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ACCURATE AND EFFICIENT RE-EVALUATION OF
CELL-INTERFACE CONVECTIVE FLUXES

Kyung-Lok Lee, Sung-Hwan Yoon, Chongam Kim and Kyu-Hoeng Kim

ABSTRACT In order to reduce the excessive numerical dissipation which is induced when a grid
system is not aligned with a discontinuity, a new spatial treatment of cell-interface fluxes is
introduced. The M-AUSMPW+ in this paper has the formula that has an additional procedure of re-
defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined
transferred property could eliminate numerical dissipation effectively in non-flow aligned grid
system of multi-dimensional flows. Through several test cases M-AUSMPW+ proves to be efficient
and about twice more accurate than conventional upwind schemes. The three-dimensional
implementation of M-AUSMPW+ is expected to provide accuracy and efficiency improvement
furthermore.

1. INTRODUCT]ON

Up to now, most popular numerical schemes have been developed based on one-dimensional flow
physics. However, due to the essential limitations of this approach in the accurate and efficient
calculations of three-dimensional flows, multi-dimensional flow physics needs to be incorporated as
much as possible at the design stage of numerical flux functions. In discretizing the governing
equations of fluid motions, some degree of numerical errors is inevitably introduced. With the help of
many previous studies, a numerical scheme at present can remove errors almost completely in one-
dimensional contact or shock discontinuity, It means that the present CFD technique can give very
satisfactory results in one-dimensional problems. However, when applied to two- or three- dimensional
flows, numerical scheme frequently generates large errors and accuracy becomes deteriorated. In case
of three-dimensional computations, it is especially conspicuous. Thus, a denser grid system is
necessary, and as a consequence, a large amount of data storage and computational cost are entailed.

In analyzing those complex phenomena, accurate and efficient numerical methods reflecting multi-
dimensional flow physics are critical. we describe new numerical approaches which give much better
results in multi-dimensional problems. The main focus is to develop numerical methods that eliminate
excessive numerical dissipation and upgrade solution accuracy by predicting the physical distribution
of flow variables more accurately in multi-space dimensions.

A spatial discretization technique is newly developed based on AUSM-type scheme [1]. The core
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idea of the new scheme is to modify the convective quantity at a cell-interface by reflecting physical
and multi-dimensional phenomena. In case of the present method, a criterion to predict more accurate
cell-interface state is proposed through the analysis of TVD limiters [3, 4, 5], and the convective
quantity at a cell-interface is re-evaluated according to the criterion. The advantages of the newly
determined convective quantity can be examined in two aspects. Firstly, it provides the closer cell-
interface approximation of the real physical value than previous approaches. Secondly, it can eliminate
numerical dissipation effectively in a non-aligned grid system. As a result, the present method can
improve solution accuracy significantly, especially, in smooth region including contact or slip
discontinuity. From extensive numerical analyses and calculations, it is observed that the present
method is very useful in multi-dimensional flow computations without compromising computational
cost. For that reason, it is coined M-AUSMPW+ which represents AUSMPW+ scheme for Multi-
dimensional flow calculations.

2. KeY IDEAS AND IMPROVEMENTS OF BASELINE SCHEME

2.1. Re-evaluation of cell-interface fluxes

The advantage of upwind scheme is that it can represent flow physics properly through the whole
Mach number range, i.e., it transfers flow information correctly according to the local feature of wave
physics. As a result, upwind scheme can capture discontinuity accurately and robustly. Aside from this,
numerical dissipation ¢an be automatically determined through the whole Mach number range. Thus, it
is less dependent on user experience. In spite of such merits, upwind scheme seems to provide
excessive numerical dissipation in continuous region because it is designed to have optimal numerical
dissipation in discontinuity, i.e., it loocks more appropriate in discontinuous region.

Therefore, if an upwind scheme contains extra step to distinguish continuous region from
discontinuous region, or gently varied region from rapidly varied region, it can provide low
dissipative/more accurate results. With regard to this issue, the first objective of the present paper is to
introduce a procedure to differentiate continuous region from discontinuous region. The second
objective is to improve the shock capturing capability of AUSMPW+ to yield monotonic profile in a
steady flow. Even though AUSMPW+ has been developed to remove the overshoot problem of
AUSM-type schemes, it is still not perfect since it shows a little overshoot under some condition (see
Fig.5.) and convergence becomes bad in some grid system [1]. Monotonic shock capturing property
reduces grid dependency and improves convergence in all grid systems.

AUSM-type schemes define the Mach number at a cell-interface and transfer the flux quantity
according fo its sign, which is called the advection property. The convective flux of AUSM-type
schemes is written as follows.

