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Abstract

There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ), is heavily used and obesity-
prevalence maps of people with a BMI over 30. Given that herbicides act on photosystem II of the thylakoid membrane of
chloroplasts, which have a functional structure similar to mitochondria, we investigated whether chronic exposure to low
concentrations of ATZ might cause obesity or insulin resistance by damaging mitochondrial function. Sprague-Dawley rats
(n = 48) were treated for 5 months with low concentrations (30 or 300 mg kg21 day21) of ATZ provided in drinking water.
One group of animals was fed a regular diet for the entire period, and another group of animals was fed a high-fat diet (40%
fat) for 2 months after 3 months of regular diet. Various parameters of insulin resistance were measured. Morphology and
functional activities of mitochondria were evaluated in tissues of ATZ-exposed animals and in isolated mitochondria.
Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin
resistance without changing food intake or physical activity level. A high-fat diet further exacerbated insulin resistance and
obesity. Mitochondria in skeletal muscle and liver of ATZ-treated rats were swollen with disrupted cristae. ATZ blocked the
activities of oxidative phosphorylation complexes I and III, resulting in decreased oxygen consumption. It also suppressed
the insulin-mediated phosphorylation of Akt. These results suggest that long-term exposure to the herbicide ATZ might
contribute to the development of insulin resistance and obesity, particularly where a high-fat diet is prevalent.
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Introduction

A close association between mitochondrial dysfunction and

insulin resistance is well established [1–3]. In in vitro studies, we

found that artificial induction of mitochondrial dysfunction

induced insulin resistance [4,5]. However, there are no in vivo

studies showing that exposure to an environmental mitochondrial

toxin causes insulin resistance.

Persistent organic pollutants (POPs) that contaminate ground

and water may accumulate in the tissues of animals and be passed

up the food chain, leading to human exposure. Some POPs have

recently been associated with the prevalence of diabetes in a serum

concentration-dependent manner [6]. The triazine herbicide,

atrazine (ATZ, 2-chloro-4-ethylamine-6-isopropylamino-S-tri-

azine), has been extensively used in the USA since the early

1960s, a time frame that corresponds to the beginning of the

present obesity epidemic [7,8]. Because it is moderately persistent

under normal soil condition and has low to moderate water-

solubility, ATZ is routinely found as a contaminant in many

surface and ground waters [9,10]. Maps of ATZ usage show that

the Corn Belt region of the Midwest USA has the heaviest

application (http://water.usgs.gov/GIS/browse/herbicide1.gif)

(supplementary Figure S1A). Interestingly, the Behavior Risk

Factor Surveillance Survey (BRFSS) from 1985 to 2005 by the

Center for Disease Control and Prevention revealed a high

concentrations of individuals with a body mass index (BMI) over

30 kg/m2 in the Corn Belt and surroundings connected via water

sources [11] (http://www.cdc.gov/nccdphp/dnpa/obesity/trend/

maps/) (supplementary Figure S1B). ATZ-usage and obesity maps

show striking overlaps, suggesting that heavy usage of ATZ may be

associated with the risk of obesity.

ATZ binds irreversibly to the plastoquinone binding sites of

photosystem complex II on thylakoid membranes in chloroplasts,

thereby inhibiting electron transport [12]. As mitochondrial

electron transfer chain (ETC) complexes I and III also have

similar Q binding sites, we hypothesized that ATZ might bind to

these mitochondrial sites, resulting in the suppression of mito-

chondrial oxidative phosphorylation. Previous studies have shown

that exposure to ATZ reduces metabolic activity in the gills of fish

[13] and induces cellular DNA damage [14–18], tumorigenesis

[19–22], and hermaphroditism of exposed male frogs [23]. In the

present study, we found that chronic exposure to low concentra-
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tions of ATZ induced abdominal obesity and insulin resistance in

rats by impairing mitochondrial function.

Materials and Methods

Animals
Male eight-week-old Sprague-Dawley rats (n = 48) were treated

for 5 months with vehicle or ATZ (30 or 300 mg kg21 day21)

supplied in drinking water. One group of animals was fed a regular

diet for the entire period, and another group of animals was fed a

high-fat diet (40% fat) for 2 months after 3 months of a regular

diet. Initial body weights were the same in both control

(187.169.4 g) and ATZ (187.5614.0 g) groups. All rats were fed

regular chow (Han Sam R&D, Seoul, Korea) ad libitum for three

months. Then, half of each group was fed a high-fat diet (high-fat

diet group) and the other half was fed regular chow (regular-diet

group) for another two months. Regular chow consisted of 16.0%

fat, 63.0% carbohydrate and 20.0% protein (by calories), and

7.0% corn oil, 10.0% sucrose, 13.2% dextrose, 40.0% cornstarch,

5.0% cellulose and 20.0% casein (by weight). The high-fat diet

consisted of 64.0% fat, 20.0% carbohydrate and 14.0% protein (by

calories), and 33.0% shortening, 7.0% corn oil, 10.0% sucrose,

13.2% dextrose, 5.0% cornstarch, 5.0% cellulose and 20.0%

casein (by weight). The remaining percentages of the two diets

consisted of vitamins and minerals. All rats were maintained in

plastic cages in an air-conditioned room at 2262uC and 55610%

humidity. All procedures were approved by the Institutional

Animal Care and Use Committee of the Seoul National University

Hospital. The ATZ dose was calculated by multiplying ATZ

concentrations by volume of water consumed. Diet and water

consumption amounts were measured twice a month.

