522 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

O

21 =(6A)4B)3C)(2D)
22 =(2(3A)(2B))(3C)(2D)
23 = AABCABACDABACBD

Memory Efficient Software Synthesis with Mixed Coding
Style from Dataflow Graphs

Wonyong Sung and Soonhoi Ha —)
b2 (b)
(a)
Abstract—This paper presents a set of techniques to reduce the code and .
data sizes for software synthesis from graphical digital signal-processing SAS(inline) Switch-Case FUI,ICUOH Call
programs based on the synchronous dataflow model. By sharing the main() { main(){ main{){

kernel code among multiple instances of a block with a shared function, for(){ for(){ for(){

we can further reduce the code size below the previous results based on . . :
inline coding style. A systematic approach also Fi)s devised to give up the for(6) A; switch(i){ tf‘gﬁ% 38’
single appearance schedule for reducing the data buffer requirement. The for(4) B; case 1-6: A; break; for(3) C ’
proposed techniques have been evaluated with two real-life examples to for(3) C; case 7-10: B; break; or(3) CO;
prove their significance. for(2) D; case 11-13: C; break; ~ 1or(2) DO
Index Terms—Code sharing, memory requirement, schedule adjustment, b case 14.15: D; break; } \}/(})id AQ (A:}
software synthesis. 4+ . ?
1 void B() {B;}

I. INTRODUCTION (©

Minimizing the memory requirement is very important to synthesizeld. 1. (a) A sample SDF graph, (b) three possible schedules, and (c) three
code for embedded systems, specially for an on-chip design. Criti€afing styles
constraints on the memory size have made assembly programming by
hand still a popular way of software development for embedded syghich affect the memory requirements of the generated software for
tems in spite of low productivity. Growing complexity of embeddedode and data. One of the main scheduling objectives for software
systems, fast design turnaround time, limited development budget, agéithesis is to minimize the total (sum of code and data) memory
short lifecycle of products, however, will make the use of high-levekquirements. Once the schedule is determined, codes are generated
software design methodology mandatory: high-level language cogecording to the scheduled sequence. Since nodes are prepared in
piler or automatic code generation from block diagram specificatiolbraries, the kernel inside a node is assumed already optimized and
Inthis paper, we aim to reduce the code and data sizes for software sygated as a unit. Two popular coding styles are inlining and function.
thesis from graphical digital signal-processing (DSP) programs basfe former generates an inline code for each node at the scheduled
on the synchronous dataflow (SDF) [1] model, which can be used ag@sition, while the latter calls a function that contains the kernel.
block diagram specification model. In an SDF graph, each node coXfter a schedule is performed, the code for each dataflow node is
tains a kernel (code fragment) of a host language tailored to an igenerated depending on the coding style of the node. Fig. 1(c) shows
plementation engine while the dataflow graph itself is a coordinatiahree programs based on the same scheBilsvith various coding
language among function modules. styles: inline, switch, and function. Among multiple valid schedules
Fig. 1(a) is an example SDF graph, and each arc is annotated withfthean SDF graph, there exist tradeoffs between code memory size
number of tokens produced or consumed by an activation of its soueged data buffer memory requirement, depending on the coding style.
or destination node. Each arc is assigned to a data buffer whose sizeSiaide a single appearance schedule guarantees the minimum code size
be constrained to the maximum number of tokens accumulated durfoginline code generation, a group of researchers focused on finding
a chosen execution of the graph. These data buffers compose the sfatingle appearance schedule that minimizes the buffer memory
of the SDF graph. Numerous DSP design environments, includingegjuirement [5]. Bhattacharyyet aldeveloped an algorithm to find
number of commercial tools, support SDF or closely related modejat a looped SA-schedule with minimum buffer requirement among
([2]-[4]) for both simulation and code generation. multiple looped SA-schedules, ignoring buffer sharing possibilities.
A key property of the SDF model is that static schedules can be c@itz et al.used an integer linear programming formulation to minimize
structed at compile time, thus removing the run-time overhead of dyte data memory [4]. Both works ([5], [4]) stick to single appearance
namic scheduling. Fig. 1(b) shows three valid schedules. Among va§ighedules and do not exploit code-sharing optimization, in which
schedules for an SDF graph, if every block appears exactly once in thealtiple nodes share the same kernel in the generated code. There
schedule such as1 andX2 in Fig. 1, the schedule is called a singleis a recent work on mixing coding styles for memory-efficient code
appearance(SA) schedule. An SA-schedule that has no nested loagyighesis [6]. However, they also did not consider the possibility of
called a flat SA-schedul&1 of Fig. 1 is a flat SA-schedule, whil2 code sharing.
is not. Most previous approaches first assume a coding style for all dataflow
Software synthesis from an SDF graph includes determiningna@des and search for an optimal schedule afterwards. Also, they try
feasible schedule and a coding style for each dataflow node, botht@fminimize the code size first and the data size later. Even though
they produce good results for a set of applications, they could not pro-
Manuscript received August 31, 1999. This work was supported by the a(?ﬁlice good codes for some .appllcatllor.ls that we W.'” demonstrate. In
demic fund of Ministry of Education, Republic of Korea, through the Intert IS Paper, we propose a pair of optimization techniques to overcome
University Semiconductor Research Center, Seoul National University, undBeir limitations by mixing the coding style of different dataflow nodes.
ISRC-98-E-2103. _ _ o The first technique is to reduce the code size by sharing the kernel
(e_\/\’m-aﬁ'_u;‘gngé"i'rtg ;?1?1 E?Er)Laboratory in Seoul National University, Koregymong multiple instances of the same block; which requires function
S. Hé is with the'Dep.art'rneﬁt of Computer Engineering, Seoul National Urﬁgyle COd? generation instead of inlining. _The second technique is to
give up single appearance schedule, an important schedule class for

