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  Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member 
of the hsp70 family is known to play an important role in cytoprotection from stressful insults. 
However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. 
To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 
knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) 
locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size 
in the spinal cord using Luxol fast blue/cresyl violet staining.  One day after injury, KO and WT mice 
showed no significant difference in the motor function due to complete paralysis following spinal 
hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased 
functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater 
lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results 
suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 
gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.

Key Words: Spinal cord injury, Neuroprotection, Heat shock protein, Mice

INTRODUCTION

  Spinal cord injury (SCI) results in devastating events for 
patients such as loss of motor function and neuropathic 
pain. As a consequence of primary mechanical injury to the 
cord, various pathologic events trigger subsequent secon-
dary injury that can aggravate spinal cord damage [1-3]. 
Thus, controlling for the secondary injury following SCI is 
an important technique for limiting the extent of tissue 
damage and consequent functional impairment [4-6]. Previ-
ous studies have shown a number of interrelated factors 
that may contribute to the secondary injury process, includ-
ing heat shock proteins [1,7]. 
  The heat shock proteins (HSPs) are a highly conserved 
proteins that act as molecular chaperones to aid protein 
transport and assembly of newly synthesized polypeptides 
[8]. Of the HSPs, Hsp70 is not usually detectable under 
normal condition and is rapidly induced by various stresses 
such as hyperthermia, oxidative stress and amino acid ana-
logues [9-12]. Previous studies, both in vivo and in vitro 
studies, have suggested HSP70 induction is associated with 

cell protection from various lethal insults [13-15]. Experi-
mental studies using transgenic mice have shown that 
Hsp70 overexpression protected neuronal cells from ische-
mic insult [16,17]. Plumier et al. [16] found that Hsp70 
overexpression following permanent focal cerebral ischemia 
significantly protected the pyramidal neurons in the hippo-
campus but did not affect the overall infarct area. Rajdev 
et al. [17] reported that cerebral infarct volume following 
brain ischemia was significantly lower in Hsp70 overexpre-
ssing transgenic mice than in wild-type mice. However, an-
other study using transgenic mice showed no significant dif-
ference in infarct size or hippocampal cell survival [18]. 
Taken together, these may suggest that Hsp70 protects 
neuronal cells against some, but not all types of central 
nervous system injury. Recently, several studies demon-
strated that Hsp70 plays an important role in the secon-
dary injury cascade after SCI [19,20]. A number of in vitro 
[21,22] and in vivo studies [23-26] have suggested Hsp70 
has cytoprotective effects in the spinal cord. Because neuro-
protection involves several genes including Hsp70 [27], the 
neuroprotective effects of Hsp70 itself after SCI are difficult 
to determine. Thus, in the present study, we used hsp70.1 
knockout mice (KO) to investigate whether Hsp70 plays a 
neuroprotective role in SCI. 
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METHODS

Experimental animals

  All experimental procedures were conducted in accord-
ance with guidelines set by the Korea University College 
of Health Science Animals Research Policies Committee. 
We obtained hsp70.1 KO mice used in this study from Dr. 
Jeong-Sun Seo, at Seoul National University. A previous 
study has described these KO mice bearing a null-allele at 
hsp70.1 and confirmed the absence of hsp70.1 mRNA ex-
pression in them [47]. For this experiment, we used 50 
adult mice (8 weeks-old) weighing 25∼30 gm at the time 
of their operation: Thirty hsp70.1 KO mice and twenty lit-
termate wild type mice (WT). The animals were kept on 
a 12-hour light /12-hour dark cycle with lights on at 7:00 
A.M. 

Surgical procedures

  Under enflurane anesthesia (by mixture of 3% enflurane 
and 95% O2), we shaved the skin overlying the thoracic ver-
tebrae of each subject and disinfected with povidone iodine. 
After the skin was incised along the midline, a laminectomy 
on the T12 vertebrae was performed to expose the T13 spi-
nal cord. With a no. 11 blade scalpel, the cord was hemi-
sected on the left side. The wound was closed in anatomical 
layers, the skin with stainless wound clips. After surgery, 
the mice displayed contralateral hindlimb paralysis were 
excluded from the study.

