2008 Annual Fall Meeting Saint Louis 2008 "Gateway to Innovation" Biomedical Engineering Society October 1 – 4, 2008 Renaissance Grand Hotel St Louis, Mo Hosted by Washington University Saint Louis University Meeting Chair Frank C-P Yin Program Co-Chairs Jin-Yu Shao Rebecca Kuntz Willits CROCK! P4.85. Polymer Micro-Nano Devices for Applications in Guided Cell Assembly D. GALLEGO¹, N. HIGUITA¹, S. SHARMA¹, J. LEE¹, J. LANNUTTI¹ AND D. HANSFORD¹ ¹The Ohio State University, Columbus, OH P4.86. Microfluidic Formation of Lipid Vesicles for Artificial Cell **Applications** S. Teh¹ AND A. LEE¹ ¹University of California-Irvine, Irvine, CA P4.87. Examining the Role of Neureglin-1 in Synaptogenesis Using Microfluidics A. Wu¹, S. Koirala² G. Corfas² and A. Folch¹, ¹University of Washington, Seattle, WA; ²Harvard Medical School, Children's Hospital, MA P4.88. Long-Term Maintenance of Immortal Cell-Lines in a Microfluidic Platform A. VISHWANATHAN¹ AND H. ZERINGUE¹ ¹University of Pittsburgh, Pittsburgh, PA P4.89. Tunable Microfluidic Devices for Dynamically Controlling Sub-Cellular Environments N. BHATTACHARJEE¹ AND A. FOLCH¹ ¹University of Washington, Seattle, WA P4.90. Optimization of a Liquid Crystal-Based Biosensor for the Optical **Detection of Sepsis Markers** M. MCCAMLEY¹, M. RAVNIK², A. ARTENSTEIN¹, S. OPAL¹, S. ZUMER² AND G. CRAWFORD¹ ¹Brown University, Providence, RI; ²University of Ljubljana, Ljubljana, Slovenia P4.91. Data Reading Ranges of an Implantable Batteryless Wireless Impedance Sensor for GERD Diagnosis L. HSU¹, W. HUANG¹, T. ATIVANICHAYAPHONG¹, S. TANG², H. TIBBALS² S. Spechler² AND J. CHIAO¹, ¹The University of Texas at Arlington, Arlington, TX; ²University of Texas Southwestern Medical Center at Dallas, Dallas, TX P4.92. Engineering Stationary Gradients Within Microfluidic Stagnant Zones M. QASAIMEH¹, R. SAFAVIEH¹, C. PERRAULT¹ AND D. JUNCKER¹ McGill University, McGill University, Montreal, Canada P4.93. Continuous High Gradient Magnetic Separation of E. Coli O157:H7 Cells Using Magnetic Nanoparticles H. HUANG¹, Y. XIONG¹, C. RUAN¹, M. LI¹, L. COONEY¹AND Y. LI¹ ¹University of Arkansas, Fayetteville, AR P4.94. Recirculating Device for QCM Biosensor to Improve the Sensitivity in Detection of E.coli O157:H7 S. LIU¹, J. LIN¹, L. COONEY¹ AND Y. LI¹ ¹University of Arkansas, Fayetteville, AR Neural Engineering - Poster Session 4 Friday, October 3 1:30PM - 5:00PM Majestic D P4.106. N D. LECKB Georgia I P4.107. R J. KIMMEL ¹University P4.95 Stepwise Patterning of Hippocampal Neurons by Electrochemically Switchable Surface J. Kim¹, S. Jeong¹, Y. Nam² and S. Kim¹ ¹Seoul National Univ., Seoul, Korea, Republic of; ²Korea Advanced Institute of Science and Technology, Daejeon, Korea, Republic of P4.96. Properties of Extracellular Action Potential Waveforms Recorded V. Suni, Z. **Auditory Cortex** D. BYREN¹, P. KELLY¹AND D. BARBOUR¹ Washington University, St. Louis, MO P4.97. Progress Report on the Integrative Sensor and Stimulator System J. HE¹, L. HSU¹, T. ATIVANICHAYAPHONG¹, F. AYDIN¹, Y. PENG¹ AND J. CHIAO ¹The University of Texas at Arlington, Arlington, TX P4.98. Closed-Loop Platform to Generate Multi-Electrode Stimulation **Protocols for Neural Interface Devices** A. WILDER¹, B. DOWDEN¹, S. HIATT¹, G. CLARK¹AND R. NORMANN¹ ¹University of