versity, Korea (e-mail: sha@iris.snu.ac.kr).
Publisher Item Identifier S 1063-8210(00)09510-X. the minimum code size, for data memory minimization. By applying

1063-8210/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 523

SDF 1/,1@3\ tation, a port is usually implemented with a buffer array or a circular
@ /,@ l queue. Thus, at most three integer variables and a pointer variable are
I 1 5 s tree needed per port. To point the next read or write location in the array,
. n offset is needed. Since the offset is required also in the inline style,
an offset ded. S the offset quired al the inl tyl
SA-Schedule + construction X X
the offset is not counted as overhead. Two more integers are needed to

(2((AB;) (B2))(5C)) @ delimit the end of the array and to describe the offset increment after

Code Sharing * Context Size (2) @ each activation of the node, which are compiled as constants in an inline
Codeblock Size code. Therefore, the per-port overhéaahd the total context size over-
(2(AB,) (B))5C) (1) (B

head of a block are computed usiAg,next = a X A X (# of ports),
- wherel = 2 x sizeof(int) + sizeof(pointer).

Schedule Adj“Stment* e @ A reference overhead is an overhead resulting from accessing a port
(QAB)) (B2))2C)C) _>‘ Memory Optimized Software | or a state through the context structure. When we access a variable
through the context structure, we usually need additional codes. Al-
though the overhead may be reduced after compiler optimization, we
Fig. 2. Optimization steps in software synthesis. use the worst value to be conservative. The reference overhead is depen-
dent on the variable type as well as on whether it is a port or a state. We

these two techniques, we could reduce the memory requirement$@nsider three variable types: scalar type (such as integer or double),
two important examples by 13.6% and 8.1% over the best results fr@fiay, and constant. We define the overhead €@st a function of the

SA-schedule [5] at little expense of increased run-time overhead. reference type. In a SPARC/Solaris environment, the valugsaoe
36, 32, 60, and 128, respectively, for scalar variable, constant, array of

Il. PROPOSEDSTRATEGY state, and array of port. By counting the references_ in a code block, we
))) compute the reference overheld ic;ence , Wheres(t) is the reference