Behavioral tests

  Behavioral test for motor function was performed pre-
operatively and postoperatively (PO) for hindlimbs. The 
test was performed on each mouse 1 day prior to surgery 
and 1, 4, 7, 10, 13, 17, and 21 days PO. Hindlimb motor 
function was assessed using the Basso-Beattie-Bresnahan 
(BBB) motor rating scale [28]. The BBB has 22 levels from 
0 to 21 that systematically and logically follow recovery of 
hindlimb function, from a score of 0, indicative of no ob-
served hindlimb movements, to a score of 21, representing 
a normally ambulating mouse. Testing procedures were as 
follows. Briefly, animals were allowed to move freely on a 
paper-covered mattress, which makes a noise if the mouse 
drags its feet. Test sessions were 4 min in duration, and 
scores were obtained from 2 blinded observers according to 
the criteria. Left and right hind limbs were assessed sepa-
rately due to potential asymmetrical recovery.

Analysis of histology

  After the tests, the animals were randomly selected from 
both the KO and WT groups and were subjected to the com-
parison of histological differences in the spinal segments 
epicenter to the hemisection. Histological study was con-
ducted on 6 mice in each group 3 weeks after spinal 
hemisection. During this period, the hemisected mice fully 
recovered motor function and showed well-established signs 
of mechanical allodynia, as described in our previous report 
using a rat model [29]. Mice were deeply anesthetized with 
sodium pentobarbital and perfused with heparinized saline 
followed by 4% paraformaldehyde in 0.1 M phosphate buf-
fer (PB, pH 7.4). The spinal segments including epicenter 
were removed, post-fixed for 6∼8 hr and stored overnight 

in 30% sucrose. Tissues were embedded in paraffin, cut into 
8 μm thick longitudinal sections. The sections were treated 
with xylene and 95% alcohol. The slices on the slides were 
incubated in Luxol fast blue and then counterstained with 
cresyl violet. To quantify the degree of tissue damage fol-
lowing SCI, size of lesion of each section were measured 
by using a computer-assisted image analysis system (NIH 
image software). All assessments were performed in a 
blinded fashion.

Statistical analysis

  All values were expressed as mean±SEM. The Mann- 
Whitney U test was used to compare scores obtained on 
a given experimental day between 2 groups. The lesion size 
in the KO and WT groups was compared with t-test. 
Differences between groups were considered statistically 
significant if p＜0.05. 

RESULTS

Functional motor recovery after SCI in 70.1 KO and 
WT mice

  Prior to hemisection, locomotor function in all animals 
was evaluated in both ipsi- and contralateral hindlimbs us-
ing the BBB scale via an open field test (Fig. 1). The scores 
from hsp70.1 KO mice were not different from those of the 
WT mice. After hemisection, all mice showed paralysis on 
the ipsilateral hindlimb, corresponding to a BBB score 0. 
However, progressive motor recovery was observed with 
hindlimb joint movement on 4 d PO, and then relatively 
rapid recovery proceeded until 13 d PO. At that time, the 
WT mice showed coordinated walking. The mice achieved 
maximal recovery on 21 d PO. On 1 d PO, mice also showed 
mild disturbance in contralateral hindlimb, due to walking 
imbalance resulting from ipsilateral hindlimb paralysis. 
However, as shown in Fig. 1, the locomotor function of the 
contralateral hindlimb improved as the ipsilateral hindlimb 
recovered locomotor function.
  Throughout the entire recovery period, there was no sig-
nificant difference in contralateral side motor function be-
tween the two groups. However, on the ipsilateral side, the 
hsp70.1 KO mice showed delayed motor function recovery 
compared to the WT mice. This difference in motor recovery 
between hsp70.1 KO and WT mice was statistically sig-
nificant from 4 d PO up to 21 d PO, except on 17 d PO 
after spinal hemisection (p＜0.05). Functionally prominent 
difference in motor function between hsp70.1 KO and WT 
mice was noticed from 7 d PO. At 7 d PO, the hsp70.1 KO 
mice scored 10.5±0.65 on the BBB scale, whereas the WT 
mice scored 14.1±0.31 (p＜0.05). Although this score differ-
ence does not seem great, the difference in terms of func-
tional gain is significant. The hsp70.1 KO mice exhibited 
frequent weight-supported plantar stepping, with no fore-
limb-hindlimb coordination. In contrast, the WT mice 
showed consistent weight-supported plantar steps and con-
sistent forelimb- hindlimb coordination. Although, the 
hsp70.1 KO and WT mice did not show significant locomo-
tor function differences at 17 d PO, the difference retuned 
on 21 d PO, the last day of the study. At this time, the 
KO mice displayed frequent to consistent weight-supported 
plantar steps with consistent forelimb-hindlimb coordina-
tion, whereas the WT mice showed consistent weight-sup-
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Fig. 1. Motor recovery of hindlimb. Hindlimb motor function on the 
contralateral (A) and the ipsilateral side (B) was evaluated before 
SCI and on days 1, 4, 7, 10, 13, 17 and 21 after SCI. Asterisks indicate
the values significantly different between the two groups (*p＜0.05).

