
522 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Memory Efficient Software Synthesis with Mixed Coding
Style from Dataflow Graphs

Wonyong Sung and Soonhoi Ha

Abstract—This paper presents a set of techniques to reduce the code and
data sizes for software synthesis from graphical digital signal-processing
programs based on the synchronous dataflow model. By sharing the
kernel code among multiple instances of a block with a shared function,
we can further reduce the code size below the previous results based on
inline coding style. A systematic approach also is devised to give up the
single appearance schedule for reducing the data buffer requirement. The
proposed techniques have been evaluated with two real-life examples to
prove their significance.

Index Terms—Code sharing, memory requirement, schedule adjustment,
software synthesis.

I. INTRODUCTION

Minimizing the memory requirement is very important to synthesize
code for embedded systems, specially for an on-chip design. Critical
constraints on the memory size have made assembly programming by
hand still a popular way of software development for embedded sys-
tems in spite of low productivity. Growing complexity of embedded
systems, fast design turnaround time, limited development budget, and
short lifecycle of products, however, will make the use of high-level
software design methodology mandatory: high-level language com-
piler or automatic code generation from block diagram specification.
In this paper, we aim to reduce the code and data sizes for software syn-
thesis from graphical digital signal-processing (DSP) programs based
on the synchronous dataflow (SDF) [1] model, which can be used as a
block diagram specification model. In an SDF graph, each node con-
tains a kernel (code fragment) of a host language tailored to an im-
plementation engine while the dataflow graph itself is a coordination
language among function modules.

Fig. 1(a) is an example SDF graph, and each arc is annotated with the
number of tokens produced or consumed by an activation of its source
or destination node. Each arc is assigned to a data buffer whose size can
be constrained to the maximum number of tokens accumulated during
a chosen execution of the graph. These data buffers compose the state
of the SDF graph. Numerous DSP design environments, including a
number of commercial tools, support SDF or closely related models
([2]–[4]) for both simulation and code generation.

A key property of the SDF model is that static schedules can be con-
structed at compile time, thus removing the run-time overhead of dy-
namic scheduling. Fig. 1(b) shows three valid schedules. Among valid
schedules for an SDF graph, if every block appears exactly once in the
schedule such as�1 and�2 in Fig. 1, the schedule is called a single
appearance(SA) schedule. An SA-schedule that has no nested loop is
called a flat SA-schedule.�1 of Fig. 1 is a flat SA-schedule, while�2
is not.

Software synthesis from an SDF graph includes determining a
feasible schedule and a coding style for each dataflow node, both of

Manuscript received August 31, 1999. This work was supported by the aca-
demic fund of Ministry of Education, Republic of Korea, through the Inter-
University Semiconductor Research Center, Seoul National University, under
ISRC-98-E-2103.

W. Sung is with the CAP Laboratory in Seoul National University, Korea
(e-mail: yong@iris.snu.ac.kr).

S. Ha is with the Department of Computer Engineering, Seoul National Uni-
versity, Korea (e-mail: sha@iris.snu.ac.kr).

Publisher Item Identifier S 1063-8210(00)09510-X.

Fig. 1. (a) A sample SDF graph, (b) three possible schedules, and (c) three
coding styles

which affect the memory requirements of the generated software for
code and data. One of the main scheduling objectives for software
synthesis is to minimize the total (sum of code and data) memory
requirements. Once the schedule is determined, codes are generated
according to the scheduled sequence. Since nodes are prepared in
libraries, the kernel inside a node is assumed already optimized and
treated as a unit. Two popular coding styles are inlining and function.
The former generates an inline code for each node at the scheduled
position, while the latter calls a function that contains the kernel.
After a schedule is performed, the code for each dataflow node is
generated depending on the coding style of the node. Fig. 1(c) shows
three programs based on the same schedule�1 with various coding
styles: inline, switch, and function. Among multiple valid schedules
for an SDF graph, there exist tradeoffs between code memory size
and data buffer memory requirement, depending on the coding style.
Since a single appearance schedule guarantees the minimum code size
for inline code generation, a group of researchers focused on finding
a single appearance schedule that minimizes the buffer memory
requirement [5]. Bhattacharyyaet al.developed an algorithm to find
out a looped SA-schedule with minimum buffer requirement among
multiple looped SA-schedules, ignoring buffer sharing possibilities.
Ritz et al.used an integer linear programming formulation to minimize
the data memory [4]. Both works ([5], [4]) stick to single appearance
schedules and do not exploit code-sharing optimization, in which
multiple nodes share the same kernel in the generated code. There
is a recent work on mixing coding styles for memory-efficient code
synthesis [6]. However, they also did not consider the possibility of
code sharing.