F,=mc, ¥, > )
2 T 2
where ml/z' is the cell-interface Mach number and W is the transferred quantity vector. If a flux
function can recognize the difference between the region of discontinuity and continuity more clearly,
it can give more accurate results, As a flexible way to clarify the two regions, the following flux form
is considered.

Fo=me,¥, .. 2
2 2 2 "2
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where the subscript 4 represents the quantity defined at a cell-interface. Simply stated, the
fundamental difference from previous AUSM-type schemes is to modify the convective quantity at a
cell-interface appropriately in discontinuous and continuous regions. The convective quantity, k
is determined to satisfy the following requirements. o

rl. In order to increase accuracy in continuous region, the convective quantity should be able to
distinguish the region of continuity from discontinuity, or expressing it more mildly, gently varied
region from rapidly varied region. )

r2. The convective quantity should satisfy the monotonic condition.

r3. The convective quantity should maintain the upwind characteristic in supersonic flow,

Requirement 1 is the major objective of the present paper. Requirement 2 is necessary to prevent
oscillatory behaviors across discontinuities. The final requirement is essential to represent physical
phenomena correctly in supersonic flow,

Requirement 1:

Since the transferred quantity vector ¥ =(p, pu, pH) is calculated by primitive variable vector
P = (p, u, p)T , re-evaluating procedure is explained using primitive variable vector.

Firstly, the characteristics of continuous and discontinuous regions are examined to establish the
criterion that divides the two regions. The convective quantity at a cell-interface is then re-evaluated
according to the criterion. The ideal case would be that the Mach number and convective quantity at a
cell-interface are exactly the same as the physical values. Alternatively, if we can find out @

o . : . LR
which is closer to the real physical value than @, ., Eq.(2) will be very effective. :

In order to obtain information on the distribution of the physical value, TVD interpolation [3, 4] is
analyzed. All the vector notations are introduced for compact expression. Thus, in actual
implementation, they should be applied component by component, Through interpolation step, cell-
interface quantities are prepared as

O, =B, +0.580] =T, +0.54(,)A®, (3a)

O, =0, 0500 =D, -0.54(r, )Atbhi, (3b)

where @ is TVD limiter and A®,, A®,. | And variation at each cell-interface is defined
as follows. s m G A®,,

AD =B, -®, 4D, =D,-D, AD,=0,-D, @

where the bar means a cell averaged value.
Except for the region of local extrema, the accuracy of TVD interpolation {Eqs.(4)) can be expressed
by Taylor expansion with respect to the location of 7+ 1 as

Pr=®,, +Ax’¢"[%¢'(l)—§]+0(é\x’)’ (52)

=050, +)=0, +§w'[(%¢9(1) —%l +G¢7(1)—:-:)R]+dmc’)- (5b)
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The leading error term is second order and becomes third order accurate if ¢'(1)=2/3. Let us
consider the case that physical property is represented as @, and it satisfies the concave condition
of o®,,/0x>0 and 3@, ,/dx* >0 asinFig.1, where r, >1 and O<r, <l/r, .

At first, minmod limiter is con51dered as the most diffusive second order TVD interpolation. It
chooses the smallest variation of the two candidates as

¢(r) = max(0, min(r,1)). ®
When r, >1 and 0<r, <Ifr, ,itgives

D, minnes =P 11 - A"szuo(Ax’)- (72)

D g it =P 11 +—<b"+o(Ax’) (75)

real i+

!
real i 3

where the subscription of ‘real” means the physical value. Assuming Ax is sufficiently small and
neglecting the higher order term of O(Anc3 ,

Ei < q’L,min mod < (D,-m; f.‘.l < q)R min mod < $i+l ' (8)

Figure 2 shows the relation between the minmod interpolation value and the physical value. Now, let
us define the transferred quantity as (I)L . = (DR , = 0,5((1) Leminmod F <o Romin mod 5' Then,

*2

~»

+0{Ax*). ©)

[ (1
L,R,E real,r+5

Equation (9) shows that the averaged value @
reduced to one-fourth comparedto @, .
convective quantity, @ . = 0.5((1;
Py vt B P

LA is still 2"-order accurate. However, the error is
and is smaller than @ L.Rminmed* JNUS, the re-evaluated
+O R.miny mo d) is always closer to & than

L,min mod real #+1

Next, discontinuous or rapidly varied region is examined. Discontinuous region is thoroughly
different in its nature from smooth region. Variation in discontinuous region should be determined in a
way that it makes the largest variation or the steepest slope possible within monotonic constraint
because the derivative of 0@, /ax at dlscontmulty is infinite mathematically. In this case, the
variation of l(l) - (1)

q)l. min mod q) and |(I)R minmod HIJ l'ESpectlvely
Thus, it is expected that solution is always improved both in continuous and in discontinuous reglon

and 1 . —®,,| is always greater than the variation by minmod,

[ AP
- Fig. lPhys:cal distribution of o®_,/ax>0 and 2o, /x>0
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if the convective quantity is re-evaluated as 0.5((11 Linmed TP mir; mod ) '