Our strategy starts with a single appearance schedule obtained bydhgnt of typet in the Kernel O seterence = Stes, ¢, a5, ap=(t) X 8()).
method described in [S]. Then, we apply our optimization techniques, The constants we use in equations are highly machine dependent.
code-sharing optimization and schedule adjustment, in sequence, agik sizes of types and the addressing modes of a processor are two de-
lustrated with an example in Fig. 2. In code-sharing optimization, Werminants. Since we can obtain the constant values easily from man-
examine the graph to find multiple instances of a same block. SUPPQ&gs or simple test programs, our technique is applicable to other than
that B1 and B2 represent the same block. Multiple instances are tregigsdl SpARC/Solaris environment. For ARM7 processon) is 16, 16,
as dlfferent nodes in a S|_ngle appearance schedule r_:md appeared@ggmd 40. The function call overhead is constant for a given processor:
arately in the generated inlined code. The code-sharing technique g_@_, 12 for SPARC and 8 for ARM7. In summary, we compute the
scribed in the next section marks the two nodes B1 and B2 as Shareq?dﬂe-sharing overhead of a block using the port count and the refer-

the next phase, we give up SA-schedule to further reduce the buffer sige counts, which can be obtained from the kernel of the block.
if the gain is greater than the overhead. To manipulate the SA-schedule

more efficiently, we express the schedule with a schedule tree, shortly,
s-tree, which will be explained in Section Ill. From the s-tree, we can IV. ADJUSTING SINGLE APPEARANCESCHEDULE
identify the possible locations of schedule adjustment and obtain the

adjusted schedule. The resulting schedule i@, B-2C))C' and ‘ Consllcdberﬁan example of F.'g' Eltlsljhe optimal SA-sfchtehduIe I(T
nodeC is implemented as a function to avoid code duplication. €rms ot butler memory requirement. However, we can Iurther reduce

the buffer memory requirement by altering the schedul&?o ¥2
is not an SA-schedule any more, for no@eappears twice. Though
the data buffer memory requirement is decreased, the code size is in-

Fig. 3(a) shows the structure of the CD2DAT example, which is @eased due to the duplication of no@e The major concern of this
sample rate converter from compact disc to digital audio tape. Singection is how to measure the gain and the cost of such schedule adjust-
there are four instances of a finite impulse response (FIR) filter, it beent quantitatively. This section formalizes the schedule adjustment
comes a candidate of code sharing. Each FIR filter has its own sthgeintroducing a binary tree representation of an SDF schedule (called
values such as tap values. Also, each input or output port of an instancbedule tree or s-tree).
is bound to its own buffer. In case the kernel code is shared among mulbefinition IV.1: An s-tree representatiois recursively defined as a
tiple instances, we should maintain, for each instance, separate siat@ed schedule(S:, S»), whereS; andS, are s-tree representations.
variables and buffers, which define the “context” of each instance. Ansingle dataflow node firingN is considered as the basic s-tree repre-
example of the context of a FIR filter is depicted in Fig. 3(b). To decidgentation, 1(N, NULL), where NULL is an empty s-tree representation.
whether a code block had better be shared or not, we compute the oveAny SDF schedule can be translated into an s-tree representation
head and the gain of sharing. Whari«) is an overhead is a code by inserting parenthesis at the proper places. For example, an s-tree
block size, and: is the number of instances of a block, code sharing iepresentation of A(2B)C is ((A(2B))C) or (A((2B)C)). Scanning the
accepted if the inequality + (A(«a)/(a — 1)Q2) is satisfied. list from left to right, we create a node when we meet a loop count

The overhead incurred by code sharing comes from additional “casr-a node and create child nodes when we meet a left parenthesis. We
text” data structure. We compute the sharing overhadd) by di- move up to the parent node when we meet a right parenthesis. In the
viding it into three parts: a context size overhead in the data block, tbenstructed binary tree, each leaf node corresponds to an SDF block,
reference overhead, and the function call overhead in the code memamg an intermediate node represents a cluster of node invocations that
(A(a) = a(Acontext + Acall) + Areference)- are included in the s-tree subschedule with loop couince we start

