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Abstract

Finding a solution to a set of 780 non-linear equations in 78 unknowns requires an efficient
method for optimizing. This research is concerned with the development of the corrective non-linear
simplex search technique for highly non-linear functions. The second part of this research is con-
cerned with the application of the corrective non-linear simplex search technique to solve the crystal
structure problem of Spiro-(5.5)-undeca-1,4,7,10-tetraene-3,9-dione. The operation of this method

is described in detail and the result of the successful solution of test case is presented.

1. Introduction

The problem of locating an unconstrained local minimum of a function of several variables is
recognized as important. The problem considered here is to find the minimizing a given real func-
tion Z(xy, %3, ..., x,), where each variable x;, 7=1,2,...,# can take the value of any real number.
The nonlinear simplex search was devised by Spendley, Hext and Himsworth (14) and also by
Nelder and Mead (24) in connection with the statistical design of experiments. A “simplex” is
defined as a geometric figure with n+1 sides, constructed in a n-dimensional space. Beginning with
the selection of three points in the design space, defining the vertices of an equilateral triangle, the
objective function could be evaluated an subsequent search was directed by three basic rules (30):

1. Reflection; Reject the vertex with the poorest value of the objective function and generate a
new point by “reflecting” the simplex about the remaining vertices.

2. Returning to a point previously rejected is not allowed. If this result of applying Rule 1,
reject the second worst vertex instead. (This rule prevents the oscillation which might occur
in straddling a ridge in the objective function.)

3. Contraction; If one vertex remains unchanged for more than m=1.65--0.05#2 moves (where
n is the dimension of the search space), reduce the size of simplex. This rule provides for
converging on the optimum.

Certain practical difficulties in carrying on the search in curving valleys or on curving ridges led to

several improvements (24). The simplex in the Nelder and Mead technique was permitted to change
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in shape and, thus, does not remain as a simplex, hence, the use of the more descriptive name

“flexible polyhedron.” The method of Nelder and Mead minimizes a function of 7 independent

variables using #+1 vertices of a flexible polyhedron in £ Some practical difficulties in the flexible

polyhedron procedure, namely, that it did not provide the correct direction of the search, led to

another improvement which was added to the present work. This improvement is in the form on

an “exploratory search” which insures that the search is guided in the proper direction.

Notation

t=the distance between two vertices.
b= WnyT) (VrFitn-1),
dy= t/nv2) (Wut+1—1.

2= (xhy e &y e xb)T, 1=1,2.., n+l

= the 7, vertex in E” on the k, stage of the search, £=0,1, ...

f(&) = max(f(&), ..., f(%.1))
&) = min(f(®), ..., f (%))
%y = (U/m) ((Biiixl) — %), j=1,..,n

where the index j designates each coordinate direction.

a>0 is the reflection coefficient.
0<(5<1 is the contraction coefficient.

r>1 is the expansion coefficient.
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2. Description of CNSS algorithm.

Calculate the initial base point %, 7=1,2,...,n+1, and f(&).

Carry out exploratory search from base point. After last perturbation if f(%)<<f(i%),
then go to step 3, otherwise go to step 4.

Set new base point f (%) =f(¥). Go to step 5.

Return to the old base point.

Calculate x, and x;. Reflection: Calculate x,,,3=2%,, 2@ (%,.2—x,) and f(X,5). If f(5pss)
<f(x;), then go to step 6, otherwise go to step 7.

Expansion: Calculate %,.4=%,2+7 (Xpi3—%ns2) and f(x,00). If f(x,.0)<F(x), then go
to step 10, otherwise replace x; by x,,, and go to step 14.

If f (x,43)<(x;), for all 75k, then go to step 9, otherwise step 8.

Replace x;, by x,.5. Go to step 14.

If f(x,43)<f(x4), then go to step 11, otherwise go to step 10.

Replace x;, by x,.5. Go to step 13.

Contract: Calculate x,.5=2%,:2+B(x—x,,2)and f(x,.5).

Replace x, by x,.5. Go to step 14.

Reduction: Replace all x; by x,4+0.5 (x,—x,).

