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This paper studies how the nonstationarity in the reservation
wage arises within a continuous time optimization framework.
Assuming a Poisson distributed offer arrivals and a simple job
search model with a finite search horizon, the solution of the
optimization as summarized by a differential equation is ex-
amined. It is shown that the unique solution, i.e., the unique
reservation wage path, exists and exhibits dynamic stability. As
expected, the path presents decreasing reservation wage over
time for the period of search, i.e., participation, in the labor
market, under absence of external shocks.

With introduction of external shocks which are unanticipated,
it is shown that the reservation wage paths exhibit disjoint
jumps at the times of the shocks but the paths are decreasing
over time at the continuity points. With anticipated shocks,
however, the reservation wage paths can have regions of in-
creasing reservation wage. The analysis is extended to examine
the reservation wage path along a business cycle. The case of
the infinite search horizon is also examined.

I. Introduction

This paper studies how the nonstationarity in the reservation
wage arises within the framework of a continuous time optimization
for a job searcher. In Section II a job search model is introduced in
which the search horizon is finite and arrivals of job offers are
Poisson distributed. Assuming the time-invariance of both the wage
offer distribution and Poisson intensity, the ensuing continuous time
optimization is summarized by a differential equation as in Heckman
and Singer (1982) and Mortensen (1984).

No explicit assumptions regarding the wage offer distribution are
made. Hence, the analytical solution of the differential equation, i.e.,
the specific form of the reservation wage path, can not be obtained.
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However, it can be shown that the solution exists and is unique.
Examination of the solution, i.e., the reservation wage path, using a
phase diagram provides the following findings. Without external
shocks, the reservation wage is declining over time for the period of
search in the labor market. Moreover, the path shows dynamic sta-
bility, converging to the stationary reservation wage solution in re-
verse time. The analysis is extended to the infinite search horizon
case which presents a constant reservation wage over time.

Section III introduces into the model external shocks in the form
of ‘shifts in the instantaneous rate of offer arrivals given by the
Poisson intensity parameter. It is found that, with unanticipated
external shocks, the reservation wage paths show disjoint jumps at
the times of the shocks. But the reservation wage decreases at the
continuity points. With anticipated external shocks, the paths can
contain regions of increasing reservation wage. Also, the episodes of
the out of the labor force state are presented under both unantici-
pated and anticipated shocks. Further, the analysis is. extended to
examine the reservation wage path and the episodes of the out of
the labor force state along a business cycles. Finally, the conclu-
sions are given in Section IV,

II. The Model

It is assumed that job offer arrivals for the searcher are subject
to a Poisson process with the time-homogeneous intensity of offer
arrivals parameter A. Recall of job offers is assumed not permissi-
ble. The cost of searching for acceptable job offers is incurred at a
constant instantaneous rate of ¢ (amount) per unit time. A search
model based on the infinitesimal look-ahead stopping (ILAS) rule
results in the following continuous time optimization scheme for the
determination of the reservation wage (see Heckman and Singer
1982; Mortensen 1984; Ross 1970). Denote by V (¢) the return from
optimal search at & If the searcher waits an additional infinitesimal
time h, his expected return at ¢4 h is equal to i) Pr (no offer in
[t+ R)) times V(t+ k) plus ii) Pr (offer in [, 4 h)) times the re-
turn from optimal search policy given an offer in [+ h) minus iii)
search cost over the period [t,t 4 h). To be optimal according to the
ILAS rule V(i) needs be equal to the present value at t of the
above expected return at ¢+ h. That is,
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V(ty=[1—ApmV(@+ h) + Ahmlimax [W(t+4 k), V(i+ b))
- cfg exp(— 1"y di’ o (h), (1)

where W (1) denotes the present value of (the stream of wages from)
the job offer arriving at ¢ and o (A) is such that lim o{h)/h=10.mis
the discounting factor defined by exp (— rh) with r being the rate of
interest.

The search horizon is assumed finite of length T. Its interpreta-
tion includes the finite working life (Gronau 1971) and liquidity
constraint (Mortensen 1984). The job offer W (i) is described by the
wage w measured in the instantaneous rate. w has a time-invariant
distribution with finite E || w'l. The job lasts forever once
started so that W) = W= w/

Define by s the reverse time index which measures time left till
the end of the search horizon, i.e., s= T — &. Then (1) is rewritten
as

V(s) =11 — AbjmV (s — h) + AhmE imax [W,V (s — A)]| (2)
— cj‘gexp(— rt) di'+ o (h).