In an implementation point of view, a context includes state varwith an SA-schedule, there is only one invocation of any SDF block in
ables as well as pointers to input and output token buffers. Since the tree. We assign the buffer requirement information to each s-tree
state variables are also needed for each instance in the inlined codentiée as a tupl¢l, W, O]. It indicates the set of input buffers, the
context size overhead comes from only pointer variables for input ahdffers between two child clusters, and the set of output buffers for
output ports, which we call per-port overhead. For multirate compthe corresponding cluster to be scheduled. ThadO of a leaf node

I1l. CODE-SHARING OPTIMIZATION

524 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

47 57 41

@—'@%‘ firl)—' fir2]—'[fir3 [fird]—'[Xgraph]
sine 1 xgraph’

SAS = {7(7(3(R,S,R*,S" M, X", F1)2F2)8F3)40(F4,4X)

typedef struct{
for(int i=0; i < 2; i++) { for(int i=0; i < 2; i++) double *input;
fir(1); int output_ofs;
/* kernel of fir 2 * / int output_bs;

int output_nx;

""""" void fir(int context){

.......... this_ctx = context_FIR[context];

} ICIOd,e double decimation;

sharmg double tap;

o | this_ctx->output = b
: ISCX>Ou pu } context_FIR_type;
}
(a) (b)
Fig. 3. CD2DAT example: from inline single appearance schedule to code-shared function code.

{0,30,0] @ [0,6,01

[0,12,6]
[0,21,30] .~ - [30,0,0] @ [6,0,0]
[0,21,15

[0,0,21] [21,0,15& [12.0 O]“@ ((5 [6,00]

3 7 6 é) [6.0.0] [6,0,0]
@ [0,0,21] 21,0,15]
27A3B)5C [0,0,3] 17.0,5]
(a) 1= (2(TA)3B)(C)) 2= ((2((7TAX3B)(2C))1C))
buffer_memory = 51 @ buffer_memory = 39
(b) [0,0,31 [7,0.5] (c)

Fig. 4. (a) An example SDF graph, (b) schedule tree (s-tree) data structure for the graph, and (c) s-tree after schedule adjustment.

become the set of input and output buffers of the corresponding SI IX

block, and théW becomes null since there is no child node. In Fig. 4 IR'WX

we specify the maximum number of tokens in each set of tuple notati L

for brevity. L(O‘) R (B)
Suppose the clusters associated with an intermediate node anc R

ports of the left clustelL are connected to some inputs of the right

clusterR inside the parent clusté€. Those connections between two (a)

Ir. As obviously shown in Fig. 5, each invocation of the clus¥er Fig. 5. (a) Clusters in an SDF graph, (b) s-tree representation, and (c) port and

requiresI, U Ir — W x input buffers and)r, U Or — W x output buffer information of three clusters.

O-W.
two child nodes ar&, L, andR, as shown in Fig. 5. Some output %{_//i/
child clusters define th&V set of the intermediate nodB/ x = O, N
buffers. In addition, the sizes of input buffers and output buffers should

be multiplied by the loop count for the intermediate node. no arc is omitted for buffer computation. From 1), 2), and 3), the proof
We can compute the tuple information of all nodes in a bottom-ugpmpletes. []
fashion starting from the leaf nodes. For example, when we make an s-tree from the schedule

Theorem IV.1: Summing up the size of th& set of all nodes pro- ((2(7A3B))(5C)), the size of th&V set of the root node is the total
duces the total buffer requirement needed by the schedule that the sdreféer size of arcs between two clusters (2(7A3B)) and (5C). For an
represents. intermediate nodé&, we define|G| as the sum of the sizes of tW

Proof: 1) An intermediate node of s-tree represents a cluster eét ofG and all nodes belows, which is equal to the total buffer size
SDF graph as shown in Fig. 5(a) and (b). In addition, the size dWhe of all arcs inside the cluster. I& is the root node|G| is also called
set of an intermediate node represents the buffer size for interclugter tree|.
arcs between two child clusters. 2) Since all the arcs inside the clusteFig. 4(b) shows the s-tree and its schedule for the SDF graph in
are encapsulated and invisible from outside, an arc belongs to only ¢fig. 4(a), and itgs-tre¢ is 51. At the first step of schedule adjustment,
cluster. 3) If an arc does not belong to any cluster, it lies between twa intermediate node is selected as an adjustment point by comparing
separate clusters. Since the root represents the single top-level clusitergain and the cost. Then, the schedule is adjusted by manipulating