Secondly, as the most compressive second order TVD limiter, superbee limiter is considered. It
chooses the steeper variation of the two candidates as

¢(r) = max(0, min(2~,1), min(r,2)). (10)
From Eq.(9), we have )
@ o A <D"40(Ax’) (112)
Lsuperbee — ","H% 6 ]
q’R.superl.‘»cc = (bnaf_ni - AxTz(D' .+0(ij ) (1 Ib)

Similar to the case of minmod, we have Eq.(12) from Eq.(11)
<@ , <@

R superbee ""U"E

D <D <o,,. (12)

L.superbee
Figure 3 shows the relation between superbee interpolated value and the physical value. And, the re-

evaluated convective quantity is given by

2

Ax
Prny = Pt =7

i1
real,l+i

@"+0{ax?). (13)

Again, the error is reduced to one-fourth compared to @ or its magnitude is smaller than that

R.sup erbee
of @ L. R.sup erbee * Thus, the re-evaluated convective quantity, (pm% =0_5(t[) Lauperbes +@ Rlsuwm)
predict a better approximation than the original interpolated values in smooth region. In discontinuous
region, ®, ... is always larger than @ as in Eq.(12) and thus |(I) .
less than I(I) Lsuperbee —Ei * . . .

As aresult, different from minmod limiter, accuracy is not improved with the re-evaluated quantity.
It gives more numerical viscosity.

Based on the previous analysis, the case of 8®,,,/0x>0 and 3’®,, /@Jcz >0 can be
summarized as follows, In smooth region, the re-evaluation of d’mi =0_5((DL+(DR) is always

expected to yield more accurate results than minmod and superbee limiters. In discontinuous region,

R,sup erbee -_ (I)’l 1S always

L}
2

Fig. 2 Physical distribution and numerical approximation by minmod limiter (left); Fig. 3 Physical
distribution and numerical approximation by superbee limiter (right)
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accuracy would be enhanced only in minmod case.

Lastly, let us consider differentiable and symmetric 2™ order TVD limiters such as van Leer limiter.
Then, from ¢'(1)=0.5 and Eq.(5b) , the leading error of the averaged value is the same as Eq.(5a).
However, as will be explained in Proposition (Eq.(14)) and Section 3.1.2, the proposed re-evaluation
always selects steeper variation and as a result numerical viscosity is reduced. '

When the distribution of @, is different, such as, 6®,,,/6x <0 and 8’®,, /ox* >0, r,
is between 0 and 1 and 7, is between 1 and 1/r, . Similarly, in case of od,,,/ox>0 and
@, [ox* <0, r, is O<r <l and l<r,<lfr, . In case of O®,,/Ox<0 and
*®,, /ox* <0, r g is r,>1 and O<r, <1/r, . Through the similar analysis, it can be
shown that all other cases yield the same results.

When there is an inflection point (r, , r,>1 or O0<r, , r, <1), the leading error of the averaged
value in Eq.(5b} is the same as Eq.(5a) because of ¢1 (lj= P (1) Lastly, overall accuracy becomes
first order at local extrema. But the averaged value is still effective because the leading error term after
re-evaluation is reduced by half,

Equations (8), (12) reveal an important property which should be fully exploited in evaluating
limited variations. The derivative of O®@,,, /ax at discontinuity is infinite mathematically. Thus,
when variations are estimated accordingly, the condition of @, <®, (see Eq.(3)) can be readily
derived as in superbee limiter, which is quite reasonable in rapidly varied region. However, if the same
interpolated values are applied to gently varied region, computations is likely to be unstable due to
excessive variation, or too much compression of @, .. The computation of vortex flow in Section 4
would be a good example. The weak point of minmod and superbee limiters is due to their consistent
numerical behaviors regardless of the nature of the real physical distribution.

Therefore, based on the previous analysis on TVD limiters, we identify rapidly varied region or
discontinuous region by the condition of ®, <@, <P, <—(5m. And, the criterion to distinguish
gently varied region from rapidly varied region is proposed as follows.

Gently varied region: 5, <P, <P, < EM (14a)

Rapidly varied region: @ <P, <P, <D (14b)

i+l

Responding to the requirement »1 mentioned in this section, the following criterion is proposed.

(Proposition) If the interpolated value of ®, . satisfies the condition of Eq.(14a), the physical
state at a cell-interface is considered to be in continuous region and the convective property at a cell-
interface is modified as (I)L% = (I)RI% = 0.5((1) .+ @ R). If ®, ,.r satisfies the condition of
Eq.{14b), it is considered to in discontinuous region and the interpolated value is not re-evaluated.

