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Abstract

Systemic injections of MK-801, a selective NMDAR antagonist, into neonatal rats induces long-term

neurochemical and behavioural changes. It has been suggested that these changes form the neurodevel-

opmental basis for schizophrenia-like behaviour in rats. In this study, 7-d-old rats were treated with

MK-801, and their frontal cortices were examined to investigate the effects on p70S6K-S6 signal pathway

and on protein translation, which play crucial roles in the neurodevelopmental process. MK-801, in doses

of 0.5 and 1.0 mg/kg, induced a decrease in phosphorylation of p70S6K and its substrates, S6 and eIF4B, in

the first 8 h, and no change at 24 and 48 h. These effects were more prominent after two injections of

MK-801 than one. Decreased S6 phosphorylation by MK-801 was evident in the prefrontal, cingulate, and

insular cortex. In two representative upstream p70S6K-S6 pathways related to ERK1/2 and Akt, changes

in ERK1/2-p90RSK phosphorylation were accompanied by changes of p70S6K-S6. Although two MK-801

injections induced a dose-dependent decrease in phosphorylation of Akt and mTOR at 4 and 8 h, a single

injection did not produce a significant effect. Protein synthesis rate, measured by [3H]leucine incorpor-

ation in frontal cortical tissue, was reduced until 24 h after two MK-801 (1.0 mg/kg) injections. In sum-

mary, this study found that neonatal MK-801 treatment induced dysregulation in the p70S6K-S6/eIF4B

pathway and protein translation in the frontal cortex of the developing rat brain, which may suggest an

important role of protein translation machinery in the MK-801 neurodevelopmental animal model of

schizophrenia.
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Introduction

The N-methyl-D-aspartate receptor (NMDAR) plays

a crucial role in the differentiation, migration, and

synaptogenesis of neurons, and thus regulates the

developmental process of brain (Contestabile, 2000 ;

Komuro & Rakic, 1993 ; Sircar, 2000). In rats, peak

expression of the NMDAR occurs within the first 2 wk

(Ritter et al. 2002), which corresponds to the major

growth spurt of the brain (Andersen, 2003). During

this period, the rodent brain is highly vulnerable to

NMDAR antagonism, and the period around post-

natal day (PND) 7 shows high sensitivity to NMDAR

antagonist-induced apoptotic neurodegeneration

(Ikonomidou et al. 1999 ; Lei et al. 2008; Lema Tome

et al. 2006).

Systemic administration of NMDAR antagonists

to perinatal rats induces long-term behavioural and

neurochemical changes resembling schizophrenia,

such as deficits in sensorimotor gating, spatial learn-

ing, and working memory (Harris et al. 2003 ; Sircar &
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Rudy, 1998 ; Stefani &Moghaddam, 2005; Uehara et al.

2009 ; Wiley et al. 2003), locomotor activity changes

(Harris et al. 2003), dysregulation in dopaminergic and

glutamatergic neurotransmission (Sircar & Soliman,

2003 ; Wedzony et al. 2005), and decreased parvalbu-

min-positive neurons (Abekawa et al. 2007; Wang et al.

2008). The developmental status of PND7 rat brain is

assumed to be equivalent to that of the human foetus

in the second trimester of development (Clancy et al.

2001), which is the period when it has been suggested

that the developmental abnormality causing schizo-

phrenia occurs (Bracha et al. 1992 ; Fatemi & Folsom,

2009; Mednick et al. 1988). Thus, treatment of rats

at around PND7 with MK-801, a selective and non-

competitive NMDAR antagonist, has been suggested

as a means of inducing a neurodevelopmental model

of schizophrenia in rats (du Bois & Huang, 2007).

These findings imply that transient disruptions in

NMDAR-related signals during this critical period

can underpin long-term abnormalities. However, al-

though several studies have suggested possible

mechanisms, such as NMDAR antagonist-induced

apoptotic neurodegeneration (Dzietko et al. 2004;

Hansen et al. 2004; Ikonomidou et al. 1999; Lei et al.

2008 ; Lema Tome et al. 2006; Xia et al. 2008), it still

requires further investigation.

Translational control plays a key role in the long-

term modification of neural circuits and behaviour

(Costa-Mattioli et al. 2009). Synaptogenesis, dendritic

arborization, axonal growth and navigation, and dif-

ferentiation actively occur in the early developing

brain, which requires the proper activity of protein

translation machinery (Jaworski & Sheng, 2006). In

fact, the protein synthesis rate of rat brain in the early

postnatal period is significantly higher than in the

adult period and declines with age (Fando et al. 1980;

Sun et al. 1995), which suggests a high demand and

rapid turnover of protein synthesis in the early neuro-

developmental period.