Fig. 2. A representative section of spinal cord segment including 
epicenter in WT (A) and KO (B) mice. Longitudinal spinal cord 
sections double-stained with Luxol fast blue and cresyl violet show
the injury and atrophy area. The lesion size is significantly different 
between WT and KO mice (C) (*p＜0.05). Scale bars, 400 μm. 

ported plantar steps, with consistent forelimb-hindlimb 
coordination. 

Lesion size

  To assess the lesion size, the longitudinal cord sections 
were double-stained with Luxol fast blue and cresyl violet. 
The lesions exhibited scar formation and complete loss of 
myelinated fiber. Scar formation appearances at the lesion 
site differed between KO and WT mice 3 weeks after SCI. 
In the KO mice, scar tissue extended toward the contra-
lateral side of the spinal cord and extended rostrocaudally 
from the epicenter in the spinal cord. In contrast, the WT 
mice had less scar formation at the lesion site (Fig. 2). In 
WT and KO mice, the cresyl violet stained areas were 6.70± 
0.21 mm2 and 17.5±024 mm2, respectively (Fig. 2). There 
were significant lesion area differences between hsp70.1 
KO and WT mice following spinal hemisection (p＜0.05).

DISCUSSION

  The present data demonstrated that mice lacking hsp70.1 
experienced a poorer functional motor recovery than did 