Then, the re-evaluated value, D . closer to the physical value than the original interpolated

value.

Equation (14a) can be rewritten as follows.
D, <P, <0.5(®, +P,)< P, <D,,,. (15a)
Or more generally,

10, -®|<[0.5(@, +@,)-B) or 0D, + @)~ DN~ P,)20.  (15b)

uperbee
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Here, @, lies between &
follows.

and @ and the convective quantity is determined as

L minmid L sup erbee *

In gently varied region, (0.5(®@, +®,)-®@, Y@, .. .0~ P, )= 0.5(®, - ® Y@, .. 1..— D, )20,
@, = 0.5(@, +@,). (16a)
In rapidly varied region, 0.5(®, -®, )(dl Loaperses — P L)< 0,
9, =0, (16b)

L.l+;

As a consequence, @ , always gives a larger variation, ie., less numerical dissipation than the

original value and thus accu;acy is enhanced. :
Now, we also consider the case of general p-th order interpolation, The left and right interpolated
values have the same magnitude with the opposite sign for the leading error term.

‘o —+0(ax™), (172)
a*’a»

®, =D .+ca

real, J+

®, = —+0{ax”), -

=
+1
real 2

where p is an odd number. .
Then, the averaged value of @ , =® , =0. S(CD + P R) has the (p+/)-th order leading error

term, i.e., accuracy is increased by one order of magnitude.
=0, =0.5(®, +D,)=D

e = : real i ity

,+ofaxr). (13)

In general most p-th order interpolation schemes maintain the accuracy level of Eq.(17) in gently
varied region. Thus, when the re-evaluated form of Eq. (18) adopts 3" or 5™ order mterpolatlon
schemes, the results in the region of CD <®, <P, <D, is much more improved than 2" order
case.

Requirement 2:

With regard to the requirement 72 for the monotonic distribution, the re-evaluated value at a cell-
interface should satisfy the following constraint,

rnin((I)L.Jl'nfarm:\d’(!)J'_.xuperbee)S q)[,‘% S max(q)f..lnnmnd ’ (Dl..superbee)' X (]9)

Many researches have been conducted to preserve accuracy at local extrema by introducing TVB[13],
ENO[6], MP schemes[14], or extended TVD approaches[9, 15]). Their results show that smooth
extremum can be treated successfully with less restrictive condition. For the purpose of robust
convergence, however, the re-evaluation procedure adopts TVD. Equation (19) can be written as

D, <P, 0y <P,, =05(@, +D,) <D <o, (20)
4 _

L superbee

After applying the monotonic condition to Eq.(16), we have
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(DL. = q)l. +Sign(¢’[..sup:rb¢e -(I)L)min(IOS((DR - (DL ]’ |(DL,sup=rbee _(DL')' (21a)

=

if (q)n _OLX(DL,supcrb« _q’f.)2 0.
1]

L,

o, 21b)

if (q,R _q’L X(I)L.mperbee _(DL)< 0.
In brief, the property at a cell-interface can be rewritten as follows.

0,(1’——(]) (Dsua e_m . D, -0
Oy = max([dxf —:b,,](;)i..:,; T<DL| L)]"""[l ) L|’|“’L-wvm«“"t]‘ (223)
0’ o _d) @ Sup er e_‘p . D, -0
R S B
Requirement 3;

Equation (22) should exhibit complete upwinding in supersonic region. However, the form of
q)vz = o,s(q) L+ O R) is not correct in supersonic flows although it is appropriate in subsonic flows.
This suggests that @, should be determined after a cell-interface state is identified whether it
belongs to subsonic or supersonic region, A simple quadratic function is introduced for that purpose,
and the convective quantity at a cell-interface is finally formulated as follows.

@ =d + max[O!((DR - m.L Xd)f..superbu _(DL)]min aiq)R _q)L| |(D -~ I , (23a)
L’% t (‘DR - ‘DL jq)l-.superbu - (p!.l 2 PV et t
_ max[O, (‘Dr_ ~ q’RX(DR,su ervee — D )] : lq)r. "¢R| _ 23b)
q)R’ll - (DR * ((DL - (DR Iq)ﬂ.superb: —(DR! e 2 i (Dk"up"b" (D‘R[ ' (

. 2 . e e . .
" where @ =1— mm(l, max(JM L |, |M R )) , and its derivative is continuous when the Mach number
becomes zero. In supersonic flows, the function « has the value of zero and

D=0 Dy =Dy 24)

Although the analysis in this section is carried out using TVD limiters, the proposition looks general
in the sense that the present approach is still available when other monotonic interpolation schemes are
adopted, such as ENO and Multi-dimensional Process (MLP).