I v{A/n+1D) L f(x) —F(x,:2) 18 <<¢, then go to step 15, otherwise go to step 2.
Stop.
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3. Solution of the Test Case

Spiro-(5.5) —undeca-1,4,7, 10-tetraene-3,9-dione, C;;H;0,, was crystallized from a dioxane solution
of pure compound provided by Farges (17). This compound has been used as a test case in a
previous work. Klunk (17) was able to solve the structure using integer programming. Hass
(12,13) was able to move the molecules in the unit cell until he found what appeared visually to
be the most optimal packing arrangement. This technique was named visual packing analysis
(VPA). He made use of the three-dimensional computer graphics equipment in the laboratory.
The starting parameters he obtained were further removed from the final refined values than
is normally the case for starting models obtained by conventional means. It was necessary to use
intermediate refinement methods to get a better model before normal least-squares methods could be
used. Two techniques were used. In one technique the repulsive interactions between molecules
were minimized utilizing PCK5 (13). The other method was a modified least-squares technique in
which the molecules were treated as groups and the position of each group was refined. It was

decided to use this compound as a test case in this new work, since it offered a basis of comparison
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Figure 1. Flow Diagram of Procedures Used to Solve the Spirodienone Structure.
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for the CNSS intermediate refinement procedure. This molecule, otherwise known as spirodienone,
crystallize in space group P1 with two independent molecules contanining twenty-six non-hydrogen
atoms in the asymmetric unit. The method of data collection, correction of data, and the resulting
structural details are reported in Cullenetal. (5) Spirodienone, C,;Hg0,, has the following unit cell
constants:
a=9.08A b=13.61A c=7.49A alpha=93.2°
beta=93.9° gamma=100.4° V=902 cu A  Z=4.
The collection of intensity data for the second case was very similar to the first case. We used
the final visual packing structure (Model II of Hass's dissertation, 12) for the initial estimated
atomic position for the intermediate refinement.
For the intermediate refinement of spirodienone, We used the following objective function:
MinX 2, [ Fyli— |22 fijc082m (x4 by +1z) e— T, |22
where 7=each hkl,

Table 1 The Constants of the Objective Function for the Spirodienone

h k ; 1 fearnon fomygen ’ F, ‘ W,
2 1 1 J 4. 35988 6. 53370 | 59. 6 f 0.18
1 1 1 5. 05721 7.19971 665 | 0.19
1] 1 —1 | 2. 76576 L5366 | 124 0.16
1! 2 2 J 3. 93437 6. 06403 | 34.5 | 0. 14

-2, -2 1 1.29578 6. 45774 | 16.0 ) 0.11
4| -1 2 2. 77511 4.54612 9.9 ‘\ 0.16
3 0 -1 3. 98953 6. 12602 19.2 ! 0.12
3 i —1 1 3. 80715 | 5. 91841 33.7 [ 0. 14
2 | 2| 3 2. 85579 i 4. 66889 7.6 ; 0.16
3 4 g 2. 23056 3. 60785 .3 | 0.34
3| 2 0| 3. 66145 5. 74636 13.0 { 0.13
2 | 0 4 2. 48746 4. 07781 21. 6 | 0.17
1 3 5 2. 07571 3.29198 : 14.9 0.19
0 8 ! -1 2. 50374 4.10575 | 13.0 | 0.16
0 4 —3 3. 02042 4. 90962 ] 35. 2 0.16
0 2 =2 4.31519 6. 47698 | 74.4 | 0. 22
5 | 3 2 2.13724 3. 42100 1 19.8 | 0.19
5 0o =2 2. 36560 4.21025 ‘ 19.0 ; 0.16
5{ -2 1 259943 | 4. 26631 B N R T
1 2 4 2. 01263 | 3.15430 } 10.6 ‘ 0. 21
1 1 1 2. 98080 [ 4.85282 | 35.6 [ 0.17
3 4 1| 2. 88358 1 4.71041 | 21.7 \ 0.15
3 1! 3| 2. 64051 f 4.33338 | 15.1 0. 16
2 3. -1 3.91371 i 6. 04056 1 47.2 0.16
2| 1 0| 1.75681 | 6. 91865 ! 8.2 | 0.17
3 -2 -5 j 2.12922 3. 40445 3.5 | 0.36

