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ABSTRACT

This paper considers (S-1, S) inventory models which have wide applications in reparable spare parts
inventory systems and multi-echelon systems. We assume a discrete compound Poisson demand and
order size dependent delivery times ; when the replenishment order size is #, we assume the delivery
time distribution is arbitrary with finite mean b,

On the basis of the fact the outstanding orders follow a certain queueing process, we introduce the
results of Fakinos (1982). We develop the efficient recursive formulae to find the optimal S* under
several performance measures as a function of the decision variable S. The results of this paper can
be applied to the multi-echelon systems such as METRIC.

(INVENTORY ; REPARABLE ITEMS : MULTI-ECHELON : QUEUES)

1. Introduction

This paper considers (S-1, S) inventory models with a compound Poisson demand and an
arbitrary delivery time distribution whose mean is dependent on the replenishment order size.
The main goal is to develop the recursive formulae to find the optimal $* under several perfor-
mace measures. We assume that a series of customers with a Poisson arrival of rate A place
an order which has an independent and identical discrete distribution {f} j=1, 2, .
The order sizes and the interarrival times of successive arriving customers are stochastically
independent. The delivery time may depend on the replenishment order size on several accou-
nts in many contexts. In this paper, the delivery time distribution is assumed to be arbitrary
with a mean #” when the replenishment order size is #. This is a generalized assumption for
the replenishment process, whereas a common one in the literature is to have only one arbitrary
distribution independent of the replenishment order size.

(S-1,S) policies are a special case of (s, S) policies where s equals S-1. In (s, S) policies,
the order point s and the order up to level S are set and whenever the inventory position (outs-
tanding order plus on hand minus backorder) drops to, or below s, the replenishment order
is issued to raise the inventory position to S. Therefore, (S-1, S) policies place orders, namely
one-for-one replenishment whenever units are demanded, thus restoring the inventory position
to the base stock level S.
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The ordering policy described above is appropriate when the item has a low demand and
a relatively high unit cost compared with the cost of processing an order. In particular, the
reparable spare parts inventroy systems belong to this ordering policy. Sherbrooks (1968) has
applied (S-1, S) policies to a multi-echelon model for controlling high value reparable items,
so called METRIC using the previous results of Feeney and Sherbrooke (1966). But, he deve-
loped computationally intractable formulae with the assumption of a compound Poisson demand,
so he assummed in the METRIC a logarithmic-Poisson demand where the order sizes of succe-
ssive arriving customers follow a logarithmic distribution. In this paper, we will develop easily
computable recursive formulae with any compound Poisson demands and a generalized reple-
nishment process which will enjoy direct application to the METRIC without any special modi-
fications. Graves (1985) presents a multi-echelon inventroy model for a reparable item and
compares his approximation with that of Sherbrooke (1968). A comprehensive review on repa-
rable inventory systems can be found in Nahmias (1981).

We define Q(¢) to be the number of units in the replenishment process, or the outstanding
orders at time ¢£. We note if the base stock level S set, then S—-Q(#)is the net on hand inventory
at time £. As we are interested in the equilibrium state, we omit the time variable ¢ for later
use. @ has the range 0=Q < o in the backorder case and 0= < S in the lost sales case. We
assume that customers behave according to all or nothing policy in the lost sales case. That
is, if a customer order is greater than the net on hand inventory, then the customer’ s whole
demand is rejected and vice versa. We will comment on an alternative, partial filling policy
in section 4.

In our models, @ follows a queueing process (see Hadley and Whitin 1963, pp. 204-212).
For example, § increases as a demand occurs and decreases as a replenishment order arrives.
The queueing models which directly relate to the processes of € in the lost sales case and
the backorder case are the M/G/S group-arrival group-departure loss system and the M/G/co
group-arrival group-departure system, respectively. Note that two queueing models are essen-
tially the same as the latter is a special case of the former when S approaches infinity. Fakinos
(1982) has studied these queueing processes and provides an equilibrium state probability in
a rather complex form. One of our goals in this paper is the conversion of the Fakinos’ formula
into a computationally tractable one.