2.2. Complete monotonicity -

The advection property of AUSM-type schemes may lead to undesirable overshoot problems across
shock discontinuity. Figure 4 shows the typical profiles of numerical shock wave in one-point shock
capturing schemes, where the i-th cell is intermediate. Figure 5 shows comresponding converged
pressure distribution at the (#+/)th cell according to the intermediate Mach number of cell /, when the
left and right physical states across the shock wave are fixed. It is found out that the converged
pressure distribution of AUSM+ changes rapidly in case of M ,.' = M ; or M : =M ; , i.e., when the
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location of a cell-interface almost coincides with the position of shock discontinuity. In other words,
pressure rapidly changes even if the Mach number changes gently. Thus, if a cell-interface is nearly
aligned with physical shock wave, there is a danger that convergence becomes deteriorated. Moreover,
numerical dissipation across sonic transition position disappears in a shock-aligned grid system, which
also makes convergence even worse, For these reasons, it is often observed that convergence is very
sensitive to grid system if M,' ~M ,' or M: ~ M,.

Figure 6 is a good example showing the sensitivity of grid convergence. Depending on the location
of sonic transition point with respect to a cell-interface, the behavior of computed solutions is quite
different. In the initial stage of computation, numerical shock is propagated from the wall and moves
toward steady shock location. During this evolution, stagnation region is continuously exposed to
numerical error generated by numerical shock wave, and contaminated stagnation region changes
shock location again. In this situation, if pressure changes rapidly according to the Mach number at the
intermediate cell, it is very difficult to obtain a converged solution. At the worst case, a converged
solution can not be obtained at all like Fig. 6(a). In order to prevent this phenomenon completely, the
interaction between shock discontinuity and stagnation region due to numerical error should be
eliminated. Figure 6(c) shows the converged result by AUSM+, which is obtained from the converged
result of Fig. 6(b) by M-AUSMPW+,

The pressure splitting function is modified to reduce grid dependency and improve convergence
characteristics in steady shock discontinuity, Most useful relations in realizing a numerical shock
profile are the Rankine-Hugoniot or the Prandtl relation. Roe’s FDS exploits the Rankine-Hugoniot
relation and AUSM-type schemes use the Prandtl relation. Unlike the Rankine-Hugoniot relation
which includes the relation among thermodynamic variables such as density, pressure and temperature,
the Prandt] relation does not possess the information. This lack of information does lead to non-
monotonic overshoots or slightly diffusive results of a discrete shock profile. In M-AUSMPW+, this
defect is cured by the information on pressure jump across a shock, directly derived from the
governing equations.

Let us consnder a one-dimensional statlonary shock wave with ¢, = =¢'. Then, from the Prandtl
relation, M, M, =1. It is assumed that shock is captured with only one intermediate cell and sonic

< dp on at the cell i+1

M, =M; M, =M;

Fros straame Mach number is 3

Sonic transition

- position _H 2
f

<]

onic transition "
i position Pt
H
— >1?',' > — 2f p;

e
2

Rapldly

AUSMPW+

My =M, M. i=M, . M-AUSMPWe P2
i-t vt i+l -t i+tivd whli oy TN 1Y
[ 1 15 . ®

(@) ® M Ll .

. Fig. 4 Numerical shock profile of one point shock capturmg scheme (left); Fig. 5 Comparison of
pressure overshoots according to the Mach number at an intermediate cell (right)
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transition position is located between i-th cell and the cell-interface i+ -;— » as in Fig.4(a). Then,

F.,=F_, =u,¥,+P,. : @5

ity i 2

Here, #,%¥, +P, denotes the physical flux after shock wave. Thus, ‘

UY, +1‘M,;,c:“%‘l’,+1 +P, +P, P, =U, ¥, +P, =U,¥,+P, (262)

UY, +F =Ms++|c,-+;['r+1 +P, P . (26b)

Continuity equation: pU =p Mc,, . (27a)
Momentum equation:  p,UU, + p, = p, M ::10,-+1Uf+|1+ (1 ~Fa )Pm . (270)
Energy equation: pUH, =p, M ,.‘,r,(;“%H ol (27c}

Since the total enthalpy should be constant in a steady flow, energy equation is always satisfied only
if continuity equation is satisfied. From Eqs.(27a) and (27b), the information on pressure jump across a
shock can be obtained as follows.

pUU, +p, =pUU,, +(] "Pp:l')Pm: (28a)
I)Hl- =1_ piUi(Ul' _Uf+l)+ pi . (28b)
le

Equation (28) compensates the missing information among thermodynamic variables across shock.
In case of Fig.4(b), pressure splitting function does not need to be modified since shock turns out to be
stable and maintains a monotonic profile {12]. Thus, the moedified form of pressure splitting function is
written as follows.