-3 =31 -1 3.15057 5. 09155 | 34.6 | 0.16

-1 -1 2 1. 40613 6. 57098 40.9 / 0.16
4| 1 —2 2. 48102 | 4. 03670 ‘ 5.9 ; 0. 22
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fi:j=the scattering factor for the j,; atom at the 7, reflection, and
T,;=temperature factor of 4.0.
The input data for this function are given in Table 1 and the initial positions are shown in Table 2.
After we ran this CNSS algorithm for the 30 randomly chosen reflections on the Amdahl 470
V/6 computer, the intermediate positions of atoms given in Table 3 were obtained. This method
compared very favorably with other intermediate refinement methods. It produced a very
respectable refinement with a minimum of computation effort and data manipulation. The flow
diagram in Fig. 1 shows the refinement procedure used for this compound, including the CNSS
algorithm. The packing energy refinement yielded a conventional R=RY||F,| — |F,||/2|F,| value
estimate of correctness of 0.69 before PCK5 refinement and 0.42 after refinement (13), as the
nonlinear optimization (CNSS) refinement yielded a value of 0.351. The rigid-group method refined
to R=0.349 after four cycles (13). Compared with the two earlier methods, the nonlinear optimization
refinement technique proved to be acceptable from the standpoint of refinement and superior in its

ease of application.

Table 2 Initial Atomic Positions of Spirodienone by Visual Packing Analysis (12).

Atom Coordinates
Atom Type
Number X; Yj } Zj
1 Carbon ' 0.7494 | 0. 0823 ‘ 0- 2966
2 Carbon 0.7573 | 0.0313 | 0. 1181
5 | Carbon 0.7815 | —0.0619 |  0.0998
4 . Carbon 0. 7999 —0.1218 | 0. 2597
5 | Carbon 0-7892  —0.0794 } 0. 4362
6 \ Carbon 0. 7668 “ 0. 0156 5 0- 4560
7 | Carbon 0.5012 0-1081 0. 2894
s | Carbon | 0.5758 | 0- 2018 0. 3099
9 g Carbon 0. 7027 | 0. 2856 0. 3386
10 | Carbon 0.8578 | 0. 2660 0. 3469
11 I Carbon ‘ 0.8802 | 0.1715 0. 3242
12 ’ Carbon 0.2643 | 0. 5371 0. 2116
13 Carbon 0. 2706 ; 0- 4961 0. 0250
4 Carbon 0.2678 | 0- 3992 —0. 0147
15 \ Carbon 0.2559 | 0- 3263 0.1278
16 Carbon 0.2449 | 0- 3597 0- 3103
17 Carbon 0.2497 | 0. 4577 0. 3521
18 Carbon 0.1215 ; 0. 5831 0. 2037
19 Carbon 0.1325 | 0. 6787 0. 2459
20 Carbon 0. 2757 0- 7464 0. 2605
21 Carbon | 0. 4174 0- 7070 0. 3107
22 Carbon ) 0.4129 0. 6039 0. 2663
23 Oxygen { 0. 8262 —0.2068 0. 2415
24 Oxygen 0. 6817 0.3724 0. 3602
25 Oxygen 0. 2577 0. 2380 0. 0904
26 Oxygen 0. 2793 0. 8356 0. 3419
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The average shift of an atomic parameter, ¢ is 0.3749 A before and after the CNSS method. If
we compare this method with statistical method and packing energy refinement in Fig.1, the ¢ of
the CNSS method is 0.65A before and after the final fully refinement calculation. The ¢ of the
statistical refinement is 0.75A and the ¢ of the packing energy refinement is 0.38A. It means the
atomic shift of the CNSS method from the final atomic positions locates between the statistical

refinement shift and the packing energy refinement shift.

Table 3 Atomic Positions of Spirodienone refined by the CNSS algorithm.