Protein synthesis is tightly operated by intercon-

nected signal pathways. Initiation is the rate-limiting

step in translation, and Akt and mitogen-activated

protein kinase (MAPK) pathways are representative

of those responsible for initiation of translation (Parsa

& Holland, 2004 ; Ruggero & Sonenberg, 2005). Akt

activates mammalian target of rapamycin (mTOR)

followed by phosphorylation of eukaryotic translation

initiation factor 4E binding protein (4E-BP) and p70

ribosomal S6 kinase (p70S6K) (Proud, 2007 ; Wang

et al. 2003). The ERK1/2 pathway is also involved in

p70S6K phosphorylation (Bessard et al. 2007 ; Lehman

& Gomez-Cambronero, 2002). Activated p70S6K in-

duces phosphorylation of small ribosomal protein

6 (S6) and eukaryotic translation initiation factor 4B

(eIF4B) (Raught et al. 2004 ; Ruvinsky & Meyuhas,

2006). Phosphorylation of S6 can be regulated by not

only p70S6K, traditionally known to be the main up-

stream kinase, but also by p90RSK, whichmediates the

Ras-ERK1/2 signal pathway (Pende et al. 2004; Roux

et al. 2007). Among the phosphorylation sites of S6,

p90RSK exclusively phosphorylates at Ser235/236

(Pende et al. 2004 ; Roux et al. 2007). Therefore, p70S6K

and S6, regulated by Akt and ERK pathways, can act as

one of the critical points regulating initiation of protein

translation (Fig. 1).

Activity of NMDARs affects protein translation,

and related signal pathways including ERK1/2, Akt,

and mTOR (Chandler et al. 2001 ; Gong & Tang, 2006;

Gong et al. 2006 ; Sutton & Chandler, 2002) and protein

synthesis plays an important role in synaptic plasticity

regulated by the glutamatergic system (Kelleher et al.

2004 ; Nicoll & Malenka, 1999). Moreover, we have

previously reported that MK-801 treatment affects Akt

and ERK1/2 pathways (Ahn et al. 2005, 2006 ; Seo et al.

2007) and mTOR/p70S6K-related pathways in the

frontal cortex of adult rat brain (Yoon et al. 2008).

Taken together, the evidence suggests that MK-801

treatment of rats in the early postnatal period may

induce changes in protein translation and related sig-

nal pathways in the brain and thus disrupt the normal

neurodevelopmental process. In this study, p70S6K-

S6-related signal pathway, regulated by ERK1/2 and

Akt, and protein synthesis rate were investigated after

MK-801 treatment at PND7 in the frontal cortex of the

developing rat brain.

ERK1/2 Akt

mTOR

p70S6Kp90RSK

S6 elF4B 4E-BP1

Protein translation initiation

Fig. 1. Schematic diagram illustrating the p70S6K-S6-related

protein translation initiation signal pathways. Akt and

ERK1/2 pathways can phosphorylate p70S6K, followed by S6

and eIF4B phosphorylation. p90RSK can also phosphorylate

S6. In addition, mTOR inactivates the translation repressor

4E-BP, which releases eIF4E to facilitate translation initiation.
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Methods

Animals

Animals were treated in accordance with the National

Institutes of Health (NIH) Guide for the Care and

Use of Laboratory Animals. Formal approval to con-

duct this experiment was obtained from the Animal

Subjects Review Board of Seoul National University

Hospital. PND7 female Sprague–Dawley rats (weigh-

ing 12–16 g) were housed with a maternal rat under a

12-h light/dark cycle (lights on 08:00 hours) with food

and water available ad libitum. We chose female rats

because they have previously shown more prominent

long-term behavioural changes than male rats in re-

sponse to neonatal MK-801 treatment (Harris et al.

2003). Drug injections were performed outside the

cage under a heating lamp, and the rat pups were re-

turned to the cage immediately after the drug injec-

tions.

Drug treatment

We administered either one or two (8 h apart) sub-

cutaneous (s.c.) injections of MK-801 (Tocris, USA;

dissolved in normal saline) or normal saline to rats

at PND7, a period showing high vulnerability to the

treatment of MK-801 (Ikonomidou et al. 1999). The rat

pups were randomly assigned to either the MK-801 or

the normal saline groups.

MK-801 doses of 0.1, 0.5, and 1.0 mg/kg, were used.

The rat pups were then sacrificed by decapitation

and the frontal cortices were dissected at 1, 4, 8, 24,

and 48 h after their last drug injection in order to

analyse molecular changes. The effects of MK-801

treatment in developing rat brain are dose- and time-

dependent. For example, regarding the effects on

apoptotic neurodegeneration, the threshold dose of

MK-801 for inducing apoptotic damage was 0.25 mg/

kg, and damage was evident from 4 to 24 h after

the MK-801 treatment, but at 48 h no apoptotic signs

remained (Ikonomidou et al. 1999).

Sample preparations and Western blot analysis

Whole extracts of frontal cortex were used for im-

munoblot analysis. Frontal cortices were immediately

homogenized in a glass–Teflon homogenizer in 10%

v/w ice-cold RIPA(+) buffer [50 mM Tris (pH 7.4),

150 mM NaCl, 1% Triton, 1% sodium deoxycholate,

and 0.1% SDS] containing 1 mM DTT, protease inhibi-

tor cocktail (Sigma-Aldrich), and 1 mM PMSF (Sigma-

Aldrich). Subsequent steps for immunoblot analysis

was performed as described previously (Seo et al.

2007). Antibodies against actin (Sigma-Aldrich),

p70S6K, S6, eIF4B, ERK1/2, p90RSK, Akt, GSK-3b,

mTOR, 4E-BP (Santa Cruz Biotechnology, USA),

p-p70S6K (Thr389), p-S6 (Ser240/244 or Ser235/236),

p-eIF4B (Ser442), p-ERK1/2 (Thr202/Tyr204),

p-p90RSK (Thr359/Ser363), p-Akt (Ser473), p-mTOR

(Ser2448 or Ser2481), p-4E-BP (Thr37/46) (Cell

Signaling Technology, USA) were used as primary

antibodies at dilutions of 1 :1000 to 3000. They were

incubated overnight at 4 xC, followed by a second

incubation with anti-rabbit IgG conjugated to horse-

radish peroxidase (Santa Cruz Biotechnology). The

signal was detected with the ECL system (Pierce,

USA). Results were quantified by densitometry

and band intensity was corrected for background

by subtraction using the TINA program (Raytest,

Germany).