If M >1, M

i i+l

i+l

<! and 0<M M, <1,

(29a)
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If M, >-1, M, <-1 and 0<M M, <1,

i+1
Pl Ui =U )+ biy . (29b)
P,

P =1-

Otherwise, it keeps the original form.

If computation reaches a steady state, Eq.(29) is distributed as in Fig.7 showing that the positivity of
the modified pressure splitting function. In transient process to obtain a steady state solution, however,
the positivity of Eq.(29) may not be guaranteed due to numerical error. Thus the following form is
adopted just for stable computation

If M;>1, M, <1 and 0<M,M,,, <1,

i+1 i+l

- \
P =maX[0,mm(0.5,1—p ‘[.]‘(U' U'*')+p‘J . - (30a)
Pin ¥,

lfM> -1, M <land0<MM <1,

i+l i+l

Pt = ma){(), min[O.S,]- PirUia Wi U ) Pos } (30b)
P, /

Figures 5 and 6(b) clearly shows the effect of the modified pressure splitting function.

The modification of the pressure splitting function can be examined in several flow conditions, Let
us consider the four different cases at a cell-interface across sonic transition position: compression
shock wave, expansion shock wave, continuous compression flow, and continuous expansion flow,

In case of expansion flows, the modification is not turned on. Since the derivative of the original
pressure splitting function is continuous, a continuous solution can be obtained. Especially, the present
scheme does not admit expansion shock condition by the proper action of numerical dissipation [1].

In case of compression shock, the derivative of the modified pressure splitting function is
discontinuous across sonic transition position. The derivative does not have to be continuous in
numerical shock region. Numerical shock wave is always captured with some intermediate states.

Pressues splitting function distribution

Mach rnnbounn t-mdh- oell :u)

Fig. 7 Plot of pressure splitting function (Eq.(29)) according to the Mach number at an intermediate
cell
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Contrary to flow physics, numerical mass flux at the intermediate cell cannot be conversed. Thus, the
property at the intermediate cell can be treated as purely numerical values, ie., there is no physical
meaning. If the pressure splitting function is modified, it just means that the property at the
intermediate cell is determined just for the purpose of numerical stability. In this respect, the
medification never makes a problem even if its first derivative is not continuous. Lastly, in case of
continuous compression wave, the non-smoothness may generate some problem.

In actual computations, it does not cause any problem especially when a higher order spatial
accuracy is used. Since left and the right values are very close to each other, p, = p, and
M, ~1 and Py >0 or M, ,~—1 and P} —0. As a consequence, the modification is
useful for a steady ﬂow calculation and grid dependency is considerably reduced.

Even though the modification is derived under steady flow assumption, it can be used optionally for
unsteady cases. It works successfully in unsteady shock wave without any numerical instability, which
is verified with moving shock wave . '

Summarizing the previous analyses, the M-AUSMPW+ can be written as follows.

F,=Mc¥,, +M;c,¥,, +p;P, +P;P,), Gla)
where P, , = (O,nx Py gsP, Py, R,O)r and n,, are the components of {x,y) normal vector of a cell-

interface.
-The convective vector, W are

P LR
g | Perifirg |, (31b)
bR Prri¥inrl
P LR H LR3
where y Pray
H”l=— —=+0.5 ”.+v
: T or-lp LARL

Re-evaluated quantities at a cell-interface are obtained from Eq. (23) M LR P,f » and the speed of
sound at a cell-interface are the same as in AUSMPW+, '

. 3. NUMERICAL RESULT
3.1, Stationary vortex flow

Vortex flow is characterized by the existence of negative pressure gradient toward core and curved
streamlines. Thus, it can be regarded as a pure multi-dimensional phenomenon, and in most
applications, it is very difficult or impossible that the flow is aligned with grid system. Moreover, in
core region where pressure gradient changes very steeply, computed results are smeared very much.

Vortex model is Thomson-Rankine vortex model which is composed of free vortex outside the core
and forced vortex inside the core.
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2
a. free vortex (outside the core): Vo-r=const and —1-213 = V_" . (32a)
- opor
.. : . _ dp V;
b. forced vortex (inside the core): ¥, =@-r and d_ =p-2. (32b)
d r

Angular velocity @ is 3, core radius is 0.2 and maximum velocity is 0.54c_, . Total
computational domain is from -2 to 2 with equal spacing. For grid convergence test, 25 by 25, 50 by 50,
75 by 75 and 100 by 100 grid points are selected. Roe’s FDS, AUSMPW+ and M-AUSMPW+ are
used for numerical fluxes. 3 order TVD Runge-Kutta time integration is used and CFL number is 0.8,
Boundary conditions are fixed as initial values. Pressure distribution is plotted at the non-
dimensionalized time of 40. Figure 8 shows density distributions according to numerical fluxes, plotted
along the line AB. Figure 8(a) is the result of minmod limiter. Roe’s FDS and AUSMPW+ results are
somewhat diffusive but M-AUSMPW+ provides much more improved result. Compared to the result
by AUSMPW+ on four times denser grid system, M-AUSMPW+ is about twice more accurate. A
similar tendency in accuracy improvement can be observed when van Leer limiter is used.