Most previous approaches first assume a coding style for all dataflow
nodes and search for an optimal schedule afterwards. Also, they try
to minimize the code size first and the data size later. Even though
they produce good results for a set of applications, they could not pro-
duce good codes for some applications that we will demonstrate. In
this paper, we propose a pair of optimization techniques to overcome
their limitations by mixing the coding style of different dataflow nodes.
The first technique is to reduce the code size by sharing the kernel
among multiple instances of the same block; which requires function
style code generation instead of inlining. The second technique is to
give up single appearance schedule, an important schedule class for
the minimum code size, for data memory minimization. By applying

1063–8210/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 523

Fig. 2. Optimization steps in software synthesis.

these two techniques, we could reduce the memory requirements of
two important examples by 13.6% and 8.1% over the best results from
SA-schedule [5] at little expense of increased run-time overhead.

II. PROPOSEDSTRATEGY

Our strategy starts with a single appearance schedule obtained by the
method described in [5]. Then, we apply our optimization techniques,
code-sharing optimization and schedule adjustment, in sequence, as il-
lustrated with an example in Fig. 2. In code-sharing optimization, we
examine the graph to find multiple instances of a same block. Suppose
that B1 and B2 represent the same block. Multiple instances are treated
as different nodes in a single appearance schedule and appeared sep-
arately in the generated inlined code. The code-sharing technique de-
scribed in the next section marks the two nodes B1 and B2 as shared. In
the next phase, we give up SA-schedule to further reduce the buffer size
if the gain is greater than the overhead. To manipulate the SA-schedule
more efficiently, we express the schedule with a schedule tree, shortly,
s-tree, which will be explained in Section III. From the s-tree, we can
identify the possible locations of schedule adjustment and obtain the
adjusted schedule. The resulting schedule is (2(AB1B22C))C and
nodeC is implemented as a function to avoid code duplication.

III. CODE-SHARING OPTIMIZATION

Fig. 3(a) shows the structure of the CD2DAT example, which is a
sample rate converter from compact disc to digital audio tape. Since
there are four instances of a finite impulse response (FIR) filter, it be-
comes a candidate of code sharing. Each FIR filter has its own state
values such as tap values. Also, each input or output port of an instance
is bound to its own buffer. In case the kernel code is shared among mul-
tiple instances, we should maintain, for each instance, separate state
variables and buffers, which define the “context” of each instance. An
example of the context of a FIR filter is depicted in Fig. 3(b). To decide
whether a code block had better be shared or not, we compute the over-
head and the gain of sharing. When�(�) is an overhead,
 is a code
block size, and� is the number of instances of a block, code sharing is
accepted if the inequality 1> (�(�)=(�� 1)
) is satisfied.

The overhead incurred by code sharing comes from additional “con-
text” data structure. We compute the sharing overhead�(�) by di-
viding it into three parts: a context size overhead in the data block, the
reference overhead, and the function call overhead in the code memory
(�(�) = �(�context +�call) + �reference).

In an implementation point of view, a context includes state vari-
ables as well as pointers to input and output token buffers. Since the
state variables are also needed for each instance in the inlined code, the
context size overhead comes from only pointer variables for input and
output ports, which we call per-port overhead. For multirate compu-

tation, a port is usually implemented with a buffer array or a circular
queue. Thus, at most three integer variables and a pointer variable are
needed per port. To point the next read or write location in the array,
an offset is needed. Since the offset is required also in the inline style,
the offset is not counted as overhead. Two more integers are needed to
delimit the end of the array and to describe the offset increment after
each activation of the node, which are compiled as constants in an inline
code. Therefore, the per-port overhead� and the total context size over-
head of a block are computed using�context = ���� (# of ports),
where� = 2� sizeof(int) + sizeof(pointer).