Immunohistochemistry

For immunohistochemistry, different animals from

those in the immunoblotting experiments were used.

These rat pups were treated in the same way except

for the method of analysis. The rat pup brains were

extracted at 8 h after two injections of MK-801

(1.0 mg/kg). Brains were post-fixed with 4% para-

formaldehyde (Sigma-Aldrich) in 0.1 M PBS (pH 7.4)

for 2 h, briefly equilibrated in glycerol (20% in PBS),

and sectioned at 20 mm on a freezing microtome

(Leitz, Germany). Tissue sections were rinsed three

times in PBS and incubated in 0.3% H2O2 for 30 min to

quench endogenous peroxidase activity. After exten-

sive washing in 0.1 M PBS (three times for 10 min

each), sections were preincubated in 10% normal goat

serum (Jackson ImmunoResearch Laboratories, USA)

for 1 h. The sections were incubated with antibody

against p-S6 (Ser240/244) at a 1 :1500 dilution at 4 xC

overnight. After rinsing in 0.1 M PBS, a refined

avidin–biotin technique in which a biotinylated

secondary antibody reacts with several peroxidase-

conjugated streptavidin molecules was employed for

amplification using a LSAB+kit/HRP (Dako Corpor-

ation, USA). The sections were incubated in DAB

substrate and subsequently mounted with DPX

mountant (Fluka, Switzerland). Images of the regions

of interest (area 220 mmr300 mm) were digitally

collected and counted using a computerized image

analyser (Leica Application Suite V3, Germany). For

each animal, the mean count of p-S6 positive neurons

per examined brain region, including the prefrontal,

cingulate, insular, and orbital cortex (Paxinos &

Watson, 1998 : Fr2, Cg3, AI, and LO and VLO, fig. 8),

was determined.
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Double-label immunofluorescence

The sections were blocked for 1 h with 3% BSA in

TBST, and incubated with primary antibodies [1 :100

anti-p-S6 (Ser240/244) and 1:100 anti-neuronal nuclear

protein (Neu-N; Chemicon, USA)] at 4 xC overnight.

After washing in TBST, the sections were incubated

with secondary antibodies (1 :100 Alexa Fluor 488 and

555; Molecular Probes, USA) for 1 h at room tempera-

ture. The sections were then fluorescence-labelled, nu-

clei were stained with 4k,6k-diamidino-2-phenylindole

(DAPI) (Sigma-Aldrich), mounted with DPX moun-

tant, and analysed on a Meta confocal microscope

(Model LSM 510; Carl Zeiss MicroImaging Inc.,

Germany) equippedwith four lasers (Diode 405,Argon

488, HeNe 543, and HeNe633). Each channel was

separately scanned using a multitrack PMT configur-

ation to avoid cross-talk between fluorescent labels.

Images were acquired and three-dimensionally

reconstructed using Zeiss LSM software.

Translation assays in vitro

The protein synthesis rate was measured using a

cell-free system validated for the brain (Burda et al.

1994 ; Cosgrove & Rapoport, 1986 ; Fando &

Wasterlain, 1980). Tissues from frontal cortices were

homogenized in 2.5 vol. of the homogenization

buffer [0.32 M sucrose, 50 mM Hepes-KOH (pH 7.54),

140 mM potassium acetate, 4 mM magnesium acetate,

2.5 mM DTT], using five passes of a glass–Teflon

homogenizer with a motor-driven pestle. Then the

homogenates were centrifuged at 11220 g for 10 min

at 4 xC. The supernatant (post-mitochondrial super-

natant ; PMS) was used for in-vitro protein synthesis

assay. Protein concentrations were determined by

Bradford assay. Reactions were performed three

times for each sample using a 150 mg PMS for each

reaction. The reaction was performed at 37 xC for

45 min. The complete reaction mixture in a final vol-

ume of 0.1 ml contained 150 mg PMS, 0.32 M sucrose,

50 mM Hepes buffer (pH 7.54), 200 mM potassium

acetate, 5 mM magnesium acetate, 2.5 mM dithiotheitol,

1 mM ATP, 1 mM GTP, 500 mM creatine phosphate,

50 mg/ml creatine phosphokinase, and 50 mCi/ml

[3H]leucine. The reaction was stopped by adding 1 ml

distilled ice-cold water, after which 0.5 ml of 1 M KOH

containing 2 mg/ml unlabelled leucine was added,

and the mixture was incubated at 37 xC for an ad-

ditional 10 min to release labelled amino-acid bound

to tRNA and chilled. The proteins were precipitated

by adding 1 ml of 25% TCA (containing 2 mg/ml

unlabelled leucine) and storing at 4 xC overnight.

The precipitated proteins were collected on Whatman

GF/C glass-fibre filters presoaked in 10% TCA by

vacuum filtration, then washed with 10% TCA, and

dried. The filters were counted for radioactivity after

agitation for 60 min with liquid scintillation cocktail

(PerkinElmer, USA).

Statistical analysis

Immunoblot results are expressed as relative optical

densities (ODs). The OD of phosphorylation level was

normalized by each OD of corresponding total protein.