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 525

Xy Iy | | TABLE |
MEMORY REQUIREMENTS FOR CD2DAT
Ig,-W x EXAMPLE. (UNIT : BYTE)
: TS o Step Code | Data 0-Init | Total
Wy Rl R2
*>< /)> <(B%0ﬂ> SAS | 7560 | 1436 | 0(6904) | 15900
(Blot (prea Sharing | 6428 | 1532 | 6904 | 14364
Adjust 6488 | 1544 5704 | 13736
Wi
TABLE 1l
l L MEMORY REQUIREMENTS FORFILTER BANK EXAMPLE. (UNIT : BYTE)
Oy
(a) Step Code | Data 0-Init | Total
b SAS | 22204 | 1244 | 0(47008) | 70456

Fig. 6. The cluster structure after schedule adjustment: (a) part of new s-tree Sha.ring 16380 | 1560 47008 | 64948
and (b) definition of new [I, W, O] tuples for clusters. Adjust | 16440 | 1552 46768 | 64760

the s-tree. These steps are repeated until there is no intermediate . Lo) - .
where the gainis larger than the cost. In the s-tree of Fig. 4(b), the bu%iggks during optimization procedure: IN (inline), FN (function), and

. . . (function shared). The key difference between a function and a
requirement between node B and C is 30. If we give up SA-scheduIﬁ o . .
and construct a new schedule as (2(7A382C))(C), the buffer requirs 1ared function is the way of accessing variables (port or state). A
ment between B and C is reduced to 18. Only when the buffer red shared function accesses them only through the context described in

- o . . ection lll, while a function accesses them directly. The FS set is
tion is larger than the code size increment is the schedule adjustmggﬁned during the code-sharing optimization phase and not changed
regarded as worthwhile. ina th hedul - h During th hedul .

Fact IV.1: When a schedul& has two clusterd and R, that is, during the schedule adjustment phase. During the schedule adjustment

h des in IN b d into FN. The followi Igorith
¥ = o(L)3(R), wherea andj are loop counts of clusteds and R, phase, noges in can be moved Into € following aigorithm

the schedule can be adjusted as follows: shows the detailed procedure:

Shew = a(L(B+ a)R)(B%a)R, ifa<p for (each node n € ClonedCluster) {
Shew = (a%3)LA((a = H)LR), otherwise. 1) if (n is an intermediate node &
loop_count > 1)
If we select an adjustment point, there are two subcludteasd 2. Cost + = LoopOverhead;
Assume that the root node is chosen as an adjustment point in Fig. 4(b)else if(n € IN {
The left loop clustefL) is {2, 7, 3, A, B} with loop count 2 ¢ = 2), if (Cost2FN (n) < instanceCount *
and the right onéR) is {5, C} with loop count 5 ¢ = 5). Toreduce BlockSize (n)) {
the buffer requirement betweeih and R, we mergeR into L. The Cost + = Cost2FN (n);
merged portion ofR has a new loop counti(=). The remainder Move2FN(n);
of R is located outside the mergddwith a loop count §%a). For a } else Cost + = BlockSize (n);

cluster structure of Fig. 5(c) before schedule adjustment, Fig. 6 showg else Cost + = Cost4Call (n); /* n € FN,

the cluster structure after schedule adjustment (cloning and merging)FS */

We can perform the schedule adjustment procedure with the s-tree data

structure by showing that all the tuples of nodes after adjustment can

be derived from those before adjustment. [7] When a cluster N is cloned, we investigate all nodes inside. If a leaf
To compute the gain of schedule adjustment, we compute the cha@g@le in N is a member of IN and the moving cost of the node from

of buffer requirement. We denot (.X') as the size ofV’ set for node |N to FN, “Cost2FN(N),” is smaller than its kernel code size “Block-

