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Abstract Radiorespirometric  analysis revealed that
Pseudomonas sp. strain KK1 isolated from a soil contaminated
with petroleum hydrocarbons was able to catabolize polycyclic
aromatic hydrocarbons such as phenanthrene and naphthalene.
The rate and extent of phenanthrene mineralization was
markedly enhanced when the cells were pregrown on either
naphthalene or phenanthrene, compared to the cells grown on
universal carbon sources (i.e., TSA medium). Deduced amino
acid sequence of the Rieske-type iron-sulfur center of a putative
phenanthrene dioxygenase (PhnA1) obtained from the strain KK 1
shared significant homology with DxnA 1 (dioxin dioxygenase)
from Spingomonas sp. RW1, BphA 1b (biphenyl dioxygenase) from
Spingomonas aromaticivorans F199, and PhnAc (phenanthrene
dioxygenase) from Burkholderia sp. RP007 or Alcaligenes
Jaecalis AFK2. Northem hybridization using the dioxygenase
gene fragment cloned from KK showed that the expression of
the putative phn dioxygenase gene reached the highest level in
cells grown in the minimal medium containing phenanthrene
and KNQO,, and the expression of the phn gene was repressed
in cells grown with glucose. In addition to the metabolic
change, phospholipid ester-linked fatty acids (PLFA) analysis
revealed that the total cellular fatty acid composition of KK1
was significantly changed in response to phenanthrene. Fatty
acids such as 14:0, 16:0 30H, 17:0 cyclo, 18:1w7¢, 19:0 cyclo
increased in phenanthrene-exposed cells, while fatty acids such
as 10:0 30H, 12:0, 12:0 20H, 12:0 30H, 16:1w7c, 15:0 iso
20H, 16:0, 18:1w6¢, 18:0 decreased.

Key words: Phenanthrene, PLFA, dioxygenase, Pseudomonas
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Polycyclic aromatic hydrocarbons (PAHs) such as anthracene,
chrysene, naphthalene, phenanthrene, and pyrene are considered
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to be serious environmental contaminants, because they
are not readily degradable and hence persistent in the
environment [4, 8, 25, 26]. Microbial biodegradation of
some PAHs has been extensively studied. Degradative
mechanisms or metabolic pathways of PAHs such as
anthracene, naphthalene, phenanthrene, and pyrene have
been elucidated or proposed [3, 5, 10, 17, 18]. Recently,
the dioxygenase genes for phenanthrene catabolism have
been studied and well characterized in a few bacterial
strains, even though only limited information is available
[18,24]. To the best of our knowledge, there is no
information on phenanthrene catabolism by Pseudomonas
rhodesiae. Thus, it is significant to analyze genes for
catabolism of phenanthrene in Pseudomonas rhodesiae
KK1 in a hope that more information can be obtained
on the genetic diversity for phenanthrene degradation.
Pseudomonas rhodesiae KK, the strain used for this study, is
known to have the capability to degrade a two-ring polycyclic
aromatic hydrocarbon naphthalene [13]. The present study
was carried out as a continued work to evaluate the catabolic
potential of strain KK for a three-ring polycyclic aromatic
hydrocarbon, phenanthrene, as well as to analyze the
cellular responses of KK1 cells to the hydrocarbon. The
cellular responses of the strain KK1 following its exposure
to phenanthrene have been determined by Northern
hybridization and change of phospholipid composition.