A reference overhead is an overhead resulting from accessing a port
or a state through the context structure. When we access a variable
through the context structure, we usually need additional codes. Al-
though the overhead may be reduced after compiler optimization, we
use the worst value to be conservative. The reference overhead is depen-
dent on the variable type as well as on whether it is a port or a state. We
consider three variable types: scalar type (such as integer or double),
array, and constant. We define the overhead cost� as a function of the
reference type. In a SPARC/Solaris environment, the values of� are
36, 32, 60, and 128, respectively, for scalar variable, constant, array of
state, and array of port. By counting the references in a code block, we
compute the reference overhead�reference , where"(t) is the reference
count of typet in the kernel (�reference = �t2S;C;AS;AP "(t)��(t)).

The constants we use in equations are highly machine dependent.
The sizes of types and the addressing modes of a processor are two de-
terminants. Since we can obtain the constant values easily from man-
uals or simple test programs, our technique is applicable to other than
the SPARC/Solaris environment. For ARM7 processor,�(t) is 16, 16,
24, and 40. The function call overhead is constant for a given processor:
e.g., 12 for SPARC and 8 for ARM7. In summary, we compute the
code-sharing overhead of a block using the port count and the refer-
ence counts, which can be obtained from the kernel of the block.

IV. A DJUSTINGSINGLE APPEARANCESCHEDULE

Consider an example of Fig. 4.�1 is the optimal SA-schedule in
terms of buffer memory requirement. However, we can further reduce
the buffer memory requirement by altering the schedule to�2. �2
is not an SA-schedule any more, for nodeC appears twice. Though
the data buffer memory requirement is decreased, the code size is in-
creased due to the duplication of nodeC. The major concern of this
section is how to measure the gain and the cost of such schedule adjust-
ment quantitatively. This section formalizes the schedule adjustment
by introducing a binary tree representation of an SDF schedule (called
schedule tree or s-tree).

Definition IV.1: An s-tree representationis recursively defined as a
looped schedule
(Sl; Sr), whereSl andSr are s-tree representations.
A single dataflow node firingN is considered as the basic s-tree repre-
sentation, 1(N, NULL), where NULL is an empty s-tree representation.

Any SDF schedule can be translated into an s-tree representation
by inserting parenthesis at the proper places. For example, an s-tree
representation of A(2B)C is ((A(2B))C) or (A((2B)C)). Scanning the
list from left to right, we create a node when we meet a loop count
or a node and create child nodes when we meet a left parenthesis. We
move up to the parent node when we meet a right parenthesis. In the
constructed binary tree, each leaf node corresponds to an SDF block,
and an intermediate node represents a cluster of node invocations that
are included in the s-tree subschedule with loop count
. Since we start
with an SA-schedule, there is only one invocation of any SDF block in
the tree. We assign the buffer requirement information to each s-tree
node as a tuple[I;W; O]. It indicates the set of input buffers, the
buffers between two child clusters, and the set of output buffers for
the corresponding cluster to be scheduled. TheI andO of a leaf node

524 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 3. CD2DAT example: from inline single appearance schedule to code-shared function code.

Fig. 4. (a) An example SDF graph, (b) schedule tree (s-tree) data structure for the graph, and (c) s-tree after schedule adjustment.

become the set of input and output buffers of the corresponding SDF
block, and theW becomes null since there is no child node. In Fig. 4,
we specify the maximum number of tokens in each set of tuple notation
for brevity.

Suppose the clusters associated with an intermediate node and its
two child nodes areX, L, andR, as shown in Fig. 5. Some output
ports of the left clusterL are connected to some inputs of the right
clusterR inside the parent clusterX. Those connections between two
child clusters define theW set of the intermediate node;WWWXXX = OOOLLL\
IIIRRR. As obviously shown in Fig. 5, each invocation of the clusterXXX

requiresIIILLL [IIIRRR �WWWXXX input buffers andOOOLLL [OOORRR �WWWXXX output
buffers. In addition, the sizes of input buffers and output buffers should
be multiplied by the loop count
 for the intermediate node.