Utah, Salt Lake City, UT P4.99. Chronic Multi-Contact Surface Recordings from the Cerebellar Contact Recording Recordi in Behaving Rats N. SACHS¹, J. GROTH¹ AND M. SAHIN¹ ¹New Jersey Institute of Technology, Newark, NJ P4.100. A 3-D fMRI Modeling Through Computer Interfaced Programs Y. GNATYUK¹, H. ESMAILBEIGI¹, K. THULBORN^f AND P. ROUSCHE¹ ¹University of Illinois at Chicago, Chicago, IL P4.101. Biomimetic Tactile Feedback for Advanced Prosthetic Limbs J. FISHEL AND ¹G. LOEB¹ ¹University of Southern California, Los Angeles, CA P4.102. Self-Stimulation in Rats Using a Wireless Device C. HAGAINS¹, T. ATIVANICHAYAPHONG^T, J. HE¹, L. HSU¹, Y. PENG¹ AND J. @P4.113. Analys ¹The University of Texas at Arlington, Arlington, TX P4.103. Analyzing the Effect of Stimulus on Rhythmic Pattern Generation E. BASHAM¹, W. LIU¹, C. BAKER², Z. YANG¹ AND D. PARENT² ¹Univ. of CA - Santa Cruz, Santa Cruz, CA; ²San Jose State University, CA P4.114. Influen P4.104. Circuit for Generating Asymmetric Current Pulses for in Vitro **Magnetic Stimulation** 1:30PM - 5:00PM E. BASHAM¹, W. LIU¹ AND Z. YANG¹ ¹Univ. of CA - Santa Cruz, Santa Cruz, CA Friday, October 3 New Frontiers - Poster Session 4 P4.105. Single Nanoparticle Detection by DNA Barcoding T. EUSTAQUIO¹, C. COOPER¹, L. REECE¹ AND J. LEARY¹ ¹Purdue University, West Lafayette, IN P4.108. In Delivery V UCLA, Los P4.109. Me Signaling H. LU1 ¹University P4.110. Mag SPIO D. THOREK¹, ¹University o Orthoped Friday, Octob P4.111. Strer Explantation J. CARTNER¹ Smith & Nep. P4.112. Effect Tracing Elem Y. DWIVEDI¹, Rush Universi Harburg, Ham Parameters an J. HONG¹, S. MI ¹Korea Univers E. OSWALD¹, J. 1 Columbia Univ P4.115. Strategy Dyskinetic Cere W. CHU1, D. STE Stanford Univer Majesti P4.116. Compar **Protection Mate** M. MCELLIGOTT University of Lin Stepwise Patterning of Hippocampal Neurons by electrochemically switchable surface. Jin Won Kim^{1,3}, Se Hoon Jeong^{2,3}, Yoonkey Nam^{3,4}, Sung June Kim^{1,2,3} ¹School of Electrical Engineering, Seoul National University, Seoul, Republic of Korea ²Interdisciplinary Program in Brain Science, Seoul National University, Seoul, Republic of Korea ³Nano-Bioelectronics & Systems Research Center, Seoul, Republic of Korea ⁴Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea The formation of controlled neural network is essential to study neural signal processing by cultured neural network. To design patterns of neural network, various surface micro-patterning techniques including micro-contact printing and photoresist-based patterning have been used. As an effort to control the network formation in situ, we reported the application of electrochemically switchable surfaces for patterning hippocampal neurons in vitro last year [1]. This year, we will report on the first demonstration of the stepwise patterning of hippocampal neurons for in situ control using the reported approach. The neurites of hippocampal neurons were guided in situ by sequential removal of PLL-g-PEG by electrical pulsing onto the defined electrodes. The characteristics of the patterned networks of neurons will be reported. [1] J. KIM, S. JEONG, Y. NAM AND S. KIM,"Electrochemical Patterning Of Cell Repulsive And Adhesive Proteins For Patterned Neural Cultures", submitted to 2007 BMES Annual Fall Meeting