Measurement of activity levels
Movement was evaluated using a spontaneous motor activity

analyzer (IW-800CT, modular test chamber, Seoul, Korea).

Horizontal locomotion and rearing activity were evaluated for

4 hours per month.

Measurements of obesity
1) Body weight. The rats were weighed twice a month.

2) Visceral fat measurement by high resolution computed

tomography (CT). Visceral fat areas were quantified using non-

contrast CT scans (conditions: 120 kVp, 150 mA, 3 mm slice

thickness, 3 mm reconstruction interval) using a Somatom Sensation

16 (Siemens, Munich, Germany). With the rats in a supine position,

a 3 mm CT slice scan was acquired at the upper margin of the L3

vertebra to measure the amount of abdominal and visceral fat at a

single level, and over L1 to L5 for the whole abdomen. Adipose tissue

attenuation was determined by measuring the mean value of all

pixels within the range of 2250 to 250 Hounsfield units. Visceral fat

amounts were measured by one radiologist using the computer

software, Rapidia (INFINITT, Seoul, Korea).

3) Intramuscular and intrahepatic lipid content by proton

magnetic resonance spectroscopy (1H-MRS). Intramuscular

lipid (IML) and intrahepatic lipid (IHL) content was measured in

vivo by 1H-MRI, using a 3-Tesla clinical unit (Signa Excite, GE,

Milwaukee, WI, USA) with an 8-channel head coil. Voxels of

10 mm3 were located in the anterior thigh muscles and liver,

avoiding vascular structures and gross adipose tissue deposits. A

probe-p sequence (TR/TE = 2,000 ms/35 ms) was used for MRS.

Magnetic resonance imaging with the T2-weighted fast spin echo

sequences (3,000–3,500/100–120, 18-cm field of view, 2566160

matrix, 3 mm slice thickness) in the axial or coronal planes

preceded 1H-MR spectra in order to define the volume of interest.

All spectra were processed using Mrdx (CAD Impact, Inc., Seoul,

Korea), based on Interactive Data Language (Research Systems,

Inc., Boulder, CO, USA). The water signal was suppressed by a

frequency-selective saturation pulse at the water resonance value.

A sweep width of 5,000 Hz was used with a data size of 2,048

points. Only the second half of the echo was acquired. Following

the zero-filling of 8,192 points in all the free induction-decay data,

an exponential line-broadening (center 0 ms; half time 150 m) was

done before Fourier transformation. Zero-order phase correction

was applied to all spectra. The integral of the IML signal (1.3 ppm)

was related to that of total creatine (tCr; 3.05 ppm). The IML/tCr

ratio corresponded to the total muscle IML value. Fat content was

expressed as the ratio of the fat-to-water signal as a percentage.

The reliability of the method was assessed by performing repeated

measurements on the same individual on different study days and

found to be ,15%. IML and IHL content was compared between

ATZ-treated and normal groups after adjusting for weight.

Analysis of blood samples for insulin resistance and lipid
profiles

Plasma glucose levels were measured using a glucose-oxidase

method (YSI 2300-STAT; Yellow Springs Instrument Co., Inc.)

immediately after blood was drawn. Serum insulin was measured

using insulin-specific radioimmunoassay kits for rats (Linco

Research). The homeostasis model assessment-insulin resistance

(HOMA-IR) index and beta cell function (HOMA-Beta) were

obtained to evaluate insulin resistance and beta cell function. Total

cholesterol and triglyceride concentrations were determined by

enzymatic procedures (Hitachi 747 chemistry analyzer, Hitachi,

Tokyo, Japan).

Intravenous glucose tolerance test (IVGTT)
IVGTTs were performed as described [24]. All experiments were

performed during the light period between 1:00 and 2:00 pm.

Animals were food-deprived for 5 hours before starting the

experiment. To facilitate stress-free blood sampling, two infusion

catheters (PE–10, Intramedic, Clay Adams, Parsippany, NJ, USA)

were placed in the tail veins of rats on the evening before the

experiment. A bolus dose of 0.5 g glucose/kg body weight was

injected into the right tail vein immediately after blood sampling

from the left tail vein for measurement of serum concentrations of

glucose and insulin (t0). Blood samples were collected again from the

left tail vein at 2, 4, 6, 10, 20, 30 and 60 minutes for measurement of

serum glucose and insulin concentrations. Glucose levels were

measured using a YSI 2300 (Yellow Springs Instrument Co., Inc.,

Yellow Springs, OH, USA). Blood samples were stored at 270uC
prior to insulin measurements. Plasma insulin levels were measured

using commercial radioimmunoassay kits (Linco Research, St.

