-
lation that included medical and surgical cases. Age, educa-
tion, number of years from menopause to enrollment time,
past history of pulmonary tuberculosis, cancer history, hys-
terectomy, use of oral contraceptives, age at menarche,
spontaneous abortion at first pregnancy (meaning whether a
women’s first pregnancy was successful or failed), and du-
ration of breast feeding were selected as covariates in our
analysis. In the analysis of idiopathic cases and controls,
surgical or medical menopause-related variables such as
hysterectomy, cancer history, and past history of pulmonary
tuberculosis were excluded as adjustment variables.

The Hardy-Weinberg equilibrium assessed allele frequen-
cies using the w-square test. Among POF cases, EM cases, and
controls, genotype frequencies did not deviate from the
Hardy-Weinberg equilibrium ( p> 0.1). Moreover, single
SNPs, haplotype, and diplotype analyses were performed. To
detect each SNP effect of ESR1 for POF and EM, three genetic
models—a codominant, dominant, and recessive model—
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were used, and the p-trend values derived from the additive
model were presented. Tests for significance were computed
after adjusting for age, education, number of years from
menopause (<10, >10 year), smoking status, past history of
pulmonary tuberculosis, age at menarche, spontaneous
abortion at first pregnancy, and breastfeeding; all were se-
lected from backward stepwise logistic regression.

Risks for POF and EM in relation to ESR1 haplotypes were
assessed using SAS-Genetics software (version 8.2),32 which
employs the expectation-maximization algorithm to estimate
haplotypes. The XbaI and PvuII polymorphisms were in high
linkage disequilibrium (Lewontin’s D’ value¼ 0.99). A hap-
lotype-based global score test assessed the overall differences
in haplotype frequencies between POF or EM cases and NM
controls. We assessed the haplotype-associated risks using the
P-X haplotype as the referent category after adjusting for age,
education, number of years from menopause (�10,>10 year),
smoking status, past history of pulmonary tuberculosis, age at
menarche, spontaneous abortion at first pregnancy, and
breastfeeding. The association between ESR1 haplotypes with
observed frequencies greater than 5% and POF and EM cases
was evaluated. Diplotypes with at least one copy of the ref-
erent haplotype P-X were selected as the reference in the di-
plotype analysis. Risk of POF or EM was estimated for each
diplotype compared to the referent diplotype, adjusting for
the same covariates. The diplotype data were treated as cat-
egorical variables and were incorporated as dummy variables
in the logistic regression models.

Polytomous logistic regression was used to estimate p
values for an association between genetic factors and the three
menopausal groups (POF, EM, and NM) according to a
nominal scale. Likelihood ratio tests for linear trend assessed a
potential dose-response relationship. If any of the cell fre-
quencies in a given table were less than three, we did not
present the ORs and 95% CIs.

Results

Compared to NM controls, EM cases were more educated
and POF cases were less educated ( p¼ 0.01) (data not shown).
Table 1 presents the odds ratios and 95% CIs of environmental
and reproductive risk factors such as smoking=alcohol status,
physical activity, past history of pulmonary tuberculosis, age
at menarche, parity, spontaneous abortion at first pregnancy,
and breast feeding, for POF and EM. Past history of pulmo-
nary tuberculosis and age at menarche were significant risk
factors for both POF and EM (OR¼ 1.6, 95% CI 1.5-11.0 for
EM; OR¼ 5.0, 95% CI 1.5-16.4 for POF in terms of past history
of pulmonary tuberculosis; OR¼ 4.1, 95% CI 1.5-11.0 for EM;
OR¼ 5.6, 95% CI 2.0-15.4 for POF in terms of age at menar-
che), but an increased risk was observed in POF cases.
Breastfeeding for longer than 24 months was a significant
protective factor for both POF and EM (OR¼ 0.3, 95% CI 0.1-
0.99 for EM; OR¼ 0.2, 95% CI 0.1-0.6 for POF). For idiopathic
cases, age at menarche was significant for both EM and POF
(OR¼ 4.8, 95% CI 1.7-14.0 for EM; OR¼ 7.0, 95% CI 2.2-23.0
for POF).