The relative ODs of immunoreactivity (%) are reported

as the mean¡standard error. Each group consisted of

4–6 animals for immunoreactivity analysis. The mean

of the relative OD of each group was compared with

that of the vehicle control using a one-way analysis of

variance (ANOVA) followed by Tukey’s post-hoc test.

To compare the mean values of vehicle control and

MK-801-treated groups from immunohistochemistry

and protein translation assay, an independent t test

was performed. p values <0.05 were deemed statisti-

cally significant. All tests were performed using SPSS

12.0 for Windows (SPSS Inc., USA).

Results

Effects of MK-801 treatment on p70S6K, S6, and

eIF4B in the frontal cortex of PND7 rats

Changes in phosphorylation of p70S6K at Thr389,

which reflects the activity of p70S6K (Dufner &

Thomas, 1999 ; Pearson et al. 1995), were examined

after MK-801 treatment at PND7. At 1 h after single

treatment of MK-801 (F=5.10, d.f.=3, p=0.01),

1.0 mg/kg MK-801 significantly reduced immuno-

reactivity of p-p70S6K (p=0.04), at 4 h (F=2.53,

d.f.=3, p<0.01), 0.5 and 1.0 mg/kg both induced a

significant decrease (p<0.01 for both), at 8 h (F=10.24,

d.f.=3, p<0.01), 0.5 and 1.0 mg/kg also induced a

significant decrease (p=0.01, p<0.01, respectively).

Phosphorylation levels of S6, a major substrate of

p70S6K, at both Ser240/244 and Ser235/236 were

analysed. Phosphorylation of S6 at Ser240/244 is

regulated by p70S6K (Raught et al. 2004 ; Ruvinsky &

Meyuhas, 2006), and p90RSK phosphorylates S6 at

Ser235/236 (Pende et al. 2004; Roux et al. 2007).

Immunoreactivitiy of p-S6 (Ser240/244 and Ser235/

236) showed the similar pattern of changes as did

of p-p70S6K. In addition, phosphorylation of eIF4B

(Ser442), another substrate of p70S6K, changed in a

similar way. At 24 and 48 h, no significant changes

were found in the immunoreactivity of p-p70S6K,

p-S6, or p-eIF4B following the single MK-801 treat-

ment (Fig. 2).
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Two MK-801 injections induced more prominent

changes in the immunoreactivity of p-p70S6K, p-S6,

and p-eIF4B. The changes in the immunoreactivity of

p-p70S6K were not significant at 1 h after two MK-801

injections. At 4 h (F=36.20, d.f.=3, p<0.01), 0.1, 0.5,

and 1.0 mg/kg MK-801 significantly reduced im-

munoreactivity of p-p70S6K (p<0.01 for all), and at

8 h h (F=21.16, d.f.=3, p<0.01), 0.5 and 1.0 mg/kg

both induced a significant decrease (p<0.01 for

both). At 24 h (F=9.29, d.f.=3, p<0.01), increased

immunoreactivity was found with statistical signifi-

cance in the groups receiving 0.5 and 1.0 mg/kg MK-

801 (p=0.03, p<0.01, respectively). Immunoreactivity

of p-S6 (both Ser240/244 and Ser235/236) showed a

similar pattern of change to p-p70S6K. Immuno-

reactivity of p-eIF4B changed similarly. At 48 h, no

statistically significant changes were observed in

the immunoreactivity of p-p70S6K, p-S6, and p-eIF4B

(Fig. 3). No changes were found in the total levels

p70S6K, S6, and eIF4B (Figs 2 and 3).

Immunohistochemistry was performed after

two injections of MK-801 (1.0 mg/kg). Based on cell

morphology, p-S6 (Ser240/244) immunoreactivity was

localized in the cytoplasmic part of the neurons,

and the density of p-S6 (Ser240/244) positive neurons

was decreased in the prefrontal cortex at 8 h after

two MK-801 injections compared to that of vehicle

control groups (Fig. 4a). The p-S6 (Ser240/244) posi-

tive cells per cortical region examined were counted.

The p-S6 (Ser240/244) positive cells were significantly

reduced in MK-801-treated samples compared to

those of vehicle-treated controls in the prefrontal (t=
5.33, d.f.=6, p<0.01), cingulate (t=4.08, d.f.=6, p<
0.01), and insular (t=5.16, d.f.=6, p<0.01) cortices

(Paxinos & Watson, 1998) (Fig. 4b). Next, we per-

formed immunofluorescence analysis to investigate

whether the cells stained with p-S6 (Ser240/244)

antibody were of neuronal origin, as observed on

cell morphology. Immunoreactivity of p-S6 was co-

localized with Neu-N, a specific neuronal protein

(Mullen et al. 1992), which was decreased in the pre-

frontal cortex at 8 h after two MK-801 injections

(Fig. 4c). In addition, immunoreactivity of p-S6 was

not co-localized with immunoreactivity of DAPI

(4k,6-diamidino-2-phenylindole), a fluorescence stain

labelling cell nuclei through binding to DNA (Kubista
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Fig. 2. Time- and dose-dependent changes in the phosphorylation level of p70S6K and its substrates, S6 and eIF4B, in the rat

frontal cortex after a single injection of MK-801 at PND7. A single injection of MK-801 at PND7 induced a dose-dependent