Charles, MO, USA). Areas under the curve for glucose (AUCglucose)

and insulin (AUCinsulin) were calculated using the trapezoid rule for

insulin data collected from 0 to 60 minutes.

Hyperinsulinemic-euglycemic clamp study
Hyperinsulinemic-euglycemic clamping was also performed at

the end of the study (5 months) to determine whether ATZ

exposure impaired the ability of rats to maintain glucose levels

when challenged by a high insulin load, as described [25]. Two

tail-vein infusion catheters (PE–10, Intramedic, Clay Adams) were

placed in the rats on the evening before the experiment, and one

tail-artery blood sampling catheter was emplaced 6 hours before

the start of insulin infusion. Whole-body glucose kinetics were

estimated in awake, unstressed rats 6 hours after food removal.

Patency of the arterial catheter was maintained by a slow infusion

Atrazine-Induced Obesity
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(15 mL/minute) of saline. Blood samples (200 mL) were drawn

from the tail artery prior to the clamp study to measure baseline

fasting glucose and insulin levels. Human insulin (Novolin-R,

Novo Nordisk, Bagsvaerd, Denmark) was infused into one of the

tail vein microcatheters at a rate of 72 pmol kg21 minute21.

Aliquots of venous blood (50 mL) were collected from one tail vein

catheter to measure blood glucose at 10-minute intervals, and 25%

glucose was infused into the other tail vein catheter at variable

rates to maintain plasma glucose at basal concentrations. Steady-

state plasma glucose concentrations were reached after 50 to

60 minutes. Blood samples were drawn at 90 and 120 minutes for

the measurement of insulin. The steady-state glucose infusion rate

(GIR) is defined as the amount of glucose required to maintain

euglycemia between 90 and 120 minutes of hyperinsulinemia. The

insulin sensitivity index (ISI) was calculated by dividing the GIR by

the mean insulin concentration during the 90–120-minute

clamping window and expressed as mg glucose kg21 minute21

of for each ng/mL of insulin.

Energy expenditure
Energy expenditure in rats was measured following a 5-hour

fasting period using an Oxymax apparatus (Columbus Instru-

ments, Columbus, OH, USA) two days before each hyperinsulin-

emic euglycemic clamp experiment [26]. After baseline O2, CO2

and flow were measured, each rat from each group was situated in

metabolic monitor cage for 10 minutes and then O2 and CO2

were measured again after the values had stabilized. Energy

expenditure was calculated according to the formula provided by

the manufacturer.

Electron microscopic images of mitochondria
At the end of the clamp, rats were euthanized with an

intravenous injection of pentobarbital, and liver and muscle tissues

were collected. The tissue samples were stored frozen at 270uC
for later analysis. Soleus muscle and liver tissues were dissected

and immersed in fixatives. Mitochondrial morphology was

examined by electron microscopy (20,0006magnification).

Western blot analysis
Cells were washed twice with Dulbecco’s phosphate buffered

saline (DPBS) and harvested with lysis buffer (50 mM Tris HCl,

pH 7.5, 0.1 M NaCl, 1 mM EDTA, 1% Triton X–100, 10 mg/mL

each aprotinin and leupeptin, 1 mM PMSF). In some cases, frozen

tissue was homogenized in lysis buffer. A portion of cell or tissue

lysate (20 mg) was separated by SDS-PAGE on 10–12% gels,

transferred to a nitrocellulose membrane (Schleicher & Schnell, Inc.,

Keene, NH, USA) and analyzed by western blotting using specific

antibodies against oxidative phosphorylation (OXPHOS) complex I

(39 kDa a subcomplex 9, NDUFA9), complex II (70 kDa flavopro-

tein, SDHA), complex III (core II, UQCRC2), complex IV-subunit I

(COXI, MTCO1), complex IV-subunit IV (COXIV, COX4) or

complex V (F1 complex a, ATP5A1). All OXPHOS complex

antibodies were purchased from Molecular Probes (Invitrogen,

Eugene, OR, USA). The antibodies against Akt and phospho-Akt

(Thr308 or Ser473) were purchased from Cell Signaling Technology,

Inc (MA, USA). Hsp60 and/or b-actin antibodies were utilized to

control for equal loading of protein. The immunoblots were

developed using an enhanced chemiluminescence system (ECL,

Amersham Pharmacia Biotech., Arlington Heights, IL, USA).

Endogenous cellular oxygen consumption
Endogenous cellular respiration was measured as described

[27], with modifications. Briefly, isolated L6 rat skeletal muscle

cells (56106) in DMEM containing 0.5% FBS were cultured in the

presence of ATZ (100 mg/mL) or DMSO (vehicle control) for

48 hours, washed with DPBS (pH 7.4) and collected by trypsin-

ization. After resuspending in 1 mL complete phenol red-free

DMEM, the cells were transferred to the chamber of an

Oxygraph-2K apparatus (Oroboros, Innsbruck, Austria). Coupled

and uncoupled OCRs were measured before and after adding

2.5 mM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone).

KCN-insensitive non-mitochondrial respiration was measured by

adding 2.5 mM KCN.