X . The buffer requirement within clust&r before the schedule adjust- Size(N)"‘ mu|t|p||ed by the number of instances “instanceCount,” the

mentis(W (X) +|L|+|R|). After the schedule adjustment, the buffeiode will be moved into FN. The moving cost from IN to FN includes

requirement within\’ becomegW (V) + W (X')+|L'|+|R]). Since function body overhead, function call overhead, and variable migra-

R1 and R2 are actually the same cluster, we should count the buffgen overhead from local variables to global variables. If a node is al-

size inside the cluster only once. Thyig| is used instead df?1| + ready in FN or FS, the additional cost is only one more function call

|R2|. For|L'| equal to|L|, we obtain the buffer size reduction, which«Cost4Call(N).” Since the loop structure of a cluster is also cloned re-

is the gain of schedule adjustment, BY(X) — (W(N) + W(X")). gardless of the coding style, “LoopOverhead” should be added to each

The gain becomed/’ (X)(1 — (((8 + «) + (8%«)) + B)), whichis cloned intermediate node.

summarized as the following theorem. When the number of leaf nodes i3, the complexity to
Theorem IV.2: The gain of schedule adjustment is defined as th@&mpute the “Cost” is QY;), and finding an adjustment point

difference between the old and néw— tree|. For each intermediate requires O} time complexity. The final schedule

nOde()(), the gain of schedule adjustment at the node is Computedo’lﬁained by the proposed Optimization procedure becomes

follows, assuming thaR is cloned and merged intb: T(7(3(R, S, R', S', M, X', F1)2F2), 8F3, 5(F4, X1))5(F4, X1).

Gain = |s — treefold — |s — treelnew

=W (X)L = (((B+a)+ (8%a))/B)).)

V. EXPERIMENTAL RESULTS

Two real-life examples are chosen to show effectiveness of our ap-
Since we generate the code in a hybrid style, which is a mixtupeoach: they are eight-channel filter bank and compact disc to digital
of inlines, functions, and shared functions, we define three sets afdio tape converter, shown in Fig. 3, both of which are borrowed from

526 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VSLI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

the Ptolemy distribution [2]. Full-fledged discussion of experimentalA Compositional Model for the Functional Verification of

results can be found in [7]. We summarize the final memory require- High-Level Synthesis Results
ments at each optimization step.
Tables | and Il show stepwise optimization of the memory require- ~ Dominique Borrione, Julia Dushina, and Laurence Pierre

ment when it is executed on ARM7 processor. In both tables, SAS does

not require any uninitialized (0-init) data. However, since variables are Abstract—High-level synthesis systems, such as Amical, translate a be-

managed as automatlc.varalbl.es In stacklsegment in SAS method, {iGoral description to an abstract automaton in which the states are deci-
same amount of buffer is required in run-time memory. The CD2DAdion and synchronization points, and operations are executed on the state
example shows significant code-size reduction from code-sharing dfansitions. After the scheduling and allocation of the functional units, the

timization and data-size reduction from schedule adjustment. The filfé’lsftem iS”mOde'fsd r?s the ";]terconnecr?o” ofan operatiE)/e andg cor:tré)l part.
L . . - o formally verify this synthesis mechanism, we combine a detailed state
bank example containing 28 FIR filters is an ideal example for COdéncoding of the control part with an abstract view of the data part. We

sharing optimization. Compared with full inline implementation, th@niy compute the set of reachable states of the control part, and compose
run-time overhead of the generated software is below 3%. functional expressions in the data part. We show that, for each two corre-
sponding state transitions in the abstract automaton and in the synthesized
control part, the expressions computed in the data registers and outputs
are equal.

In this paper, we have presented a pair of optimization techniquesndex Terms—Formal verification, specification, state transition graphs.
to jointly minimize the code and data memory requirement. Before ap-
plying the proposed optimization techniques, we carefully analyze the
gains and overheads. Selective application of the optimization tech-
nigues shows significant improvements in memory requirement for |. INTRODUCTION
both code and data in an important class of applications.