MATERIALS AND METHODS

Evaluation of Phenanthrene Mineralization by
Radiorespirometry

The catabolic potential of strain KK1 for phenanthrene
was determined by measuring the radioactivity of “CO,
evolved from mineralization of [9-“C]-labeled phenanthrene
(specific activity, 14.0 mCi/mmol; Sigma Chemical Company).
Thus, cells were grown in 100 ml of TSB supplemented
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with either phenanthrene (100 pg) or naphthalene (1,000
jLg) to the late exponential phase, harvested by membrane
filtration, and washed twice with mineral salts solution
(0.10 g CaCl,:2H,0, 0.01 g FeCl,, 0.10 g MgSO,-7H,0,
0.10 g NH,NO,, 0.20 g KH,PO,, and 0.80 g K,HPO,/1 of
dH,O; pH 7.0). Approximately 10° cells from each of the
substrates were then inoculated to 20 ml of mineral salts
solution containing phenanthrene (20 pg) supplemented with
10° dpm of radiolabeled phenanthrene as a sole carbon
source. A 50-ml flask used for the mineralization experiment
was sealed with a Teflon-wrapped silicone stopper through
which was placed an 18-gauge hypodermic needle and a
16-gauge steel cannula. From the cannula, a small vial
containing 1.0 ml of 0.5 N NaOH was suspended to trap
“CO, released by mineralization. The flask was then incubated
at 30°C with shaking (150 rpm) and “CO, formation was
determined for 10 days by periodically removing the NaOH
and replacing it with fresh solution. The radioactivity was
measured by a liquid scintillation counter (LS 5000 TD;
Beckman Instruments, Inc., Fullerton, CA, U.S.A)).

Analysis of Dioxygenases for Phenanthrene Catabolism
in Strain KK1 '

To detect and amplify the dioxygenase genes from the total
genomic DNA of KK 1, we used degenerate oligonucleotide

primers that were designed for the conserved Rieske iron--

sulfur motif of dioxygenases found in many bacterial species
capable of degrading neutral aromatic hydrocarbons [6,
22]. Two universal degenerate oligonucleotides, 5-AGG
GAT CCC CAN CCR TGR TAN SWR CA-3 and 5-GGA
ATT CTG YMG NCA YMG NGG-3, were used as sense
and antisense primers, respectively. Ten ng of genomic
DNA were used as a template. PCR amplification of the
dioxygenase gene fragment from strain KK 1 was performed
in a total volume of 50 ul using Perkin Elmer reagents
(Perkin Elmer, Branchburg, NJ, U.S.A.). PCR reactions
were performed for 1 min at 95°C, cycled 33 times (1 min
at 95°C, 1 min at 55°C, 1 min at 72°C), and then extended
for 10 min at 72°C. The PCR products were inserted into
pGEM-T vector, and transformed into E. coli IM109. A
200 ng portion of the double stranded DNA was used as a
template for sequencing together with both the T7 and SP6
primers. Nucleotide sequencing was carried out using an
ABI 373A automated sequencer (Perkin Elmer, Branchburg,
NJ, U.S.A.). Sequence analysis was performed with Lasergene
software (DNA STAR, Inc., Madison, WI, U.S.A.) and
BLAST searches of the databases. 16S rRNA of
Pseudomonas rhodesiae KK1 has been deposited to the
GenBank data library under accession no. AY043360.

RNA Preparation for Northern Hybridization

In order to analyze the expression pattern of dioxygenases at
the transcriptional level, cells were grown overnight in TSB
to the mid-log phase (O.D. 0.8—1.0), were harvested, and

washed twice with the mineral salts solution. Approximately
10° cells/ml were transferred to the medium containing
5 mg/ml of phenanthrene and incubated for 12 h at 30°C.
Total RNA was extracted from the KK1 cells using a
Nucleospin RNA extraction kit (Clontech Lab., Inc., Palo
Alto, CA, U.S.A)) according to the procedure provided by
the manufacturer. The DNA fragment for a probe in
Northern hybridization was labeled by the random priming
method provided by Promega (Promega, Madison, WI,
U.S.A)). Five milligrams of total RNA were used for Northern
hybridization with a putative phenanthrene dioxygenase probe
obtained from KKI.

Analysis of Phopholipid Ester-Linked Fatty Acids (PLFAs)
PLFAs that exist in strain KK 1 were analyzed in the form
of fatty acids methyl ester (FAMEs) using the MIDI system
(Microbial Insights, Inc., Newark, DE, U.S.A.)). Cells
harvested following 24 h of growth on Tryptic Soy Agar
(TSA) were heated to 100°C with NaOH-methanol (NaOH
45 g and methanol 150 ml in 150 ml of deionized distilled
water) to saponify cellular lipids, and the released fatty acids
were methylated by heating with HCl-methanol (325 ml of
6.0N HCl in 275 ml of methanol) at 80°C. Fatty acid
methyl esters (FAMESs) were extracted by the mixture of
hexane and methyl-fert butyl ether (1:1), and analyzed by
gas chromatography with flame ionization detection (GC-
FID) and gas chromatography-mass spectrometry (GC-
MS). FAMEs were identified by comparing their retention
times and mass spectra with those of authentic standards
provided by the MIDI database. To examine the fatty acids
changed in response to naphthalene exposure, cells grown
on Tryptic Soy Broth (TSB) were collected and washed
twice in potassium phosphate buffer (pH 7.0). The washed
cells were incubated in mineral salts media containing
5 mg/ml of naphthalene. After 24 h of incubation at 30°C,
changes in the composition of FAMEs before and after
exposure to phenanthrene were analyzed by the MIDI
protocols. Other procedures not mentioned above were
performed as previously described [16].