OXPHOS complex activity was measured by placing cells

(56106) in 1 mL of mitochondria respiration buffer (MiRO5,

20 mM HEPES, 110 mM sucrose, 3 mM MgCl2, 0.5 mM

EGTA, 10 mM KH2PO4, 60 mM K-lactobionate, 20 mM

taurine, 0.1% BSA, pH 7.1 at 30uC) into the continuously stirred

chamber of an Oxygraph-2K apparatus (Oroboros, Austria). After

recording basal respiration rate, the cells were permeabilized by

adding digitonin (25 mg/mL) and adenylate was blocked by

adding 100 mM p1,p5-di(adenosine-59)-pentaphosphate. The ac-

tivity of each OXPHOS complex was determined by sequential

addition of the following inhibitors and substrates: 2 mM ADP,

8 mM malate and 20 mM glutamate for complex I; 1 mM

rotenone, 10 mM succinate and 2.5 mM glycerol-3-phosphate

for complexes II and III; 25 mM antimycin A, 80 mM ascorbate

and 0.42 mM N,N,N,N-tetramethyl-p-phenylenediamine (TMPD)

for complex IV; and 2.5 mM KCN for KCN-insensitive

respiration. Oxygen consumption rate (OCR) was expressed as

picomoles of oxygen consumed per second per milligram of

mitochondrial protein.

Assays for mitochondrial respiratory chain activities
The OCR of complex I, complexes II and III and complex IV

of soleus muscle or liver mitochondria were measured using an

Oxygraph-2K. Mitochondria were isolated by differential centri-

fugation, as described previously [28]. Approximately 400 mg

mitochondrial protein was suspended in 1 mL MiRO5 buffer. In

some cases, isolated mitochondria were incubated with different

concentrations (0–300 mg/mL) of ATZ for 30 minutes before

OCR measurement. After recording a basal respiration rate, the

OCR of each OXPHOS complex was measured by sequential

addition of the substrates and inhibitors, as described above.

Because it is not possible to determine the activities of complex

II and complex III separately by OCR measurements, the enzyme

activities of succinate dehydrogenase (SDH, complex II) and

cytochrome bc1 complex (complex III) of the tissue or cell lysates

were assayed spectrophotometrically as described previously [29],

with slight modifications. Briefly, tissue or L6 muscle cells were

lysed in 100 mM Tris HCl (pH 7.4) containing 250 mM sucrose

and 2 mM EDTA. SDH activity was determined by reduction of

2,6-dichlorophenolindophenol (DCPIP) at 600 minus 520 nm

(extinction coefficient 19.1 mM/cm) in a mixture of 50 mM

potassium phosphate, pH 7.4, 20 mM succinate, 2 mg/mL

antimycin A, 2 mg/mL rotenone, 2 mM KCN and 50 mM

DCPIP. Complex III activity was measured by reduction of

cytochrome c at 550 minus 540 nm (extinction coefficient

19.0 mM/cm) in 50 mM Tris-HCl, pH 7.4, 250 mM sucrose,

1 mM EDTA, 0.2 mM KCN, 1 mg/mL antimycin A, 100 mM

decylubiquinol and 200 mM oxidized cytochrome c. Decylubiqui-

nol was synthesized in the laboratory from decylubiquinone by

reduction with potassium borohydride.

Complex I (NADH dehydrogenase) activity was determined in

50 mM potassium phosphate, pH 7.4, 3.5 mg/mL BSA, 0.2 mM

NADH, 1 mM antimycin A, 2 mM KCN, 70 mM decylubiqui-

none and 180 mM DCPIP by measuring the reduction of DCPIP

Atrazine-Induced Obesity
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at 520–600 nm (extinction coefficient 19.1 mM/cm) for 1 minute

[30]. Complex IV (cytochrome c oxidase) activity was determined

in 10 mM potassium phosphate (pH 7.4) with 0.1% reduced

cytochrome c (reduced by sodium hydrosulfate) by measuring

oxidation of reduced cytochrome c at 550 nm (extinction

coefficient 19.0 mM/cm) [29]. Data are expressed as percentages

of control activity.

Statistical analysis
Data are expressed as the mean6SE. Significant differences

between groups were evaluated using Student’s t tests and

ANOVA with a post hoc test. Correlations between variables

were analyzed using Pearson’s correlation coefficient. Differences

were considered statistically significant when P values were ,0.05.

Results

ATZ treatments led to weight gain
After being fed a normal diet for 3 months, control and the

ATZ-treated rats exhibited no significant differences in mean body

weight. From month 4 onward, mean body weight in the regular-

diet groups was higher for ATZ-treated rats than for control rats.

At the end of the study, the body weights of the regular-diet rats

were 582.369.3 g for the 30-mg kg21 day21 ATZ group (ATZ30),

585.0622.7 g for the 300-mg kg21 day21 ATZ group (ATZ300)

and 554.6613.4 g for controls; overall, the mean body weight of

ATZ-treated rats was 5.5% higher than that of the controls

(p,0.05; Fig. 1A and 1C). In the high-fat diet groups, the body

weights of ATZ30 and ATZ300 groups were 621.1618.8 g and

626.9616.9 g, respectively, or 9.8% higher overall than control

rats (570.8613.6 g) (p,0.01, Fig. 1B and 1C). No treatment-

related differences in food/water intake or horizontal/spontaneous

locomotor activities were observed at any point. Thus, chronic

exposure to low concentrations of ATZ resulted in weight gain,

particularly when combined with a high-fat diet.