Figure 9 is the comparison of entropy variation and Fig. 10 is the characteristics of grid convergence.
As expected, entropy increase is minimal in case of M-AUSMPW+. M-AUSMPW+ with van Leer
limiter is asymptotically close to the result by AUSMPW+ with 3" order interpolation without any
limiting function. The result of superbee limiter is not included, because vortex strength is artificially
amplified as computation continues, ie., entropy is decreasing continuously and finally computation
fails. Thus, superbee limiter cannot be used for this type of flows, even though it gives the best results
in a contact or a slip discontinuity. Aside from the reason, it has monotonicity and convergence
problems in multi-dimensional flows. In this respect, M-AUSMPW+ can be one of the best choices for
multi-dimensional flows without compromising the accuracy in a contact or slip discontinuity.

Vortex flow Vortex flow

(minmod Bmiler) {van Lear imiler}
w—r——— i devbaten —— L
—— RSN (3] pa— T Y
——  ReswFOB (4] —— Aoy FON (S8}
——— WAURMPW S (08} —— WAUSMPW {SE58)
e ———

AP (1IN

AURMSwe (1002100}

{5 ] [
X

Fig. 8(a) Comparison of density distribution along the line AB (minmod limiter) (left); Fig. 8(b)
Comparison of density distribution along the line AB (van Leer limiter) (right)
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Entropy variation Vortex flow
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Fig. 9 Comparison of entropy variation (van Leer limiter) (left); Fig. 10 comparison of grid
convergence test according to fiux functions (van Leer limiter) (right)

3.2. Viscous Shock tube problem

This test problem was studied by Daru and Tenaud [16] and Sjdégreen and Yee [17]. It is a shock
tube problem in 2-D square box with unit length, 0 < x,y <1, and the diaphragm is located at
x = 0.5. The initial state is given as follows.

(p,u,v, p), =(120,0,0,120/7) and (p,u,v, p), =(1.2,0,0,1.2/7).

The Reynolds number is 200 and the viscosity is constant. For the fair comparison of AUSMPW+
and M-AUSMPW+, the viscous flux terms of the governing equations are calculated by 4™ order
interpolation.

At ¢ =0, diaphragm is broken and the shock wave moves toward x =1. Then, it is reflected and
complex flow interactions occur. 3" order TVD Runge-Kutta time integration is used and the results
are at non-dimensionalized time of 1. CFL number is 0.5. Figure 11(a) is the comparison of the density

a) vao Lear Imbar + AL W @o; L
Co contowr g

AN 0
@ 3L

Q

B=

o) van Laar Wmiser + NEAUSMPA(+ (800 by 260}

[+ contour

N ;

g 2@
A ; e
(ccé.r@@aﬁf - o

Fig. 11(a) Comparison of density distribution of AUSMPW+ and M-AUSMPW+ (250 by 125) (left);
Fig. 11(b) Comparison of density distribution of AUSMPW+ and M-AUSMPW+ (500 by 250) (right)
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Viscous Shock Tube Problem
{van Leer Keniter)

Visoous Sheok Tube Problem
{van Lear limiter)
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M-AUSMPwe (350 by 125)

Fig. 12(a) Comparison of density distribution along the wall (left}; Fig. 12(b) Comparison of density
distribution aleng the wall (right) ,

Table 1. Comparison of the height of primary vortex

Scheme | AUSMPW+  M-AUSMPW+  AUSMPW+ AUSMPW+  M-AUSMPW+
(van Leer  (van Leer limiter) (van Leer limiter) (van Leer limiter) (van Leer limiter)

limiter) (250 by 125)  (350by 175)  (500by250) (500 by 250)
{250 by 125)
H‘(’]'g‘t 0.142 0.154 0.155 0.163 0.166

contour of AUSMPW+ and M-AUSMPW+ with van Leer limiter. The grid size is 250 by 125. Figure
11(b) is the results on 500 by 250 grid system.

After the interaction between boundary layer and the lambda shock, vortices due to flow separation
are generated and they grow up on the downstream side. From Ref.[17], the results with 500 by 250
grid system is very similar to the grid converged solution. Due to the effect of numerical dissipation in
multi-dimensional flows, the growth of the primary vortex by AUSMPW+ in Fig.11(a) is relatively
slower and it is less rotated compared with the results of M-AUSMPW+, Figure 12(a) shows that more
clearly. The nearest solution to the grid converged solution is the result of M-AUSMPW+ on 500 by
250 grid system. AUSMPWH+ is certainly much more diffusive than M-AUSMPW+ on 250 by 125 grid
system, Figure 12(b) shows that the result of M-AUSMPW+ by 250 x 125 (=31250) grids is almost the
same with AUSMPW+ by 350 x 175 (=61250) grids. Table 1 is the comparison of primary vortex size.
It is confirmed again that M-AUSMPW+ can provides the same accuracy with half grid points.