Table 2 shows the distribution of ESR1 polymorphisms
among all cases and controls and the ORs (95% CIs) for POF
and EM cases compared to NM controls in relation to ESR1
genetic polymorphisms. Genotype frequencies for all SNPs
did not deviate from the Hardy-Weinberg equilibrium

( p> 0.1). In the single SNPs analysis, no significant allele ef-
fect was observed with the PvuII genotype. In contrast, The
XbaI genetic variant containing the X allele was associated
with a reduced risk for both total POF and idiopathic POF in
the dominant model (OR¼ 0.6, 95% CI 0.3-0.99 for total POF;
OR¼ 0.6, 95% CI 0.3-1.0 for idiopathic POF). However, this X
allele effect was not observed for both total EM and idiopathic
EM cases.

In the polytomous logistic regression, the dominant model
showed that the XbaI genetic variant for POF risk was dif-
ferent from EM, relative to NM controls, and showed mar-
ginal significance ( ppolytomous¼ 0.08). The XbaI genetic variant
for idiopathic POF risk was also different from idiopathic EM
( ppolytomous¼ 0.08). The two SNP-based global p values were
0.17 for EM cases vs controls and 0.07 for POF cases vs con-
trols for all cases including medical=surgical causes; and 0.39
for EM cases vs controls and 0.09 for POF cases vs controls for
idiopathic causes.

Table 3 shows the association between haplotype-pairs of
the ESR1 gene and POF and EM risk. In the haplotype anal-
ysis, three PvuII- XbaI haplotypes, P-X, P-x and p-X, were
observed. The frequency of the p-x haplotype was less than
2% in each group. The haplotype-based global p value was
0.06 for EM cases vs controls and <0.001 for POF cases vs
controls for all cases including medical=surgical causes; and
0.12 for EM cases vs controls and <0.0001 for POF cases vs
controls for idiopathic causes.

Compared to the most frequent P-X haplotype, the P-x
haplotype significantly decreased the risk of both total POF
and idiopathic POF (OR¼ 0.5, 95% CI 0.3-0.7 for total POF;
OR¼ 0.5, 95% CI 0.2-0.9 for idiopathic POF). The p-X haplo-
type also showed a decreased risk for both total POF and
idiopathic POF but was not significant. In contrast to POF, the
P-x and p-X haplotypes increased the risk for both EM and
idiopathic EM but was not statistically significant. The P-x
and p-X haplotype effects were different for POF and EM and
idiopathic POF and idiopathic EM. All were significant by
polytomous regression analysis except the p-X haplotype for
idiopathic POF and EM ( ppolytomous¼ 0.0001, ppolytomous¼ 0.009,
ppolytomous¼ 0.046, respectively).

We recombined the six diplotypes into three groups and set
the P-X*P-X or P-X*p-X diplotypes as the reference group.
Compared to the reference group, diplotypes that contained
one or two copies of P-x statistically significantly decreased
the risk of both total POF and idiopathic POF (OR¼ 0.4, 95%
CI 0.2–0.6 for total POF; OR¼ 0.4, 95% CI 0.2-0.9 for idiopathic
POF). Also, diplotypes with one or two copies of p-X except
P-X*p-X decreased the POF risk regardless of idiopathic type
but were insignificant. One or two copies of the P-x diplotype
was significantly different from POF and EM risk, regard-
less of idiopathic type ( ppolytomous¼ 0.0001, ppolytomous¼ 0.02)
(Table 3).

Discussion

Our study showed that the ESR1 genetic variant was sig-
nificantly associated with POF risk but not with EM. The X
allele of XbaI and specific haplo- and diplotype of PvuII and
XbaI polymorphisms were associated with a significantly re-
duced risk of POF occurrence but not EM. This association
remained in stratified analysis of only idiopathic cases.
Moreover, results of nominal polytomous logistic regression
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indicated that ESR1 genetic variants influence the etiology of
POF and EM differently.