ATZ increased visceral fat and intracellular fat content
CT scans were utilized to determine whether the weight gain

induced by ATZ was related to the amount of visceral fat. In high-

fat diet groups, ATZ-treated rats had a greater amount of visceral

fat at the L3 level and between L1 and L5 than controls (p,0.05;

n = 8/group; Fig. 1D and 1E). Fat deposition in the muscle and

liver is positively correlated with measures of obesity and

negatively with insulin sensitivity [24]. Non-invasive 1H-MRS

revealed that, even in regular diet groups, ATZ treatment

increased intramuscular and intrahepatic fat accumulation, with

borderline significance after adjusting for body weight (Fig. 1F
and 1G). Thus, ATZ treatment for 5 months enhanced visceral

fat accumulation in the groups fed a high-fat diet and induced lipid

accumulation in both muscle and liver in rats fed a regular diet.

Figure 1. Induction of obesity in rats by ATZ treatment. (A and B) Changes in body weight of ATZ-treated rats (ATZ30, 30 mg kg21 day21;
ATZ300, 300 mg kg21 day21) versus control rats over time. (A) Regular-diet group. Rats were fed a regular diet for 5 months during treatment with
ATZ, provided in drinking water. (B) High-fat-diet group. Rats were fed a regular diet for 3 months and then fed a high-fat diet for another 2 months.
(C) End-of-study comparison of body weights between two different diet-treated rats. (D and E) Increase in visceral fat by ATZ. The amount of visceral
fat in the high-fat diet group was measured by horizontal CT scan. Abdominal fat area at the L3 level (D) and over L1 to L5 (E) were calculated from
the scanned image using a Hounsfield unit. (E and F) Intracellular fat deposition by ATZ. The amount of intrahepatic (F) and intramuscular (G) fat in
rats on a regular diet was measured by non-invasive 1H-MRS and adjusted for body weight. (*p,0.05, **p,0.01 vs. control).
doi:10.1371/journal.pone.0005186.g001
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ATZ treatment worsened insulin levels and HOMA-IR values
For rats fed a regular diet, ATZ treatment tended to increase

triglyceride and total cholesterol levels, but the differences did not

reach statistical significance (data not shown). However, ATZ

accelerated the increase in triglycerides induced by the high-fat

diet (p,0.05 vs. control), and also worsened insulin levels and

HOMA-IR index values. Specifically, in high-fat diet groups,

insulin levels were increased to 2.3960.91 and 2.2160.86 ng/mL

in the ATZ300 and ATZ30 groups, respectively compared to

1.7060.57 ng/mL in controls (p,0.01). The corresponding

HOMA-IR values for ATZ300, ATZ30, and control groups were

0.6060.24, 0.5160.20 and 0.3760.11, respectively (p,0.05).

ATZ induced insulin resistance
To determine if ATZ treatment induced glucose intolerance and

insulin resistance, we performed IVGTTs and a hyperinsulinemic-

euglycemic clamp study. Fasting plasma glucose levels of ATZ-

treated rats on the regular diet were higher than those in controls

(86.569.8, 91.168.5, and 78.568.3 mg/dL in ATZ30, ATZ300

and controls, respectively; p,0.05), although they were within the

normal range. The same pattern was found in the high-fat diet

group: fasting glucose levels were 97.866.5 and 10268.3 in ATZ30

and ATZ300 groups, respectively, compared to 90.066.7 mg/dL

in controls (p,0.05). Interestingly, ATZ exposure impaired glucose

tolerance as monitored by IVGTT. Plasma glucose and insulin

concentrations in both ATZ-treated groups were significantly

higher than those in controls at early points (,10 min) after

intravenous loads of glucose (p,0.05 vs. control) (Fig. 2A and 2B).

The hyperinsulinemic-euglycemic clamp study demonstrates an

animal’s ability to maintain glucose levels when challenged by a

high insulin load. Steady-state plasma insulin concentrations were

measured as plasma glucose reached steady state during clamping.

For the ATZ-treated rats on a regular diet, insulin levels increased

Figure 2. Impairment of IVGTT and insulin sensitivity by ATZ exposure in regular-diet rats. (A) Changes in plasma glucose during IVGTT.
(B) Changes in plasma insulin during IVGTT. Plasma glucose or insulin concentrations were determined at the indicated times after i.v. glucose load.
(C) Steady-state glucose infusion rate (GIR) and (D) insulin sensitivity index (ISI) during clamp study. (*p,0.05 vs. control; n = 8 per group).
doi:10.1371/journal.pone.0005186.g002
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to 7.2060.70 ng/mL in ATZ30 and 7.5060.50 ng/mL in

ATZ300 compared with 4.9060.60 ng/mL glucose infusion rate

for controls (p,0.05 for both). AZT significantly decreased the

steady-state glucose infusion rate (GIR) during the clamp to

31.562.22 and 32.7563.18 mg kg21 minute21 for ATZ30 and

ATZ300, respectively compared to 41.1362.28 mg kg21 mi-

nute21 for controls (p,0.05 for both) (Fig. 2C). Thus, the

ATZ-exposed rats showed an impaired response to insulin loading,

even under a regular diet. The insulin sensitivity index (ISI) was

also significantly reduced to 4.260.17 for ATZ30 and 4.560.23

for ATZ300 compared with 6.160.15 for controls (p,0.05 for

both; Fig. 2D). Collectively, these data support the conclusion

that rats chronically exposed to ATZ developed insulin resistance

without being fed a high-fat diet.