Beyond what we achieved in this paper, there are more works to

VI. CONCLUSION

In the context of the design of complex integrated circuits, the

T i ; rent challenge is the design-error free generation of large systems
studied in the future. At first our techniques should be extended to deal | behavioral specifications, allowing one to reuse previously

with the Case_wh(_are no SA-sch_eduIe exists. C_Zonsidering the pOSSib,i té(signed parts. High-level synthesis (HLS) tools are now available,
of buffer ihzrlr;_g IS ar|1_other topl_c. Mort:]over,dlt ma)é Ze better to dev'ﬁ%t their constant evolution and the concurrent change of the design
a.gev.v Sche uling poollcy t(,) m|n|m|zet e.glc.).e and data memory Cqf;arjes are so rapid that neither the programs nor the libraries
sidering the proposed optimization possiblities. can be considered provably correct. As a consequence, the results
of HLS must undergo extensive verification before being fed to the

REFERENCES logic design step [1]. Yet, due to the complexity of the circuits, and
[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data fl&gce. to their abstract specification, their exhaustive simulation is out of
IEEE, vol. 75, no. 9, pp. 1235-1245, 1987. reach, and the current technology of automatic formal verification

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:

framework for simulating and prototyping heterogeneous systdmts,” QOOIS is no longer applicable.
J. Comput. Simvol. 4 p%. 155p_182y?9§4_ g y ' Let us briefly recall the principles of today’s verification tools. At

[3] R.Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. {2@ bit and word level, circuits have a fixed word length, fixed-width
Ginderdeuren, “Grape: A_case tool fordjgital signal parallel processingdatapath, and a finite and known number of memory elements. Binary
IEEE Acoust., Speech, Signal Processing Magl. 7, no. 2, pp. 32-43, decision diagrams [2] and their enhancements [3], [4] efficiently rep-

4] éggigiiz M. Willems, and H. Meyr, “Scheduling for optimum data"esent the set of states reachable from the initial state by repetitively

memory compaction in block diagram oriented software synthesis,” applying the “next state” transition relation. The functional correct-
Proc. Int. Conf. Acoustics, Speech, and Signal Processifg5, pp. ness of the circuit needs only be established on the reachable states.

2651-2653. “Model checkers” compute the truth of properties, expressed as tem-

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, *Apgan and romg, o) |ogic formulas, on the reachable states of a design description.
Complementary heuristics for translating dsp block diagrams into e

cient software implementationdYesign Automat. Embedded Syst. rhese tools in reality perform either an explicit or a symbolic enumer-

2, no. 1, pp. 33-60, Jan. 1990. ation of the reachable states. As a consequence, their applicability is
[6] J.Teich, E. Zitzler, and S. S. Bhattacharyya, “3d exploration of softwal@mited to circuits with fixed structure, and with a number of states that
- \7\(/:h§8rl:Ies“lf—?a:r?;\?a?égsog‘t:/vrgfe’;gg%ﬁgtli%ﬁslj Es)i?llgl?:(.:k e anoroa PrCtice cannot exceed?” (i.e., 100 bits of memory). These tools

frém sy%chronous dataflowrepresentation,” Ph.Dg disse?tation, FI)Dpept.% n no longer bef _apphamtomatlc‘?l“yon designs with datapaths and

Computer Engineering, Seoul National Univ., Feb. 2000. on abstract specifications: the designer must proceed to manual abstrac-
tions (such as datapath width reduction) [5] and verification decompo-
sition [6], the validity of which are not supported by automatic soft-
ware. Other approaches, also requiring expert manual guidance, gave
interesting results combining symbolic simulation and theorem proving
[7], [8], but their wide use is hindered by the lack of automatic transla-
tion from conventional design languages to the input format of theorem
provers.

Manuscript received August 4, 1999.

D. Borrione and J. Dushina are with TIMA/UJF, Grenoble Cedex 38031
France (e-mail: Dominique.Borrione@imag.fr).

L. Pierre is with LIM, Université de Provence, Marseille Cedex 13, 13453
France (e-mail: Laurence.Pierre@cmi.univ-mrs.fr).

Publisher Item Identifier S 1063-8210(00)09509-3.

1063-8210/00$10.00 © 2000 IEEE