Rearranging terms and passing h to the limit, i.e., ~—0, one obtains
from (2) the following differential equation for V(s):!

dV(s)/ds= —c— rV(s)+ A Emax[W— V{(s), 0O}. (3-a)
Denote by w*(2) the reservation wage at ¢ so that V() = w*(8)/r.2
dw*(s)/ds = — rc — rw*(s) + A E{max[w — w*(s), 0} . (3-b)

At the end of the search horizon, T, the searcher’s only option is
to drop out of the labor force. Denote the return from choosing the
option by V{(t= T). In additon, denote V(i= T)/r by w*(t= T).
V(= T) and w*(t= T) provide the initial conditions, i.e., the
values of V(s=0) and w*(s= 0), for the differential equations
(3-a) and (3-b) stated in backward time s, respectively. They provide
the boundary conditions if the equations are restated in forward
time 1.

'Use is made of the following relations. li[n (c/ h) f!,' exp(— rt) dt' = ¢, and lim
V() —mV(s— k)Y h= dV(s)ds + rV(s). "

“For the reservation wage property of the optimal stopping strategy, see DeGroot
(1970) and Ross (1970).
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Without explicit assumptions regarding the distribution of w, one
can not determine the analytical solution of the differential equation
(3-a) or (3-b). Even with these assumptions it is difficult to derive
the analytical solution explicitly (see Heckman and Singer 1982).
Nevertheless, one can examine the existence and other important
properties of the solution as in the propositions below.

Proposition 1.
The solution of the differential equation (3-b) subject to the ini-
tial condition given by w*(s = 0) exists and is unique.

Proof: Denote the right hand side (RHS) of (3-b) by R (w*(s)).
R (w*(s)) is continuous in w*(s), because E |max[w — w*(s), O} is
continuous in w*(s) (see DeGroot 1970). Observe that max[w,wj(s)]
— max{w,ws (s)] < wi(s) — ws(s) for any pair wy (s) and w;(s) such
that w(s) > ws(s). Thus,

| R(wi(s) — R(w3(s) | < | — rlwf(s) — wi(s)]
+ A E |max[w,w](s)] — max[w,ws (s)l}]
<(r+ A) | wi(s) — wi(s) |,

where E{| w |} and (r+ A) are finite positive constants by assump-
tion. Hence, the Lipschitz condition is satisfied so that the solution
of (3-b) exists and is unique.

Proposition 1 holds when the differential equation (3-b) is re-
placed by (3-a) with the initial conditon given by V(s=0). The
proof follows immediately from the above proof for (3-b).

Now define by w** the stationary solution of the differential equa-

tion (3-b) so that
dw*(s)/ds =0 = — rc — rw**+ A E {max{lw — »™, O}, (4-a)
or equivalently
rce = — rw**+ A E {max[w — w**, O} . (4-b)

Proposition 2.
w** exists and is unique. Further, dw™*/dc <0, dw**/d A >0, and

dw**/dr <03
Proof: Note that E {max[w — w*(s),0]} is convex, nonnegative, con-

SFor dw**/ d# >0 and dw*/ do >0 where # and ¢ denote mean and dispersion of w,
see Yoon (1981) and Mortensen (1984).
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FIGURE 2
DYNAMIC STABILITY OF THE RESERVATION WAGE PATHS

tinuous and monotone decreasing in w'(s) to 0 over the support of w
(see DeGroot 1970). Hence, the right hand side (RHS) of (4-b) is
continuous and monotone decreasing in w** Further the RHS of
(4-b) approaches + oo as w**»—oo and —rw** as w**— + co. Since
the left hand side of (4-b) is positive, the existence and uniqueness
of w** follow. The signs of the w** derivatives can be shown easily
and omitted here.

The stability of the solution of the differential equation (3-b) (and
hence of (3-a)) can be analyzed qualitatively using a phase diagram.
The phase line in Figure 1 implies a stable equilibrium at w** If
w*(s) = w** the equilibrium prevails. If w*(s)>w** then dw*(s)/ds<<0
so that it declines towards w** If w*(s)<w** then dw"(s)/ds>0 so
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that w"(s) increases towards w** In either case, w*(s) approaches w**
over reverse time s.