decrease in immunoreactivity of p-p70S6K (Thr389), p-S6 (Ser240/244 and Ser235/236), and p-eIF4B (Ser442) up to 8 h after

injection. (a) Representative immunoblots of the rat frontal cortex at 1, 4, 8, 24, and 48 h after a single MK-801 injection for the

indicated doses ; V indicates vehicle-treated controls. (b) Quantification of the immunoblot data using a densitometric analysis of

band intensity. Data are expressed as the relative optical density (OD) and given as average values and standard errors (n=4–6

for each treatment group). The relative ODs are percentages of the OD of each vehicle control. The asterisks (*) indicate

statistically significant differences in each immunoreactivity value compared to the vehicle control (p<0.05).
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et al. 1987) (Fig. 4d). MK-801 treatment reduced

the immunoreactivity of p-S6 in the cytoplasm of the

neurons in the rat cortical regions, including frontal,

cingulate, and insular cortices.

Effects of MK-801 treatment on ERK1/2 and p90RSK

in the frontal cortex of PND7 rats

Single treatment of MK-801 also induced dose- and

time-dependent changes in the immunoreactivity of

p-ERK1/2 (Thr202/Tyr204) and p-p90RSK (Thr359/

Ser363), a downstream kinase of ERK1/2, in the fron-

tal cortex. Immunoreactivity of p-ERK1/2 was sig-

nificantly decreased at 1 h (F=18.87, d.f.=3, p<0.01)

with 0.5 and 1.0 mg/kg MK-801 (p<0.01 for both),

and at 4 h (F=25.42, d.f.=3, p<0.01) with 0.5 and

1.0 mg/kg MK-801 (p<0.01 for both). At 8 h, no sig-

nificant differences were found and, at 24 h (F=3.68,

d.f.=3, p=0.03), an increased immunoreactivity

of p-ERK1/2 was observed with 0.5 mg/kg MK-801

(p=0.02). Immunoreactivity of p-p90RSK showed a

pattern of changes similar to those observed in

p-ERK1/2. At 48 h, no significant changes were

found in the immunoreactivity of either p-ERK1/2 or

p-p90RSK (Fig. 5).

Two MK-801 injections induced more prominent

changes in the immunoreactivity of both p-ERK1/2

and p-p90RSK. The immunoreactivity of p-ERK1/2

significantly decreased at 1 h (F=56.03, d.f.=3,

p<0.01) with 0.1, 0.5, and 1.0 mg/kg MK-801 (p<0.01

for all), and at 4 h (F=4.30, d.f.=3, p=0.02) with

1.0 mg/kg MK-801 (p=0.01). Immunoreactivity re-

covered at 8 h and significantly increased at 24 h

(F=20.76, d.f.=3, p<0.01) with 0.5 and 1.0 mg/kg

MK-801 (p<0.01 for both). At 48 h (F=5.76, d.f.=3,

p=0.01), immunoreactivity of p-ERK1/2 decreased

with 1.0 mg/kg MK-801 (p=0.01). Immunoreactivity

of p-p90RSK showed a similar pattern of changes to

those observed in p-ERK1/2, but there were no sig-

nificant changes at 24 and 48 h. Total levels of ERK1/2

and p90RSK did not change after either one or two

MK-801 injections (Fig. 5).

Effects of MK-801 treatment on Akt, mTOR, and

4E-BP in the frontal cortex of PND7 rats

Immunoreactivity p-Akt (Ser473) did not show any

significant change after a single MK-801 treatment.

mTOR can be activated by phosphorylation at Ser2448

(Chiang & Abraham, 2005; Mothe-Satney et al. 2004).
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Fig. 3. Time- and dose-dependent changes in the phosphorylation level of p70S6K and its substrates, S6 and eIF4B, in the rat

frontal cortex after two MK-801 injections at PND7. Two MK-801 injections at PND7 induced a decrease in immunoreactivity of

p-p70S6K (Thr389), p-S6 (Ser240/244 and Ser235/236), and p-eIF4B (Ser442) in the first 8 h, an increase at 24 h, and no change at

48 h. (a) Representative immunoblots of the rat frontal cortex at 1, 4, 8, 24, and 48 h after two MK-801 injections at the indicated

doses. (b) Quantification of the immunoblot data using a densitometric analysis of band intensity. Data are expressed as

described in the legend to Fig. 2 (n=4–6 for each treatment group).
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However, phosphorylation at Ser2481 can also activate

mTOR regardless of the status of phosphorylation at

Ser2448 (Copp et al. 2009 ; Peterson et al. 2000 ; Sekulic

et al. 2000). Therefore, we examined the phosphoryla-

tion of mTOR at both Ser2448 and Ser2481. The

immunoreacitivity of p-mTOR (both Ser2448 and

Ser2481) did not change significantly after a single

MK-801 treatment. The immunoreactivity of p-4E-BP

(Thr37/46), one of the substrates of mTOR, also

showed no significant change (Fig. 6).

After two MK-801 injections, immunoreactivity of

p-Akt decreased at 4 h (F=5.20, d.f.=3, p=0.01) with

0.5 and 1.0 mg/kg (p=0.04, p=0.02, respectively) and

at 8 h (F=8.96, d.f.=3, p<0.01) with 0.5 and 1.0 mg/

kg MK-801 (p<0.01, p=0.03, respectively). In ad-

dition, immunoreactivity of p-mTOR (Ser2481), re-

flecting kinase activity of mTOR (Copp et al. 2009 ;

Peterson et al. 2000 ; Sekulic et al. 2000), significantly

decreased at 4 h (F=35.07, d.f.=3, p<0.01) with 0.5

and 1.0 mg/kg (for both p<0.01) and at 8 h (F=7.44,

d.f.=3, p<0.01) with 1.0 mg/kg MK-801 (p=0.02).