ATZ changed the ultrastructure of mitochondria
The soleus muscles of ATZ-treated rats were not discernibly

different from those of control rats by light microscopy. However,

electron microscopy showed that soleus muscle mitochondria in

these animals on a regular diet were swollen and their cristae were

partially destroyed (Fig. 3A). There was also prominent accumu-

lation of lipid droplets in the livers of ATZ-treated rats, and electron

microscopy revealed that some liver mitochondria from the ATZ-

treated group showed partially disrupted cristae. Despite the fact

that mitochondrial morphology was altered in muscle and liver by

ATZ administration, protein expression levels of mitochondrial

OXPHOS complex subunits in liver and muscle tissues were not

changed significantly (Fig. 3B). Therefore, the AZT-induced

disruption of mitochondrial morphology might not be associated

with changes in mitochondrial complex protein expression.

ATZ exposure decreased energy metabolism
Insulin resistance and obesity are affected by caloric intake,

physical activity and energy expenditure [31,32]. Since no

treatment-related changes in food or water intake or physical

activity were observed at any point during the study, the

development of insulin resistance by ATZ might be related to

energy metabolism. To determine if ATZ affected energy

metabolism, we measured energy expenditure and OCR using

indirect calorimetry and oxygen sensors, respectively. The energy

expenditure of ATZ-treated rats on regular diet was reduced in a

dose-dependent manner (Fig. 4A). The OCR of each OXPHOS

complex was measured using mitochondria isolated from the

soleus muscle of ATZ-treated rats on regular diet. The combined

OCR measured for complexes II plus III, both of which use

ubiquinone (Q) as an electron transfer intermediate, was

significantly reduced by ATZ administration. The activities of

other complexes were not altered (Fig. 4B), although the OCR of

complex I showed a tendency toward a decrease that did not reach

statistical significance. There were some analytical limitations in

measuring OCR where the changes were modest, especially when

using animal tissues.

To distinguish which of these complexes (II or III) were affected

by ATZ, we measured the enzymatic activities of SDH (complex

II) and cytochrome bc1 (complex III) in gastrocnemius muscle

tissues by spectrophotometry. As expected, SDH activity was not

altered by ATZ treatment while the activity of the cytochrome bc1

complex was decreased by 10% in the muscles of ATZ-treated

animals (p,0.05, Fig. 4C). These results suggest that ATZ may

bind to the Q site of the cytochrome bc1 complex, a counterpart of

the plastoquinone of photosynthesis in plants. Consistent with

tissue lysate western blotting results, the amounts of OXPHOS

complex proteins in mitochondria were not significantly altered.

The western blot results imply that ATZ might interfere with the

electron transfer from complex I or II to complex III without

impacting mitochondrial OXPHOS protein expression levels

(Fig. 4D). However, we cannot exclude the possibility that the

expression of other proteins that were not examined by western

blotting might be involved in changes in mitochondria respiration

activity.

ATZ impairs mitochondrial OXHPOS through direct
action

Changes in cellular respiration and differences in the respiratory

effects of inhibitors are important indicators of mitochondrial

functional defects that result from damaged mitochondrial

proteins or DNA (mtDNA), or substantial alterations to mito-

chondrial signaling cascades. To test if ATZ impaired mitochon-

drial function directly or indirectly, we monitored both cellular

and mitochondrial respiration levels in ATZ-treated, cultured L6

muscle cells and isolated mitochondria. Incubation of L6 muscle

cells with ATZ decreased both endogenous coupled and FCCP-

uncoupled oxygen consumption by 30% and 40%, respectively

(Fig. 5A). ATZ had no effect on the levels of nuclear DNA

(nDNA)- or mtDNA-encoded OXPHOS complex proteins

(Fig. 5B). When oxygen consumption was measured using

digitonin-permeabilized cells, respiration levels in complex II plus

III were inhibited by ATZ (Fig. 5C), similar to the in vivo results

(see Fig. 4C). Enzyme activities of complex III (cytochrome bc1)

were also decreased by ATZ treatment (Fig. 5D). Direct

treatment of isolated mouse liver mitochondria with ATZ also

reduced the OCR of complex I and complex II plus III by 49%

and 37%, respectively (Fig. 6A); the magnitude of these ATZ

effects were greater in isolated mitochondria than in cells.