RESULTS AND DISCUSSION

Mineralization of Phenanthrene by Strain KK1

When 10’ cells/ml of strain KK 1 grown on TSA were used
for degradation of phenanthrene, 22% of the compound
was mineralized during the 10-day incubation (Fig. 1). To
study the effect of preexposure of the cells to hydrocarbons
on the mineralization patterns, KK1 cells pregrown on either
naphthalene or phenanthrene were evaluated for phenanthrene
mineralization. KK 1 cells pregrown on phenanthrene exhibited
a much faster rate and higher extent of phenanthrene
mineralization (Fig. 1). Similarly, naphthalene-pregrown cells
demonstrated the similar rate and extent of phenanthrene
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Fig. 1. Rates of phenanthrene mineralization by KKI cells
pregrown with or without naphthalene or phenanthrene.

Cells were grown on the media containing TSB (tryptic soy broth) and
harvested by centrifugation at 8,000 rpm for 10 min, 10° cells were transferred
to phenanthrene media and incubated for 10 days. During the incubation
period, 1 ml of KOH was used to analyze the amount of CO, evolved from
mineralization of ['C]-labeled phenanthrene. The percentage of phenanthrene
mineralized by KKI cells pregrown on naphthalene (NAP), phenanthrene
(PHE), or TSB was determined by calculating [“C]-labeled CO, released
from phenanthrene degradation during the same incubation period.

mineralization, suggesting a close linkage between
phenanthrene and naphthalene metabolism pathways. A
previous study [13] found that naphthalene mineralization
by KK1 cells was more stimulated when the cells were
pregrown on phenanthrene than the cells pregrown on
naphthalene. Phenanthrene can be catabolized to produce
the key intermediate, 1-hydroxy-2-naphthoic acid via
several metabolic steps, and the intermediate can be
further metabolized to 1,2-dihydroxynaphthalene or 2-
carboxybenzaldehyde under aerobic conditions [7, 10].
The compound 1,2-dihydroxynaphthalene can be mineralized
using the naphthalene catabolic pathway. In this regard, the fact
that even naphthalene catabolism can be further stimulated
by phenanthrene than naphthalene appeared to be reasonable.
Kahng et al. [15] reported that expression of genes in
the tbc operons in Burkholderia sp. strain JS150 can be
similarly stimulated by either benzene, toluene, ethylbenzene,
or xylene (BTEX). Accordingly, it was assumed that similar
compounds might chemically affect the gene expression,
and degradation of some compounds having similar catabolic
pathways might be enhanced by the gene in an operon,

Dioxygenase Detection for Phenanthrene Metabolism
in Strain KK1

Total DNA extracted from the strain KK1 was analyzed
for the presence of phenanthrene dioxygenases capable of

NidA (Mycobactenum sp. PYR-1) (277
PhdA1 (Norcadioides sp. KP7) [23]
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Fig. 2. Phylogenetic tree of Rieske iron-sulfur motif sequences
of putative dioxygenases in strain KK1.