Immunoreactivity of p-4E-BP showed no significant

changes. The total protein levels of Akt, mTOR, and

4E-BP did not change after either one or two MK-801

injections (Fig. 6).

Changes in protein synthesis rate with MK-801

treatment

Based on the findings concerning the molecules re-

lated to the initiation of protein translation, it was ex-

pected that the protein synthesis rate in the frontal

cortex could be affected by MK-801 treatment. To de-

termine the protein translation rate in the frontal cor-

tex after MK-801 treatment, an in-vitro translation

assay, validated for the analysis of protein translation

rate in brain tissue samples, was used to measure the

incorporation of [3H]leucine in precipitated proteins,

using PMS of frontal cortical tissue (Burda et al. 1994 ;

Cosgrove & Rapoport, 1986 ; Fando & Wasterlain,

1980 ; Fando et al. 1980). First, we confirmed the pre-

vious report that the protein synthesis rate in the
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Fig. 4. Decreased immunostaining of p-S6 co-localized with immunofluorescence of Neu-N in the rat frontal cortex after two

MK-801 injections (1.0 mg/kg). (a) Representative microscopic images taken from sections stained for p-S6 (Ser420/424) in rat

prefrontal cortex (Fr) (Paxinos &Watson, 1998). All captured images were obtained 8 h after two MK-801 injections (1.0 mg/kg)

or vehicle (normal saline). (b) The number of positive cells for p-S6 were counted and were found to be decreased in prefrontal

(Fr), cingulate (Cg), and angular insular (AI), but not in orbital (LO and VLO) cortical regions (Paxinos & Watson, 1998) after

MK-801 treatment. Bars represent the average cell counts in each section and standard errors. The asterisks (*) indicate

statistically significant differences in each value compared to vehicle control (p<0.05). (c, d) Decreased immunofluorescence of

p-S6 (red) was co-localized with that of Neu-N (green), but not with that of DAPI (blue), in rat prefrontal cortex (Fr) (Paxinos &

Watson, 1998). Magnification bar : (a, c) 50 mm, (d) 10 mm. V and MK indicate vehicle-treated control and MK-801, respectively.
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frontal cortex of the Sprague–Dawley rat brain in the

early postnatal period is higher than that in the adult

period (Sun et al. 1995). In our experimental condition,

the protein translation rate of the frontal cortex of

PND7 rats was 2.8-fold higher than that of PND45 rats

(t=8.72, d.f.=6, p<0.01). Next, we examined the pro-

tein translation rate at 8 and 24 h after two injections

of 1.0 mg/kg MK-801, when the phosphorylation of

p70S6K, S6, and eIF4B decreased and then recovered

or increased, respectively. At 8 h after two injections

of MK-801 (1.0 mg/kg), incorporation of [3H]leucine

was 70.6% of that of the vehicle control (t=3.68,

d.f.=6, p<0.01), and at 24 h, it was 73.1% of that of the

vehicle control group (t=3.13, d.f.=6, p<0.01). Taken

together, these findings indicate that the protein syn-

thesis rate was significantly reduced in the frontal

cortex at 8 and 24 h after two injections of 1.0 mg/kg

MK-801 (Fig. 7).

Discussion

Treatment of MK-801 on PND7 rats induced time-

and dose-dependent changes in the phosphorylation

level of p70S6K-S6/eIF4B and reductions in protein

translation in the frontal cortex of developing rat

brain. Phosphorylation of p70S6K and its substrates,

S6 and eIF4B, decreased dose-dependently from 1 to

8 h after MK-801 treatment. Decreased phosphoryla-

tion of S6 was evident in broad cortical regions, in-

cluding the prefrontal, cingulate, and insular cortices.

Among the representative upstream signal pathways

of p70S6K-S6-, Akt- and ERK1/2-related pathways,

p-ERK1/2 (T202/Y204)

ERK1/2

p-p90RSK (T359/S363)

p90RSK

V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0 (mg/kg)

MK: 1 h MK: 4 h MK: 8 h MK: 24 h MK: 48 h
(a)

250
200
150
100

50
0R

el
at

iv
e 

O
D

 (%
)

1 4 8 24 48

Time (h)

p-ERK1/2 (T202/Y204)

** **

* 250
200
150
100

50
0R

el
at

iv
e 

O
D

 (%
)

1 4 8 24 48

Time (h)

p-p90RSK (T359/S363)

* ** **

p-ERK1/2 (T202/Y204)

ERK1/2

p-p90RSK (T359/S363)

p90RSK

V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0V 0.1 0.5 1.0 (mg/kg)

MK: 1 h MK: 4 h MK: 8 h MK: 24 h MK: 48 h
(b)

250
200
150
100

50
0R

el
at

iv
e 

O
D

 (%
)

1 4 8 24 48

Time (h)

p-ERK1/2 (T202/Y204)
250
200
150
100

50
0R

el
at

iv
e 

O
D

 (%
)

1 4 8 24 48

Time (h)

p-p90RSK (T359/S363)