Depending on the magnitude of the return from dropping out of
the labor force (OLF) given by w*(¢ = T)/r relative to w*¥/r, two
types of the time path of the reservation wage w'(f{) emerge as
shown in Figure 2. Both indicate dynamic stability of the reserva-
tion wage. However, the reservation wage is required to be larger
than w*(t = T) for search (participation) in the labor market to be
worthwhile. This is because, with w*()<w*'(i = T), the searcher is
better off by choosing OLF. The path positioned above the equilib-
rium line implies w*()<<w'(t = T) for 0< i< T. Hence, the searcher
chooses OLF at t= 0 so that the path is not feasible during the
period of search. As a result, a well-known declining reservation
wage over (forward) time as established in the discrete time model
(see DeGroot 1970; Gronau 1971; Lippman and McCall 1976) among
participants with a finite search horizon is reaffirmed. That is,
dw*(1)/dt<0, in the case of the continuous time optimization by a
searcher (participant) in the labor market, unless there are external
shocks (see Mortensen 1984 for an alternative proof of dw'(#)/di<
0). These results are stated as Proposition 3.

Proposition 3.

With a finite search horizon, the solution of the differential
equation (3-b) is stable, converging to the equilibrium level w** in
backward time s. Further, dw*(f)/di<0, i.e., the reservation wage
declines over time during the period of search in the labor market.

Now the analysis is extended to the infinite search horizon.

Proposition 4.
With the infinite search horizon, the reservation wage is constant
at the equilibrium level w** over time.

Proof: Take the limit on the length of the search horizon, T, i.e.,
T— +oo. Let 1€ (4, &) where 4 and f, are both finite. Then, T— i=
se€(T—1t, T—4) but T—1l;= +o00 and T—t = +oo. Since w(s)
converges to w** as s— +oo, w'(l) equals w** for all finite &

IIl. External Shocks, Unanticipated and Anticipated

In above, the reservation wage is shown to decline over time
assuming no external shocks. In this section, external shocks are
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Law* (A = Ay) and w**( A = ) denote the levels of w™ when A = 2, and A = 2,
respectively. w™ (A = A)>w* (A=A for A > Ay follows from dw**/dA >0 in
Proposition 2. Dotted paths here and below indicate the paths under no shift in A.
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FIGURE 3
TiE RESERVATION WAGE PATHS WITH SHIFTS IN THE INTENSITY 0F OFFER ARRIVALS
AAT ¢

introduced into the model by means of shifts in the intensity of offer
arrivals A. The case of the shifting search cost can be examined
analogously and hence omitted here.

If the external shocks are unanticipated then the optimizations
prior to and posterior to the shock, both described according to the
dynamic programming equation as in (1), are separate problems.
This is revealed in Figures 3-a and 3-b showing the reservation
wage paths with disjoint jumps at the time of the external shock.
The shock is either an upward or a downward shift in the intensity
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a) The Case of a Drop in A: A;> A,
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FIGURE 4

THE RESERVATION WAGE PATHS WITH ANTICIPATED SHIFTS IN THE INTENSITY OF
OFFER ARRIVALS A AT i*.

of offer arrivals A, i.e., 1< A2 or A1> A2 where 1 and 2 denote
the periods before and after the shock.

Often the external shocks are anticipated as with termination of
unemployment insurance benefits and the impending recession. Sup-
pose a shock occurs at #* and is anticipated by the searcher. The
post-shock path of the reservation wage, w*(#), is simply the portion
over [t*T) of the reservation wage path determined subject to i) the
same boundary condition, w*(¢ = T), for the differential equation
(3-b), but i1) the new value of a parameter or of search cost revised
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1.1, denotes the time when the searcher drops out of the labor force.

a-2) The Case of an Unanticipated Rise in A: 41 < Az andw™ (A =)< w*i= T
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1. t,denotes the time when the worker ends OLF and starts searching for a job, i.e.,
participates in the labor market.

FIGURE 5

THE RESERVATION WAGE PATHS AND THE LABOR FORCE PARTICIPATION WITH UN-
ANTICIPATED AND ANTICIPATED SHIFTS IN THE INTENSITY OF OFFER ARRIVALS A AT
*

according to the shock.

The optimization prior to the shock, however, is affected dif-
ferently. Specifically, the boundary condition for the optimization
defined over the period [0, ¢*) is the reservation wage at t* w"(*).
But w'(#*) is determined via the post-shock optimization, noting the
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FIGURE 5 ( CONTINUED)

backward nature of the Bellman equation (1). As a result, the
pre-shock reservation wage path subject to the anticipation of the
shock at #*is different from the segment over [0, ¢*) of the original
reservation wage path under no shock. Further, the reservation
wage can increase over f, for example, if the intensity of offer
arrivals shifts upward. Figure 4 illustrates a variety of reservation
wage paths under the anticipated shocks.