Once the equilibrium distribution of @ is known, it is straightforward to develop several per-
formance measures in terms of S by using the fact that S-Q is the net on hand inventory.

2. The Equilibrium Distribution

The main result is that the equilibrium distribution of the outstanding orders € in the lost
sales case is expressed recursively by the following formula.

P(Q=0)=P,~(1+ 3 P/P,) ",
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Alternatively, this formula can be expressed as follows for computational purposes.
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for n=1,2, -, S.

Clearly, P, is determined by the normalization condition E;‘) P,=1. Note that the equilibrium

distribution is independent of the form of the delivery time distributions and depends only
on their means b,,i=1,2,-* ,S. The distribution in the backorder case can be found by setting

S to infinity and P, equals exp [——Agﬂ - b,) in this case.

The recusive formula can be derived by applying the methods of Adelson (1966) who has
analyzed the arriving compound poisson processes to the queueing process of Fakinos (1982).
we provide a brief explanation. Let @, be the number of groups of outstanding orders of size
i in the backorder case, then the outstanding orders in the backorder case is

Q:i;‘i.Qi. (3)

The random variables Q;, Q,, - are stochastically independent by the independence as-
sumptions made in the earlier section. It is easy to know that @, follows the M/G/x
queueing process with a Poisson arrival of rate Af and an arbitrary service time having a
mean b,. Therefore, the equilibrium distribution of @, is a Poisson with mean 2 f; b,
Since @ is a weighted sum of a number of random variables of independent Poisson processes,
it has a compound Poisson distribution. The recursive formula is derived from the probability
generation functing (PGF) of @ by using the Maclaulin power series and differentiations.

The distribution of @ in the lost sales case is obtained by truncating at S the corresponding
distribution in the backorder case. As an another approach, we derive (1) directly from the
Fakinos’ formula in the Appendix.



3. Performance measures

Performance measures can be defined in various ways. In this section, we develop salient
ones in inventory systems as a function of the decision variable S.

For the backorder case, we consider the expected number of backorders in a unit of time
and the expected backorder level.

In order to find the expected number of backorders, we consider the following. Customers
arrive with a Poisson process of rate A and the order sizes which a series of customers place
have a discrete distribution f, j=1, 2, -~ Let’s suppose that a customer places an order
of size i. There will be one backorder if the net on hand inventory is i-1 (or, the outstanding
orders are S-(i-1)), two backorders if the net on hand inventory is -2, and ¢ backordrs if the
net on hand inventory is 0. Therefore, the expected number of backorder is

A- zjf,' [Ps—i«rl"'*'zpsrruz b DPg o i (P4 Py =)
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The expected backorder level is

S (j—s) - P, - (5)
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We recall that the equilibrium distribution of the outstanding orders @ used in (4) and (5)
is obtained from (1) by setting S to infinity, as we explained in the previous section.

Now, we consider another interesting criterion, time in the backorder case. Possibly, we can
imagine inventory systems to which additional costs (e. g. the penalty cost of backorder) are
not accruing if a customer’s order is filled within a given time 7. We can obtain generalized
performance measures by developing the equilibrium distribution of @’, the outstanding orders
which have been in the on order condition at least T.

The resulting distribution of Q’ is

Pi=exp (=A% fi+ b))
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where

for i=1,2,+-
b;=a, - b,

1
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B,  the distribution function of the delivery time when the order size is i.



The equilibrium distribution in this case depends on the form of the delivery time distribu-
tions.