*** *

**

* *** ** **

MK-801 2X

0.1 mg/kg

0.5 mg/kg

1.0 mg/kg

MK-801 1X

0.1 mg/kg

0.5 mg/kg

1.0 mg/kg

Fig. 5. Time- and dose-dependent changes in p-ERK1/2 and p-p90RSK after a single or two MK-801 injections. Treatment of

MK-801 at PND7 induced a decrease in the immunoreactivity of p-ERK1/2 (Thr202/Tyr204) and p-p90RSK (Thr359/Ser363) in

the first 8 h, an increase at 24 h, and no change at 48 h. These changes were more prominent after two MK-801 injections than

after a single treatment. Representative immunoblots of the rat frontal cortex at 1, 4, 8, 24, and 48 h after (a) a single or (b) two

MK-801 injections for the indicated doses. Data are expressed as described in the legend to Fig. 2 (n=4–6 for each treatment

group). V and MK indicate vehicle-treated control and MK-801, respectively.
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phosphorylation of ERK1/2 and p90RSK changed in a

similar dose- and time-dependent manner observed

in p70S6K and S6. The protein synthesis rate was re-

duced at 8 and 24 h after two MK-801 (1.0 mg/kg) in-

jections. Taken together, these findings indicate that

neonatal MK-801 treatment induced dysregulation in

the p70S6K-S6 pathway and protein translation in the

frontal cortex of the developing rat brain.

p70S6K and its major substrate, S6, play important

roles in protein translation (Dufner & Thomas, 1999 ;

Ruvinsky & Meyuhas, 2006). Activated p70S6K in-

duces phosphorylation of S6 and eIF4B, which pro-

motes the initiation of protein translation (Raught et al.

2004). S6 is a component of the 40S ribosomal subunit

(Nygard & Nilsson, 1990), and phosphorylation of

S6 enhances protein synthesis via recruitment of the

7-methylguanosine cap complex or translation of the

5k tract of oligopyrimidine mRNA, which encodes for

translation initiation factors and ribosomal protein

subunits (Meyuhas, 2008 ; Ruvinsky &Meyuhas, 2006 ;

Roux et al. 2007). eIF4B functions as a co-factor of

an RNA helicase, eIF4A, and enhances the translation

rate of mRNA with 5k unstructured regions (Rogers

et al. 2001). This suggests that the activity of p70S6K

and S6 correlates with protein translation activity.

In our study, the protein synthesis rate was ana-

lysed using a cell-free translation system to demon-

strate that protein translation was affected along with

the dysregulated p70S6K-S6 signal pathways in the

developing rat brain in response to MK-801 treatment.

The in-vitro cell-free translation assay system used in

our study has been utilized and validated for brain,
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Fig. 6. Effects of MK-801 treatment on p-Akt, p-mTOR, and p-4E-BP1. After two MK-801 injections immunoreactivity of

p-Akt (Ser473) was decreased at 4 and 8 h with 0.5 and 1.0 mg/kg, and that of p-mTOR (Ser2481) was decreased at 4 h with

0.5 and 1.0 mg/kg and at 8 h with 1.0 mg/kg MK-801. Representative immunoblots of the rat frontal cortex at 1, 4, 8, 24, and

48 h after (a) a single or (b) two MK-801 injections for the indicated doses. Data are expressed as described in the legend to

Fig. 2 (n=4–6 for each treatment group). V and MK indicate vehicle-treated control and MK-801, respectively.
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to accurately reflect the changes that occur in vivo

(Burda et al. 1994 ; Cosgrove & Rapoport, 1986 ; Fando

& Wasterlain, 1980). Initial rapid changes in the

activity of protein translation are associated with the

related regulatory mechanism, such as states of phos-

phorylation of translation factors and specific RNA

binding proteins. However, over the longer term, the

control of protein synthesis is related to alterations

in the cellular capacity for protein synthesis, such as

changes in the levels of translation factors and ribo-

somes (Proud, 2007). Therefore, decreased phosphory-

lation of p70S6K-S6/eIF4B until after 8 h could result

in a longer-term reduction in the protein synthesis rate

until 24 h after MK-801 treatment.

In the brain of early postnatal period rats, synapto-

genesis, differentiation, proliferation, and migration

actively occur (Andersen, 2003), all of which requires a

high rate of protein synthesis. In fact, the local cerebral

protein synthesis rate in the rat during normal post-

natal development is highest in the early postnatal

period (Fando et al. 1980; Sun et al. 1995). We also

found that the protein synthesis rate in the fontal cor-

tex of PND7 rats was significantly higher than that in

PND45 rats, and MK-801 treatment reduced the gen-

eral protein synthesis rate in the frontal cortex of

PND7 rats.

The frontal cortex has been suggested as a key re-

gion related to the behavioural abnormalities of ani-

mals in response to NMDAR antagonists (Jackson et al.

2004 ; Jentsch & Roth, 1999; Takahata & Moghaddam,

2003). Moreover, the brain regions most affected by

ketamine-induced acute psychotic states in humans

are in the prefrontal cortex (Breier et al. 1997). MK-801

treatment in the early postnatal period also induces

long-term impairments in cognitive set-shifting abili-

ties and working memory, which reflects dysfunctions

in frontal cortical regions (Stefani & Moghaddam,

2005). A reduction in the protein synthesis rate in

early development in response to MK-801 treatment

could contribute to these long-term behavioural

changes, which are related to frontal cortical dysfunc-

tion.