The external shocks can affect the labor force status of the sear-
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a) The Reservation Wage Path under Unanticipated Shocks along a Business Cycle.!
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1. & and t, denote the times of the beginning and ending of the out of the labor force
state.

b) The Reservation Wage Path under Anticipated Shocks along a Business Cycle.

w*™ (A = A)

FIGURE 6

ALTERNATING INTENSITY [LEVELS OF OFFER ARRIVALS ALONG A BUSINESS CYCLE, THE
RESERVATION WAGE PATHS AND LABOR FORCE PARTICIPATION: 3> A, > A,

cher as they alter the reservation wage path. Figure 5 illustrates
movements in and out of the labor force when the shocks are both
unanticipated and anticipated.

The above analysis can be combined with a business cycle along
which the intensity of the offer arrivals alternates with low, medium
and high levels, denoted by A;, A, and A, respectively. Figure 6
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a-1) The Case of an Unanticipated Rise in A: A; < P
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1. w*(OLF) is such that w*(OLF)/r equals the gain from dropping out of the labor
force.

a-2) The Case of an Unanticipated Drop in A: A1 > As.
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FIGURE 7

THE RESERVATION WAGE PATHS WITH INFINITE SEARCH HORIZON WHEN THE SHIFT IN
THE OFFER ARRIVAL RATE A IS a) UNANTICIPATED AND b) ANTICIPATED, RESPEC-
TIVELY.

shows the reservation wage paths along the business cycle when the
shocks are both unanticipated and anticipated. The paths illustrate
how the reservation wage varies along the cycle. They also reveal
episodes of OLF.

Finally, with the infinite search horizon, if the shock is unantici-
pated, the reservation wage path shows a disjoint jump at the time
of the shock. But the path is horizontal within the continuity region
exhibiting constant reservation wage over I However, with antici-
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b-1) The Case of an Anticipated Rise in A: 1< A,

w“(,\ = Az)
{
/
w™(A = A) :
|
{
w*(OLF)t :
|
|
: > i
=10 t*

b-2) The Case of an Anticipated Drop in A: A4, > As.

w* (A = A
w* (A = A2)4 Y
|
|
|
w*(OLF)+ :
|
|
|
L >
t=20 t*

FIGURE 7 ( CONTINUED)

pated shocks, the path can contain a segment of increasing reserva-
tion wage as shown in Figure 7.

IV. Conclusion

This paper analyzes how the nonstationarity in the reservation
wage arises within a continuous time optimization framework.
Assuming a Poisson distributed offer arrivals and a simple job
search model with a finite search horizon, the solution of the opti-
mization as summarized by a differential equation is examined. It is
shown that the solution, i.e., the reservation wage path, exists and is



430 SEOUL JOURNAL OF ECONOMICS

unique. Also, the path preserves dynamic stability. As expected, the
path presents decreasing reservation wage over time during the
period of participation under absence of external shocks.

With unanticipated shocks, the reservation wage path exhibits
disjoint jumps at the times of the shocks but the path is decreasing
over time at the continuity points. With anticipated shocks, however,
the path can contain regions of increasing reservation wage. The
analysis is extended to examine the reservation wage path along a
business cyle. The case of the infinite search horizon is also consi-

dered.

References

DeGroot, M. Optimal Statistical Decisions. New York: McGraw-Hill, 1970.

Gronau, R. “Information and Frictional Unemployment.” American Economic
Review 61 (1971) : 290-301.

Heckman, J., and Singer, B. “The Identification Problem in Econometric Models
for Duration Data.” In W. Hildenbrand (ed.), Advances in Econometrics:
Proceedings of World Meetings of the Econometric Society. Cambridge: Cam-
bridge University Press, 1982.

. “Econometric Duration Analysis.” Journal of Econometrics 24
(1984) : 63-132.

Lippman, S., and McCall J. “The Economics of Job Search: A Survey.” Econo-
mic Inquiry 14 (1976):113-26.

Mortensen, D. “Job Search and Labor Market Analysis.” Discussion Paper No.
594. The Center for Mathematical Studies in Economics and Management
Science, Northwestern University, 1984.

Ross, S. Applied Probability Models with Optimization Applications. San Fran-
cisco: Holden-Day, 1970.

Yoon, B. J. “A Model of Unemployment Duration with Variable Search Intensi-
ty.” Review of Economics and Statistics 63 (1981): 599-609.