To prove (6), we define Q! to be the number of groups of outstanding orders of size 7 in
the backorder case which have been in the on order condition at least 7. Takacs (1969) shows
that a; is the probability that the groups of the outstanding orders of size i in the backorder
case will still be in the on order condition after a given time. 7. In order for @/ to be n
(n=0,1,2, ), exactly k(k=0, 1, 2, ) groups should be replenished in the time interval
T among n+k groups of the outstanding orders of size 7. Since @, has a Poisson with
mean A f *b,, the distribution of Q/is
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for n=0,1,2, - 7

or, @/ has a Poisson with mean A/, - b/ . Now, the proof of (6) is straightforward if we relate
Q! to @, and follow the same procedure in section 2. A backorder in this case is defined as
the unit which has been backordered at least 7.

In order to develop the expected number of backorders in a unit of time, we follow the same
logic used to develop (4) and add one additional consideration that the order of size i itself
should remain in the on order condition after time 7" with probability a, . Therefore, the expe-
cted number of backorder is

S (B ) @

Indeed, (8) is a generalization of (4) which is a special case when T equals zero.
The expected backorder level is

> (j-s) Pl (9)

jEstl

Now, we have the last case, the lost sales case. We develop the expected number of lost
sales in a unit of time using (1). We assume that customers adopt the all or nothing policy
explained in secion 1. If a customer places the order of size i and the net on hand inventory
is less than 7 (or, the outstanding order is greater than S-7), then the customer will reject the
order. Therefore, the expected number of lost sales is

A[IZ:II - f; ‘ (Ps—i+lv+‘Psvi+2'+ "'4'1)3) “{'i:v_, Ii . fiJ (10)
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From (10), we can easily obtain the expected number of lost customers in a unit of time by
omitting the multiplication factor ¢ in both terms.

We defined the performance measures as decreasing functions of S. But, they are essentially
the same with those of Feeney and Sherbrook (1966) who developed the measures in increasing
functions of S.



4. Discussion

We have presented (S-1, S) inventory models which can be widely applicable to practical
inventory systems. To facilitate the use of our models, we have developed formulae in a recur-
sive form. The essential feature of our paper is the dependence on results from a queueing
process. This approach is common in the literature (e.g. Chandrasekhar Das 1977, Barrer 1957).

To compiete our models, we comment on the partial filling policy in the lost sales case in
which an order is partially filled until the net on hand inventory reaches zero stock. Here, we
change the assumption of the delivery time distribution and assume it to be arbitrary with a
mean b, regardless of the order size. In this case, Feeney and Sherbrooke (1966) has found
the equilibrium distribution of @ and that is

Po= 1+ 3 P/P)"
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where f'* is the i-fold convolution of {f,} .
(11) has a rather complex form. For computational purposes, we propose a matrix H which

has the properties, f** (n) =H(0, n) (n=0, I, -+ S-1) and if‘* (j)=Hi (0, S).

The matrix is

0123 - S-1 S
010 fi i fs = for Bs
110 0 fi fr  feo Bs,
H=210 0 0 fi - fss PBs
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S| 1 12)

where for i=1, 2,---, S
ﬂi: Z f,.

The proof is given in the Appendix.
The expected number of lost sales in this case is

AS i (3 Pa,). (13)



Using the tradeoffs between the previously developed performance measures and other cost
measures such as the expected inventory, we can construct various cost models to determine

the optimal S*
In this paper, we focused on the mathematical aspect of our results. Detailed explanations

of the system, applications and proofs are available in our previous works, but we recommand
that readers interested in the application of our results refer to Nahmias (1981).

Appendix

1. Derivation of a Recursive Formula

Fakinos(1982) has developed a generalization of Erlang’s B formula which is equivalent
to the equilibrium distribution of @ in the lost sales case in our paper. His result is
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Thus, we have
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2. Proof of f"(n)= H’(O n) and Z o) ~H(0,S)

We shall prove this by mathematical induction. Clearly, it holds for :=0 and ¢ =1. Suppose
fory >1

" (n) ~H" (0, n) for n=-0,1,-,S 1

> PG H(0, S).

We must show that it holds for i=y+1.
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Hence, we complete the proof.
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