WT mice after spinal cord hemisection. We also found that 
lesion size was significantly larger in hsp70.1 KO mice than 
in WT mice. As suggested by several previous studies show-
ing the beneficial effects of pharmacological upregulation 
of Hsp70 on cell survival, the present study indicates Hsp70 
possesses neuroprotective potential after SCI. To our know-
ledge, this is the first study evaluating the protective role 
of Hsp70 in SCI by using an hsp70.1 KO mouse model. 
  In this study, we examined motor function up to 21 d PO 
after spinal hemisection because previous reports showed 
motor function recovery plateaued at 3 weeks after SCI 
[29,30]. The present results show that hsp70.1 KO mice ex-
perienced delayed and decreased functional motor recovery 
as compared to WT mice. As a result, the significant differ-
ence in locomotor function between hsp70.1 KO and WT 
mice was occurred from 4 d PO. However, the prominent 
functional difference between hsp70.1 KO and WT mice ap-
peared from 7 d PO. The difference in hindlimb function 
quality between the two groups was huge at this time point, 
although the score difference on BBB expressed in numbers 
could say. KO mice merely placed their limbs in a weighted 
fashion and showed occasional weighted plantar steps, 
whereas WT mice displayed nearly consistent plantar step-
ping with consistent forelimb-hindlimb coordination.
  Our findings are consistent with previous studies showing 
Hsp70 upregulation produced beneficial effects after SCI. 
Upregulation of Hsp70 via anti-inflammatory drug treat-
ment has improved functional outcomes after SCI [31,32]. 
Previously, Shin et al. [32] reported that cyclosporine A re-
duced neurological injury due to spinal cord ischemia in a 
rabbit model. They concluded this improved outcome after 
spinal ischemia correlated to overexpression of Hsp70. A 
significant improvement in neurological function using 
modified Tarlov’s scores was more evident on day 7 PO. 
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Park et al. [31] also demonstrated significant improvement 
in motor function at 7 d after SCI in rats pretreated with 
pioglitazone, a peroxisome proliferator-activated receptor 
inhibitors. The pioglitazone treated group showed a prom-
inent enhanced expression of Hsp 70. Our result is strongly 
supported by the earlier study [33] on ischemic insult to 
the spinal cord. Their study showed that Hsp70 expression 
in motor neurons created ischemic tolerance after spinal 
ischemia in rats. Taken together, the preservation of motor 
functions after SCI may be partially mediated by upregula-
tion of Hsp70.
  It is well known that SCI leads to a progressive series 
of degenerative processes induced by the original insult to 
the spinal cord. These secondary degenerative processes, 
which contribute to progressive tissue loss and cavitation 
at the injury site, are a major cause of motor dysfunction 
[34]. Accordingly, recent studies on neuroprotection have 
focused on the inhibition of secondary injury after SCI 
[5,35-37]. It has been suggested that the induction of Hsp70 
is associated with cell protection from various lethal insults 
both in vivo and in vitro studies [13-15]. Therefore, in the 
realm of neuroprotection, Hsp70 might be a useful target 
molecule for the therapeutic treatment. Previous studies 
have demonstrated that the induction of Hsp70 may be re-
sponsible for secondary processes after SCI [38,39]. Recent 
experimental evidence showed that upregulation of Hsp 70 
with pharmacological inhibition of inflammation achieved 
a neuroprotective effect [31,32]. In particular, Shin et al. 
[32] found that neuroprotective effect of cyclosporine A 
against ischemia was related to overexpression of neural 
nitric oxide synthase and Hsp70, indicating the role of 
HSPs in modulating secondary injury. The present finding 
is consistent with these studies and with the body of work 
showing neuroprotective role of Hsp70 in ischemic brain 
and cardiac injury. 
  In contrast, other studies have suggested Hsp70 plays a 
different role of in neuroprotection. Reportedly, intrathecal 
administration of bupivacaine and hypothermia protected 
neuronal cells in rat SCI and this effect was most likely 
due to Hsp70 downregulation [40]. Such contradictory re-
ports on the role of Hsp70 in SCI are explicable. First, pre-
vious studies have suggested that HSPs have a multi-
faceted modulatory role in inflammation, from proinflamm-
atory to anti-inflammatory functions [41,42]. Second, the 
role of Hsp70 seems to depend on the time it is induced [33] 
and the level of HSP expression [43]. Whereas most studies 
on HSP roles in SCI have focused on Hsp70, they limited 
themselves to certain SCI models, particularly ischemic 
SCI produced by thoracic aorta occlusion. Most of all, it is 
difficult to determine whether hsp70, itself, has a neuro-
protective effect after SCI, because several other genes are 
involved in neuroprotective paradigms [27]. Different sub-
types of HSP such as Hsp27 are involved in neuropro-
tection. Tachibana et al. [44] found that the level of HSP27 
gene expression level increased more than 2 times at 24 
hours after SCI in a traumatic SCI rat model. Others have 
similar results [45] suggesting 17-allylamino-17-demethoxy-
geldanamycin, a potent Hsp90 inhibitor, produced neuro-
protective effects by inhibiting HSP90, indicating that 
Hsp70 may act in concert with other HSPs. 
  Currently, gene transfer techniques and transgenic ani-
mal strain have made it possible to selectively overexpress 
HSP, to better understand the precise role of Hsp70 in cel-
lular injury. Several studies using transgenic mice have 
suggested role of Hsp70 in neuroprotection is still con-

troversial [16-18]. Based on these reports, Hsp70 upregula-
tion seems to have a neuroprotective effect on neuronal 
cells against some, but not all types of central nervous sys-
tem injury. Most previous studies using transgenic mice 
were limited to certain brain injury produced by ischemia. 
Thus, less is known about the precise influence of Hsp 70 
on neuroprotection and functional outcomes after traumatic 
SCI. In the present study, hsp70 KO mice had larger lesion 
size than WT mice had. Inducible Hsp70 is encoded from 
both hsp70.1 and hsp70.3 genes, which show high similarity 
in their coding sequences. The fact that the two inducible 
hsp70 genes differ from each other in the 5’- and 3’-untran-
slated regions [46], suggests they might be under differ-
ential regulation. However, the deletion of hsp70.1 results 
in a remarkable decrease in Hsp70 expression [47]. Taken 
together, these findings also strongly suggest that Hsp70 
is a cytoprotective protein within the spinal cord and may 
be responsible for neuroprotection after SCI.
  In summary, the present results demonstrated hsp70.1 
deletion results in a remarkable decrease in functional out-
come and an increase in lesion size after SCI. The present 
report supports the ideas that Hsp70 mainly has a neuro-
protective effect after SCI. Further molecular mechanisms 
must be investigated for the clinical application of HSP.
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