We can compute the tuple information of all nodes in a bottom-up
fashion starting from the leaf nodes.

Theorem IV.1: Summing up the size of theW set of all nodes pro-
duces the total buffer requirement needed by the schedule that the s-tree
represents.

Proof: 1) An intermediate node of s-tree represents a cluster of
SDF graph as shown in Fig. 5(a) and (b). In addition, the size of theW

set of an intermediate node represents the buffer size for intercluster
arcs between two child clusters. 2) Since all the arcs inside the cluster
are encapsulated and invisible from outside, an arc belongs to only one
cluster. 3) If an arc does not belong to any cluster, it lies between two
separate clusters. Since the root represents the single top-level cluster,

Fig. 5. (a) Clusters in an SDF graph, (b) s-tree representation, and (c) port and
buffer information of three clusters.

no arc is omitted for buffer computation. From 1), 2), and 3), the proof
completes.

For example, when we make an s-tree from the schedule
((2(7A3B))(5C)), the size of theW set of the root node is the total
buffer size of arcs between two clusters (2(7A3B)) and (5C). For an
intermediate nodeG, we definejGj as the sum of the sizes of theW
set ofG and all nodes belowG, which is equal to the total buffer size
of all arcs inside the cluster. IfG is the root node,jGj is also called
js � treej.

Fig. 4(b) shows the s-tree and its schedule for the SDF graph in
Fig. 4(a), and itsjs-treej is 51. At the first step of schedule adjustment,
an intermediate node is selected as an adjustment point by comparing
the gain and the cost. Then, the schedule is adjusted by manipulating

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 525

Fig. 6. The cluster structure after schedule adjustment: (a) part of new s-tree
and (b) definition of new [I, W, O] tuples for clusters.

the s-tree. These steps are repeated until there is no intermediate node
where the gain is larger than the cost. In the s-tree of Fig. 4(b), the buffer
requirement between node B and C is 30. If we give up SA-schedule
and construct a new schedule as (2(7A3B2C))(C), the buffer require-
ment between B and C is reduced to 18. Only when the buffer reduc-
tion is larger than the code size increment is the schedule adjustment
regarded as worthwhile.

Fact IV.1: When a schedule� has two clustersL andR, that is,
� = �(L)�(R), where� and� are loop counts of clustersL andR,
the schedule can be adjusted as follows:

�new = �(L(� � �)R)(�%�)R; if � < �

�new = (�%�)L�((�� �)LR); otherwise. (1)

If we select an adjustment point, there are two subclustersL andR.
Assume that the root node is chosen as an adjustment point in Fig. 4(b).
The left loop cluster(L) is {2, 7, 3, A, B} with loop count 2 (
 = 2),
and the right one(R) is {5, C} with loop count 5 (
 = 5). To reduce
the buffer requirement betweenL andR, we mergeR into L. The
merged portion ofR has a new loop count (� � �). The remainder
of R is located outside the mergedL with a loop count (�%�). For a
cluster structure of Fig. 5(c) before schedule adjustment, Fig. 6 shows
the cluster structure after schedule adjustment (cloning and merging).
We can perform the schedule adjustment procedure with the s-tree data
structure by showing that all the tuples of nodes after adjustment can
be derived from those before adjustment. [7]

To compute the gain of schedule adjustment, we compute the change
of buffer requirement. We denoteW (X) as the size ofW set for node
X. The buffer requirement within clusterX before the schedule adjust-
ment is(W (X)+ jLj+ jRj). After the schedule adjustment, the buffer
requirement withinX becomes(W (N)+W (X0)+ jL0j+ jRj). Since
R1 andR2 are actually the same cluster, we should count the buffer
size inside the cluster only once. Thus,jRj is used instead ofjR1j +
jR2j. For jL0j equal tojLj, we obtain the buffer size reduction, which
is the gain of schedule adjustment, byW (X)� (W (N) +W (X 0)).
The gain becomesW (X)(1� (((� � �) + (�%�))� �)), which is
summarized as the following theorem.