From the numerous test cases and analyses, M-AUSMPW+ is shown to provide the accuracy
enhancement in continuous region as well as in discontinuous region, especially, in multi-dimensional
flow situations. By implementing M-AUSMPW+ in three-dimensional computations, the accuracy
improvement is expected to be more visible: M- AUSMPW+ can present the grid reduction effect to
2792 in three-dimensional computations.

3.3. Shock wave / boundary-layer interaction

The shock wave/boundary-layer interaction problem has been widely used for a viscous flow
validation. The free stream Mach number is 2 and the shock impinging angle is 32.5 degree. Reynolds
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number is 2.96x10°. The grid system is 56 by 59 and the denser grid is 150 by 200, It is known as a
steady problem and AF-ADI is used for temporal integration. Figure 13 shows the comparison of
pressure contours between Roe’s FDS and M-AUSMPW+ with van Leer limiter. Figure 14 is the
pressure distribution along the line AB. The flow structure by M-AUSMPW+ presents expansion and
re-compression waves more clearly because separated flow is resolved more accurately. Figure 15
shows the comparison of skin friction coefficients. Since separated flow is not aligned with grid lines,
a scheme should capture oblique contact discontinuity accurately for the accurate calculation of
scparation region. M-AUSMPW+ is expected to improve accuracy significantly in this region. It is
certified by Figs. 15(a) and 15(b). Separation region by M-AUSMPWH+ is closer to the result on denser
grid system. Figure 15(c) and Table 2 show the comparison of arga ratio in separation region.
Separation region by Roe’s FDS with minmeod limiter is very narrow but the same computation by M-
AUSMPWH+ is similar to Roe’s FDS with van Leer limiter. Also, M-AUSMPW+ with van Leer limiter
shows a significant accuracy enhancement and separation region is very close to the result on denser
grid system. Figure 16 shows the error history of M-AUSMPW+. Convergence characteristic is similar
to Roe’s FDS or AUSMPW+,

PFressure comowr {van Leer lmiter)

M-AUSMPW+ (56x5% o - Pressure distibution {van Lesr Kmiter)

M-AUSMPW+

v ———= RowsFDS

Prassure

Fig. 13 Comparison of pressure contours (van Leer Limiter) (left); Fig. 14 Comparison of pressure
distribution along the line AB (van Leer Limiter) (right)

Table 2. Comparison of the area ratio of separation region

Roe’s FDS M-AUSMPW+ M-AUSMPW-+ Roe’s FDS Roe’s FDS

Scheme (van Leer {van Leer limiter) (minmod limiter) (van Leer limiter) (minmod
limiter) (56 by 59) (56 by 59) {56 by 59) limiter)
(150 by 200) (56 by 59)

Area ratiot 1 0.912 0.539 0.600 0.220
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Fig. 15(a) Comparison of skin friction coefficient (minmod Limiter) (left); Fig. 15(b) Comparison of
skin friction coefficient (van Leer Limiter) (right)
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4. CONCLUSIONS

A new treatment of a cell-interface convective flux which typically appears in AUSM-type methods
is introduced to substantially reduce numerical dissipation in smooth region without compromising
accuracy in shock region. The core idea of the new method is to modify the convective quantity at a
cell-interface by considering flow physics. Through the analysis of TVD limiters, a simple criterion to
predict a more accurate cell-interface state is proposed and the convective quantity is re-evaluated
according to the criterion, The practical advantages of the proposed method can be revealed in two
aspects. One is that the newly defined cell-interface value is closer to the real physical value. The other
is that it can eliminate numerical dissipation effectively in non-flow aligned grid system. Thus, M-
AUSMPW+, a new scheme formulated by incorporating the re-evaluation procedure, improves
solution accuracy significantly in multi-dimensional problems.

Ancther desirable characteristic of M-AUSMPW+ is monotonicity in capturing a steady shock wave,
regardless of the location of sonic transition position. As a result, convergence characteristics and grid
dependency of AUSM-type methods are remarkably enhanced.

Through numerous test cases such as stationary and moving physical discontinuities, rarefaction
wave, vortex flow, shock wave/boundary-layer interaction, and viscous shock tube problem, M-
AUSMPW+ is proved to be equally efficient but about twice more accurate than previous schemes. If
M-AUSMPW+ would be applied to three-dimensional problems, accuracy and efficiency is expected
to be improved further. ' '
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