The ERK1/2 and Akt pathways are both strongly

linked to translational control, but the ERK1/2 signal

pathway is more highly sensitive to levels of post-

synaptic activity than is the Akt pathway (Sutton et al.

2007). After MK-801 treatment at PND7, the ERK1/2

signal pathway was affected more prominently than

the Akt signal pathway was. The PI3K-Akt and ERK1/

2 pathways have been shown to cooperatively regulate

p70S6K activity, which correlates with the phosphory-

lation at Thr389 in linker domain of p70S6K (Dufner &

Thomas, 1999 ; Pearson et al. 1995). After a MK-801

treatment, phosphorylation changes in p70S6K at

Thr389 were accompanied by changes in ERK1/2

and p90RSK. Phosphorylation of S6 can be regulated

by not only p70S6K but also by p90RSK, which me-

diates the Ras-ERK1/2 signal pathway (Pende et al.

2004 ; Roux et al. 2007). Among the phosphorylation

sites of S6, such as Ser235, Ser236, Ser240, Ser244, and

Ser247, p90RSK regulates phosphorylation of S6 at

Ser235/236 (Pende et al. 2004 ; Roux et al. 2007). The

phosphorylation of S6 at both Ser240/244 and Ser235/

236 was affected by the MK-801 treatment. These

findings could suggest that the role of the ERK1/2

signal pathway in the regulation of p70S6K-S6/eIF4B

in developing rat brains is affected by MK-801 treat-

ment.

The effects of perinatal treatment with MK-801 and

PCP on ERK1/2 and Akt pathways of developing

rodent brains have been reported. A single injection of

PCP inhibits PI3K-Akt signal pathway and activates

GSK-3b in the brain of PND7 rats and in cortical neu-

ronal cells, which are related to neuronal apoptosis

(Lei et al. 2008). Treatment with 0.5 mg/kg MK-801 at

PND7 was found to reduce ERK1/2 kinase activity in

rat cingulate and retrosplenial cortices at around 4 and

8 h after one, 4 h after two, and 12 h after three con-

secutive injections (8 h apart) of MK-801 (Hansen et al.

2004). In addition, a single injection of 0.5 mg/kg MK-

801 decreased phosphorylation of ERK1/2 and Akt in

cingulate and retrosplenial cortices at 30 and 60 min
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Fig. 7. Decreased protein synthesis rate after two MK-801

injections (1.0 mg/kg). An in-vitro translation assay was used

to measure the incorporation of [3H]leucine in precipitated

proteins, using post-mitochondrial supernatant of frontal

cortical tissue. The protein translation rate of the frontal

cortex of PND7 rats was significantly higher than that of

PND45 rats, and the protein synthesis rate was significantly

reduced in the frontal cortex at 8 and 24 h after two injections

of 1.0 mg/kg MK-801 (n=4 for each treatment group).

V and MK indicate vehicle-treated control and MK-801,

respectively. The asterisks (*) indicate statistically significant

differences (p<0.05).

1242 S. H. Kim et al.



after MK-801 treatment (Dzietko et al. 2004). These

findings are in accord with our findings despite sev-

eral differences, which may result from different ex-

perimental conditions, such as the brain regions

examined, time-points, doses of NMDAR antagonists,

and possible differences between MK-801 and PCP.

The findings of Dzietko et al. (2004) focus on the

changes in ERK1/2 and Akt signal pathways related

to apoptotic neurodegeneration, whereas our findings

highlight the role of the ERK1/2 and Akt signal path-

ways in the translational control machinery involved

in the dysregulation of protein synthesis induced by

MK-801 treatment.

In-vivo systemic treatment of NMDAR antagonists

can induce complex changes in neurotransmission

and intracellular signal pathways in the brain. For

example, systemic treatment of MK-801 was

suggested to induce excitotoxicity of cortical regions

in the brain as a result of disinhibition of GABA

neurotransmission, and dysregulations of various

neurotransmissions including glutamatergic system

have been reported (Greene, 2001 ; Lorrain et al. 2003 ;

Moghaddam et al. 1997; Olney & Farber, 1995). PCP

treatment of PND7 rats was reported to increase

membrane levels of NR1 and NR2B, NMDAR sub-

units, in the rat frontal cortex (Anastasio & Johnson,

2008). The response to NMDAR antagonists varies

depending on the developmental stage of the rats

(Ikonomidou et al. 1999). Moreover, alterations in sig-

nal pathways in the brain can vary depending on the

treatment duration and dose of NMDAR antagonists.

Therefore, the initial reductions followed by recovery

or increase in phosphorylation of p70S6K-S6/eIF4B

after MK-801 treatment in the brain of PND7 rats may

result from these complicated effects of systemic

treatment of NMDAR antagonists. These effects re-

quire further clarification.

In conclusion, we found that early postnatal treat-

ment with MK-801, a selective NMDAR antagonist,

induced a reduction in the protein synthesis rate,

along with dysregulations in the p70S6K-S6/eIF4B

signal pathways in the frontal cortex of the developing

rat brain. Dysregulations in protein translation and

related signal pathways during this critical period of

brain growth, induced by perinatal treatment of

NMDAR antagonists, disrupt the proper construction

of neural circuits and cause long-term behavioural

modifications, which may relate to neurochemical and

behavioural changes resembling schizophrenia. These

findings could contribute to an understanding of the

developmental underpinnings of protein translation

regulation in the MK-801 neurodevelopmental rat

model of schizophrenia.
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