Previous studies that focused on the association of ESR1
PvuII or=and XbaI polymorphisms and the onset of meno-
pause did not find a significant association.33–36 However,
two studies reported that the ESR1 gene was significantly
associated with the earlier onset of menopause.22,28 In one
study, the homozygous P allele of PvuII was associated with
1.1 year earlier onset of menopause compared to the homo-
zygous p allele. Also, an additive effect for each copy of the
P allele was reported.22 Similarly, in our study, the homozy-
gous P allele of PvuII was associated with an increased risk for
both POF and EM in the SNP effect, although statistically
insignificant, possibly because of the small sample size. In
another study, one of the ESR1 haplotypes, corresponding to
the P-X haplotype, was associated with a significantly in-
creased risk for POF.28 Concordant with this study, when
the reference value was the P-x haplotype, the P-X haplo-
type was associated with a significantly increased risk for
POF (OR¼ 2.2, 95% CI 1.4-3.7 for total POF; OR¼ 2.2, 95% CI
1.2-4.2 for idiopathic POF).

Few studies have focused on ESR1 XbaI polymorphisms
associated with age at menopause or POF. However, the X
allele of XbaI was reported to be related to increased bone
mineral density, reduced risk of osteoporosis, and cardio-
vascular diseases, which suggest higher levels of estro-
gen.24,37–40 In terms of our study outcome, we can also infer
that the X allele of XbaI may play a crucial role in protection
against POF. However, we did not find evidence that the X
allele of XbaI is involved in EM development. Our study re-
sults, including our nominal polytomous logistic regression,
suggest that development of POF and EM may be related to
different genetic functions.

The biological pathway of XbaI and PvuII that relates to
early onset of menopause is still unknown. An in vitro study
reported that the P allele of PvuII may play a role in the am-
plification of ER-a transcription or may regulate the ESR1
expression and function.41 Although there is no information
on the role of the XbaI X allele, the XbaI X allele could act with
the PvuII P allele in ER-a transcription or ESR1 expression=
function, since XbaI and PvuII polymorphisms are in high
linkage disequilibrium.

When considering previous reports and the present study
results, we hypothesize a series of mechanisms for POF and
ER genetic polymorphisms: (1) Estrogen binds to ERs in re-
productive tissues, such as the ovaries, uterus, and vagina.42 If
the activity of ERs is low because of the low activity gene
encoding protein, estrogenic action in the tissue may be weak;
(2) Continuous weak estrogenic effect in the reproductive
tissue, especially the ovaries, may have a negative feedback
on the pituitary gland, especially follicle stimulating hormone
(FSH) secretion; (3) FSH, in turn, can accelerate the rapid
depletion of the ovarian follicles, leading to the development
of POF because of ovarian dysfunction. To clarify the exact
mechanisms between ER genes and POF and=or EM, addi-
tional studies are required.

Although, to our knowledge, this is the first study to report
a genetic difference related to age at menopause, our study
had several limitations. First, because of the high cost and low
access to clinics and physicians in community population-
based survey settings, our POF cases were ascertained only by
self-report, without FSH testing or other confirmation. Thus,
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we were not able to differentiate POF and premature meno-
pause (PM) cases in our analysis.43 Second, our study in-
cluded a small number of idiopathic POF and EM cases, so we
did not have sufficient statistical power to observe a gene-
gene or gene-environment interaction. Third, we genotyped
only a small number of SNPs related to ERs, and thus we were
not able to examine other important SNPs. Finally, we clas-
sified menopausal groups based on self-reported age at
menopause, which is vulnerable to misclassification and recall
bias. However, in order to minimize bias, we excluded sub-
jects over the age of 60 and adjusted for the number of years
from menopause.

In conclusion, our study shows that the ESR1 gene includ-
ing PvuII and XbaI polymorphisms can modify the risk of
idiopathic POF, but these variants are not associated with EM
risk. This supports the possibility that the etiology of POF and
EM may differ with regard to genetic factors. Further studies
with sufficient POF and EM cases will help clarify the ESR1
genetic mechanism and examine the gene-gene and gene-
environment interactions.
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