Theorem IV.2: The gain of schedule adjustment is defined as the
difference between the old and newjs � treej. For each intermediate
node(X), the gain of schedule adjustment at the node is computed as
follows, assuming thatR is cloned and merged intoL:

Gain = js� treejold � js� treejnew

= jW (X)j(1� (((� � �) + (�%�))=�)): (2)

Since we generate the code in a hybrid style, which is a mixture
of inlines, functions, and shared functions, we define three sets of

TABLE I
MEMORY REQUIREMENTS FOR CD2DAT

EXAMPLE. (UNIT : BYTE)

TABLE II
MEMORY REQUIREMENTS FORFILTER BANK EXAMPLE. (UNIT : BYTE)

blocks during optimization procedure: IN (inline), FN (function), and
FS (function shared). The key difference between a function and a
shared function is the way of accessing variables (port or state). A
shared function accesses them only through the context described in
Section III, while a function accesses them directly. The FS set is
defined during the code-sharing optimization phase and not changed
during the schedule adjustment phase. During the schedule adjustment
phase, nodes in IN can be moved into FN. The following algorithm
shows the detailed procedure:

for (each node ClonedCluster) {
if (is an intermediate node &
loop_count)

Cost LoopOverhead;
else if(IN {

if (Cost2FN instanceCount
BlockSize) {

Cost Cost2FN ;
Move2FN ;

} else Cost BlockSize ;
} else Cost Cost4Call ; FN,
FS

}

When a cluster N is cloned, we investigate all nodes inside. If a leaf
node in N is a member of IN and the moving cost of the node from
IN to FN, “Cost2FN(N),” is smaller than its kernel code size “Block-
Size(N),” multiplied by the number of instances “instanceCount,” the
node will be moved into FN. The moving cost from IN to FN includes
function body overhead, function call overhead, and variable migra-
tion overhead from local variables to global variables. If a node is al-
ready in FN or FS, the additional cost is only one more function call
“Cost4Call(N).” Since the loop structure of a cluster is also cloned re-
gardless of the coding style, “LoopOverhead” should be added to each
cloned intermediate node.

When the number of leaf nodes isNL, the complexity to
compute the “Cost” is O(NL), and finding an adjustment point
requires O(N2

L) time complexity. The final schedule
obtained by the proposed optimization procedure becomes
7(7(3(R; S; R0; S0; M; X 0; F1)2F2); 8F3; 5(F4; X1))5(F4; X1).

V. EXPERIMENTAL RESULTS

Two real-life examples are chosen to show effectiveness of our ap-
proach: they are eight-channel filter bank and compact disc to digital
audio tape converter, shown in Fig. 3, both of which are borrowed from

526 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VSLI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

the Ptolemy distribution [2]. Full-fledged discussion of experimental
results can be found in [7]. We summarize the final memory require-
ments at each optimization step.

Tables I and II show stepwise optimization of the memory require-
ment when it is executed on ARM7 processor. In both tables, SAS does
not require any uninitialized (0-init) data. However, since variables are
managed as automatic varaibles in stack segment in SAS method, the
same amount of buffer is required in run-time memory. The CD2DAT
example shows significant code-size reduction from code-sharing op-
timization and data-size reduction from schedule adjustment. The filter
bank example containing 28 FIR filters is an ideal example for code-
sharing optimization. Compared with full inline implementation, the
run-time overhead of the generated software is below 3%.

VI. CONCLUSION

In this paper, we have presented a pair of optimization techniques
to jointly minimize the code and data memory requirement. Before ap-
plying the proposed optimization techniques, we carefully analyze the
gains and overheads. Selective application of the optimization tech-
niques shows significant improvements in memory requirement for
both code and data in an important class of applications.

Beyond what we achieved in this paper, there are more works to be
studied in the future. At first our techniques should be extended to deal
with the case where no SA-schedule exists. Considering the possibility
of buffer sharing is another topic. Moreover, it may be better to devise
a new scheduling policy to minimize the code and data memory con-
sidering the proposed optimization possiblities.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”Proce.
IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”Int.
J. Comput. Sim., vol. 4, pp. 155–182, 1994.