Atom Coordinates
Atom Type -_— e
Number X; | Y [ z;
1 Carbon 0. 70654 0.03945 | 0. 27514
2 Carbon 0. 75730 0. 03180 l 0. 11810
3 Carbon 0. 78150 —0.05117 ? 0. 11053
4 Carbon 0. 78930 —0. 12180 ‘ 0. 27042
5 Carbon | 0. 74635 —0.09013 | 0. 38269
6 Carbon | 0-71329 —0.00585 | 0. 42387
7 Carbon \ 0. 61265 0. 10816 0- 31073
8 Carbon % 0- 56507 0- 19107 0. 29992
9 Carbon \ 0. 67058 0. 26414 0, 32787
10 Carbon | 0- 79349 0. 21237 0- 30399
11 Carbon ‘ 0. 80524 0. 11787 0. 28129
12 Carbon ] 0. 23224 0. 60038 0. 19042
13 Carbon “ 0. 27853 0. 40998 —0. 02537
14 Carbon ‘ 0. 24919 0. 44265 —0.01785
15 Carbon J 0. 22381 0. 28348 0. 14923
16 Carbon ' 0. 19132 0. 30619 0. 26752
17 Carbon 0. 17467 0. 38267 0. 30919
18 Carbon 0. 10010 0. 57237 0. 19297
19 Carbon 0. 06822 0. 65579 0. 20299
20 Carbon 0. 16868 0. 68210 0. 21489
21 Carbon 0- 39595 0. 67489 0. 28825
22 Carbon 0. 34879 0. 57778 0. 24510
23 Oxygen 0. 84765 ~—0.18535 0. 26295
24 Oxygen 0. 75564 0. 34027 0. 31747
25 Oxygen 0. 35770 0. 23806 0. 11185
26 Oxygen 0. 26857 0. 82487 0. 32045

4. Conclusions

In summarizing the work of this research the main theme is the development and implementation
of the corrective nonlinear simplex search technique as a procedure for finding the optimal solution

of the refinement problem.
Zy: Min Z; (| F,|;—2fiF.(x;) )%
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Although this technique does not guarantee a true global solution to Z;, it yields a significant result
when applied to the refinement problem of crystal structures, Z;. It was successfully implemented
in test case, which yielded the new atomic positions within the molecules. These test cases were
real, three-dimensional crystal structures. And the CNSS solution to the intermediate refinement
problem based on 30 reflections, was a close approximation to the solution of the whole-scale
problem which repuires the calculation over 500 reflections. Further, the CNSS technique exhibited
a number of other advantages over existing solution techniques currently used to solve Z,. For
instance, the CNSS technique characterized by a exploratory search, yields a significantly close
approximation to the optimal solution of Z,. Comparisons with the other search techniques,
namely, Simplex or Zangwill-Powell, indicate that only the CNSS approach is applicable to the
refinement problem of crystal structures. This fact was demonstrated in the tests of spirodienone.
The major advantage of CNSS over conventional least-squares techniques is the fact that normal
least-squares methods requires that for a case of m equations with n unknowns, m must be greater
than n. As a rule of thumb, that data/parameter ratio must be 5:1 or greater. Although such
conditions normally exist in a crystal structure analysis, there are times when it is desirable to
choose a small subset of data for use in intermediate refinement steps. One obvious reason is of
course computer costs. Generally two-thirds or more of the computer costs in a crystal structure
analysis occur in the refinement steps. What has been developed here is a method which allows
preliminary refinement to obtain partial convergence before resorting to the expensive least-squares
techniques to reach final convergence. There may also be times when one desires or is forced to
use a very limited data set. Sometimes a crystal may be of very poor quality, giving very little
diffraction, so that only a limited amount of data is obtained. This may be enough data to solve
the structure, but not enough for any sort of least-squares refinement. The CNSS method provides
a method of improving the model. There are also cases when for reasons of speed or economy,
one might wish to collect only reflections having low Bragg angles. Again this may be enough to
data to solve the structure, but not refine it by conventional least-squares techniques. Other possible
subsets of data to be used in this technique suggest themselves. In statistical direct methods, such
as utilized by MULTAN, a subset of reflections having high E’s, or normalized structure factors
are used. These are structure factors in which the scattering factor is assumed to be constant and
not a function of sin 6/A. Thus for two reflections having equal F’s, the one with the higher
Bragg angle will have the higher E. This reflection would be more sensitive to small changes in
the parameters and thus would be a good choice for the subset used in this technique. One might
envision tying this technique to MULTAN, refining a structure in which only a fraction of the
atoms have been found, then using the improved phases for another pass through MULTAN.
The more accurately phases of some reflections are known, the more efficient the tangent refinement
procedure of MULTAN will be in obtaining phases for other reflections which are necessary to
obtain the rest of the structure.

This method does indeed have disadvantages which must be overcome if large structures are to
be solved routinely. Computation time is influenced greatly by increases in the number of variables
in the problem. For the spirodienone test case, 82 variables were used, these represented the atomic
positions of the molecule. For the case which total reflection set is used, we recommend that the
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least-squares computer package has still advantages over the nonlinear optimization technique (CNSS)

in terms of efficiency.
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