Complex IV activities were not significantly changed. Again,

consistent with the results of the in vivo study, SDH enzymatic

activity was not changed, but the activity of the cytochrome bc1

complex was decreased significantly by ATZ treatment (Fig. 6B).

These results strongly suggest that ATZ itself, not ATZ

metabolites, intervenes directly at Q binding sites between

complex I and III, or II and III.

ATZ treatment blocked the insulin-Akt signaling pathway
To investigate the mechanism by which ATZ-induced mito-

chondrial dysfunction caused insulin resistance, we analyzed

insulin-stimulated Akt phosphorylation in ATZ-treated L6 muscle

cells. Pretreatment with ATZ (100 mg/mL) for 24–48 hours

abolished insulin-mediated Akt phosphorylation at both Thr308

and Ser473 residues (Fig. 7). Park et al. demonstrated that

mitochondrial dysfunction induced by mtDNA depletion sup-

pressed IRS-1 expression, resulting in diminished downstream

signaling and glucose transport, and insulin resistance [5]. The

suppression of insulin-mediated Akt phosphorylation is clearly

linked to the development of insulin resistance in vitro [33] and in

vivo [34]. Thus, the reduction in Akt phosphorylation that results

from ATZ-mediated inhibition of mitochondrial OXPHOS

complex III may help to explain why chronic exposure to ATZ

induced weight gain and insulin resistance.

Discussion

In this study, we found that long-term treatment with low

concentrations of the herbicide, ATZ, induced insulin resistance

and weight gain in Sprague Dawley rats. We acknowledge that,

unlike the current results, previous studies have reported that the

body weights of ATZ-treated animals were generally decreased or

unchanged [35–37]. However, the doses of ATZ used in these

other studies were 10–100 fold higher (2.7 to 50 mg kg21 day21)
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than those used in our study. Thus, our interpretation is that acute

exposure to high concentrations of ATZ is toxic, and thus prevents

weight gain and possibly causes weight loss. In contrast, chronic

low-dose ATZ exposure might lead to mild mitochondrial damage

that mimics the characteristic of the insulin-resistance state, and

hence, leads to weight gain.

Because ATZ treatment in our study induced obesity without

changing food intake or physical activity, ATZ presumably lowered

energy metabolism. Indeed, indirect calorimetry measurements

revealed that the ATZ-induced weight gain was associated with

decreased energy metabolism. Furthermore, in vitro experiments

provided evidence that ATZ interferes with electron transfer

through OXPHOS complex at Q sites in mitochondria, resulting

in reduced oxygen consumption. We have found that treatment

with rotenone, a complex I inhibitor, or dideoxydytidine, an

mtDNA-replication inhibitor, directly inhibits insulin-mediated

Figure 3. Mitochondrial morphology and protein expression in ATZ-treated rat muscle and liver. (A) Mitochondrial morphology by
electron microscopy. Rats on a regular diet were treated with or without ATZ300 for 5 months. Rat soleus muscle and liver were isolated and
observed by electron microscopy (magnification 620,000). Enlarged, swollen or cristae-disrupted mitochondria are indicated by arrows. Lipid
droplets were observed in ATZ-treated liver. (B) Expression of mitochondrial proteins in rat tissues. Total lysates of soleus muscle or liver of rats on a
regular diet with or without ATZ treatment were analyzed by western blotting using the indicated antibodies.
doi:10.1371/journal.pone.0005186.g003
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phosphorylation of Akt without affecting upstream signaling

molecules (data not shown). In addition, overexpression of

dominant-positive Akt (myr-Akt) completely reverses downstream

Akt function. For example, Akt-mediated phosphorylation of

Foxo1, which is blocked by mitochondrial dysfunction, is abrogated

by myr-Akt overexpression, implying that Akt is the focal point of

the mitochondrial dysfunction (manuscript in preparation). As part

of this study, we tested whether ATZ also blocked Akt function, and

found, as expected, that ATZ blocked insulin-mediated Akt

phosphorylation in skeletal muscle cells.

Treatment with ATZ changed the ultrastructure of mitochon-

dria in liver and muscle of rats, producing morphological

alterations such as ring- and cup-shaped mitochondria without

significantly altering the expression of mitochondrial OXPHOS

complex proteins. This observation is in agreement with the

findings of others that ATZ induced mitochondrial damage in

fresh water mussels [13] and rainbow trout [38]. In our study, we

also found that ATZ decreased the membrane potential of

mitochondria and reduced intracellular ATP content in various

cells (data not shown). Collectively, these data led us to conclude

that ATZ treatment damaged both mitochondrial respiratory

function and morphology.

Intramuscular lipid accumulation is known to be closely related

to insulin resistance [39,40], and is considered as an early

phenomenon in the development of obesity. Increased lipid

content in muscle is also associated with decreased ATP synthesis

and diminished mitochondrial function [1]. The observed increase

in intracellular lipid content in ATZ-treated rats also supports the

interpretation that ATZ-induced mitochondrial damage affects the

insulin-signaling pathway, and consequently induces insulin

resistance and fat accumulation in metabolically active tissue,

such as muscle.