[3] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van
Ginderdeuren, “Grape: A case tool for digital signal parallel processing,”
IEEE Acoust., Speech, Signal Processing Mag., vol. 7, no. 2, pp. 32–43,
1990.

[4] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum data
memory compaction in block diagram oriented software synthesis,” in
Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 1995, pp.
2651–2653.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Apgan and rpmc:
Complementary heuristics for translating dsp block diagrams into effi-
cient software implementations,”Design Automat. Embedded Syst., vol.
2, no. 1, pp. 33–60, Jan. 1990.

[6] J. Teich, E. Zitzler, and S. S. Bhattacharyya, “3d exploration of software
schedules for dsp algorithms,” inProc. CODES’99, 1999.

[7] W. Sung, “Hardware software cosimulation using backplane approach
from synchronous dataflowrepresentation,” Ph.D. dissertation, Dept. of
Computer Engineering, Seoul National Univ., Feb. 2000.

A Compositional Model for the Functional Verification of
High-Level Synthesis Results

Dominique Borrione, Julia Dushina, and Laurence Pierre

Abstract—High-level synthesis systems, such as Amical, translate a be-
havioral description to an abstract automaton in which the states are deci-
sion and synchronization points, and operations are executed on the state
transitions. After the scheduling and allocation of the functional units, the
system is modeled as the interconnection of an operative and a control part.
To formally verify this synthesis mechanism, we combine a detailed state
encoding of the control part with an abstract view of the data part. We
only compute the set of reachable states of the control part, and compose
functional expressions in the data part. We show that, for each two corre-
sponding state transitions in the abstract automaton and in the synthesized
control part, the expressions computed in the data registers and outputs
are equal.

Index Terms—Formal verification, specification, state transition graphs.

I. INTRODUCTION

In the context of the design of complex integrated circuits, the
current challenge is the design-error free generation of large systems
from behavioral specifications, allowing one to reuse previously
designed parts. High-level synthesis (HLS) tools are now available,
but their constant evolution and the concurrent change of the design
libraries are so rapid that neither the programs nor the libraries
can be considered provably correct. As a consequence, the results
of HLS must undergo extensive verification before being fed to the
logic design step [1]. Yet, due to the complexity of the circuits, and
to their abstract specification, their exhaustive simulation is out of
reach, and the current technology of automatic formal verification
tools is no longer applicable.

Let us briefly recall the principles of today’s verification tools. At
the bit and word level, circuits have a fixed word length, fixed-width
datapath, and a finite and known number of memory elements. Binary
decision diagrams [2] and their enhancements [3], [4] efficiently rep-
resent the set of states reachable from the initial state by repetitively
applying the “next state” transition relation. The functional correct-
ness of the circuit needs only be established on the reachable states.
“Model checkers” compute the truth of properties, expressed as tem-
poral logic formulas, on the reachable states of a design description.
These tools in reality perform either an explicit or a symbolic enumer-
ation of the reachable states. As a consequence, their applicability is
limited to circuits with fixed structure, and with a number of states that
in practice cannot exceed 2100 (i.e., 100 bits of memory). These tools
can no longer be appliedautomaticallyon designs with datapaths and
on abstract specifications: the designer must proceed to manual abstrac-
tions (such as datapath width reduction) [5] and verification decompo-
sition [6], the validity of which are not supported by automatic soft-
ware. Other approaches, also requiring expert manual guidance, gave
interesting results combining symbolic simulation and theorem proving
[7], [8], but their wide use is hindered by the lack of automatic transla-
tion from conventional design languages to the input format of theorem
provers.

Manuscript received August 4, 1999.
D. Borrione and J. Dushina are with TIMA/UJF, Grenoble Cedex 38031

France (e-mail: Dominique.Borrione@imag.fr).
L. Pierre is with LIM, Université de Provence, Marseille Cedex 13, 13453

France (e-mail: Laurence.Pierre@cmi.univ-mrs.fr).
Publisher Item Identifier S 1063-8210(00)09509-3.

1063–8210/00$10.00 © 2000 IEEE