There is epidemiological evidence that human exposure to

POPs such as TCDD may also disturb glucose metabolism and

induce insulin resistance [6,41–47], and it has been reported that

exposure to herbicides or pesticides, including ATZ, is associated

with an increased risk of gestational diabetes [47]. However, there

is scant information in the literature to indicate the level of human

exposure to ATZ or similar herbicides. Obviously, there is no

direct evidence of ATZ accumulation in diabetic or obese human

subjects. However, a toxicological report has shown that acute

occupational or dietary exposure of humans to ATZ was in the

range of 0.2–90 mg kg21 day21, and the annual average exposure

(chronic) was between 0.046 and 0.286 mg kg21 day21 [48].

Figure 4. Mitochondrial OXPHOS activity of ATZ-treated rat skeletal muscle mitochondria. Rats on a regular diet were treated with or
without ATZ for 5 months. (A) Dose-dependent decrease in energy expenditure in ATZ-treated rats, monitored using indirect calorimetry. (B)
Decrease in OCR of complex II plus III in ATZ300-treated skeletal muscle mitochondria (n = 5). (C) Decrease in the activity of complex III enzyme in
ATZ-treated liver lysates, determined by spectrophotometry (*p,0.05, **p,0.01; n = 5). (D) Western blot of muscle mitochondria proteins. Total
skeletal muscle mitochondrial lysates from rats on a regular diet were subjected to western blot analysis using the indicated antibodies.
doi:10.1371/journal.pone.0005186.g004
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Figure 5. Decrease in endogenous oxygen consumption by ATZ in L6 cells. L6 rat skeletal muscle cells were treated for 48 hours with or
without ATZ (100 mg/mL). (A) Endogenous cellular (coupled), FCCP-uncoupled (FCCP) and KCN-insensitive respiration (KCN) of trypsinized intact cells
were measured in phenol red-free media using an Oxygraph-2K apparatus (*P,0.05; n = 3). (B) Western analysis of nDNA- and mtDNA-encoded
OXPHOS complex subunit proteins. Complex I (ND9), complex II (SDHA), complex III (UQCRC2) and complex IV (COXI, mtDNA-encoded, COXIV, nDNA-
encoded) were examined. b-actin was used as an equal loading control. (C) Oxygen consumption by each complex in digitonin-permeabilized cells
was measured using an Oxygraph-2K apparatus (P,0.05; n = 4). (D) Enzyme activities of complex II or III were determined by spectrophotometry in
ATZ-treated L6 muscle cells (*P,0.05; n = 3).
doi:10.1371/journal.pone.0005186.g005

Figure 6. Inhibition of complex I and II plus III in isolated mitochondria by ATZ. (A) OCR. Mouse liver mitochondria (40 mg/100 mL assay)
isolated by differential centrifugation were incubated with ATZ (100 mg/mL) for 30 minutes and the OCR of each complex was measured. (B) Enzyme
activities of complex II (SDH) or complex III (cytochrome bc1 complex). Liver tissue lysates of ATZ-treated mitochondria were assayed as described
(*p,0.05, **p,0.01; n = 4).
doi:10.1371/journal.pone.0005186.g006

Atrazine-Induced Obesity

PLoS ONE | www.plosone.org 9 April 2009 | Volume 4 | Issue 4 | e5186



We believe that ATZ or its metabolites may be introduced to

humans through air, water and and/or corn products as

contaminants, and accumulate in tissues. One such pathway by

which ATZ or its metabolites might be introduced into humans is

through corn-derived foods (e.g., high fructose corn syrup or corn

oil). Since corn syrup [49] and fast foods served in the USA [50,51]

are suspected of causing an obesity epidemic, this seems a

reasonable supposition. Recently, it was reported that of 160 food

products purchased at a fast food restaurant throughout the USA,

not a single item could be traced back to a non-corn source [52].

This work also identified corn as the overwhelmingly predominant

animal feed for the beef and chicken served at fast food restaurants.

Considering that the process of corn wet milling requires a huge

amount of fresh water for steeping (digesting), which in turn

generates 1,300 to 1,600 L of light steepwater per ton of corn that

is then evaporated or dried to make intermediate products, it is

conceivable that ATZ and related herbicides are present in

steepwater and may be concentrated during the process [53].

Because herbicides like ATZ and their metabolites are present in

streams and groundwaters throughout USA and are at highest

concentrations in agricultural areas where wet corn milling plants

are located [54], there is a substantial possibility of ATZ

contamination of corn products. However, in 2006 the U.S.

Environmental Protection Agency issued a cumulative risk

assessment of triazine herbicides, concluding that they posed ‘‘no

harm that would result to the general U.S. population, infants,

children, or other consumers’’ [55].

Based on evidence presented in this study, we conclude that

environmental ATZ might be an important contributing factor to

the obesity epidemic in the United States. It damages mitochon-

drial function, affects insulin signaling, and induces insulin

resistance and obesity, especially when exposure is associated with

a high-fat diet. Sanguine official assessments notwithstanding,

further studies are definitely needed to clarify issues related to

human exposure to ATZ and related herbicides in the US and

elsewhere around the world.

Supporting Information
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