Twenty-six amino acid sequences were aligned with other known
dioxygenases responsible for catabolism of aromatic hydrocarbons by
using the Lasergene Megalign program. The bar scale represents 10
nucleotide substitutions per 100 nucleotides. The asterisk [*] indicates
references or sources of dioxygenase amino acid sequences.

hydroxylating unactivated aromatic nuclei using a specific
PCR primer set. PCR products were cloned and 50
randomly selected clones were sequenced. Amino aicd
sequence analysis of the Rieske-type iron-sulfur center of
a putative phenanthrene dioxygenase (PhnAl), obtained
through a PCR process using KK1 genomic DNA as a
template revealed that the deduced amino acid sequence
of PhnA1 shared significant similarity with DxnAI (dioxin
dioxygenase) from Spingomonas sp. RWI1 [11], the
aromatic hydrocarbon dioxygenase C from Rhodococcus
sp. RHAT [17], or BphAlb (biphenyl dioxygenase) from
Spingomonas aromaticivorans F199 [23], and Phndc
(phenanthrene dioxygenase) from Burkholderia sp. RP007
[18] and Alcaligenes faecalis AFK2 [accession no. AB024945,
Genbank data library] (Fig. 2). Our previous study [13]
revealed that the deduced amino acid sequence of the
Rieske-type iron-sulfur protein of naphthalene dioxygenase
in strain KK1 shared 100% similarity with that of NdoC?2
(naphthalene dioxygenase) from Pseudomonas putida
ATCC17484 [30]. The naphthalene dioxygenase was different
in the deduced amino acid sequence from the putative
phenanthrene dioxygenase obtained in this study (Fig. 3).

Expression of Phenanthrene Dioxygenases at the
Transcriptional Level

The expression patterns of naphthalene dioxygenase at the
transcriptional level in response to phenanthrene were
analyzed using Northern hybridization. It indicated that the
phenanthrene dioxygenase gave similar positive signals for
naphthalene and phenanthrene. This result might have
resulted from significant similarity between dioxygenase
sequences for catabolism of naphthalene and phenanthrene
(Fig. 4). Analysis of deduced amino acid sequences revealed
that the putative PhnAl (5-CRHRGNKVCFAEAGNAR-
GFICSYHGW) shared approximately 70% homology with
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Fig. 3. Comparative analysis of amino acid sequences of the putative phenanthrene dioxygenase (PhnAl) from strain KK1 and other
aromatic hydrocarbon dioxygenases. Multialignment was drawn using the Jotun Hein method of the Lasergene Megalign program.
Dioxygenase genes from Pseudomonas rhodesiae KK 1 are marked in bold.

NahAl (naphthalene dioxygenase) in KK1. A little stronger
signal intensity was observed in cells grown in phenanthrene
than naphthalene. However, it was quite possible that the
transcriptional expression of phenanthrene dioxygenase
(PhnAl) in KK1 might be effectively stimulated by either
phenanthrene or naphthalene, in that the expression of
PhnAl at the transcriptional level was also activated by
naphthalene. Our previous study demonstrated that naphthalene
was much more rapidly mineralized by cells grown in
phenanthrene than naphthalene [13]. These findings suggested
a linkage of dioxygenase genes to initial catabolism of
naphthalene and phenanthrene, warranting further intensive
study.

Shift in Cellular Fatty Acid Composition in Response
to Phenanthrene

The total cellular fatty acids of KK1 comprised of eleven
C-even and two C-odd fatty acids (fatty acids less than
0.2% in abundance were not considered in this calculation).
The predominant lipid 16:0 accounted for 32% of total
cellular fatty acids for cells grown on a complex medium

Fig. 4, Expression patterns of the putative phenanthrene
dioxygenases at the transcriptional level.

The signal patterns obtained from hybridization between Rieske iron-sulfur
motif sequences of PhnAl and RNAs extracted from KK1 cells grown on
glucose (Lane 1), naphthalene (Lane 2), phenanthrene (Lane 3),
phenanthrene plus KNO, (Lane 4), and naphthalene plus KNO,(Lane 5).

(i.e., TSA), but the amount increased slightly to 39%
when cells were exposed to phenanthrene (Fig. 5). The
percentages of other fatty acids including 14:0, 16:0 30H,
17:0 cyclo, 18:1w7¢, 18:0, and 19:0 cyclo also increased in
phenanthrene-exposed cells while the abundance of 10:0
30H, 12:0, 12:0 20H, 12:0 30H, 16:1w7¢, 15:0 iso 20H,
16:0, 18:1m6c¢, and 18:0 decreased. It is worthy to mention
that the lipids 14:0 and 16:0 30H, which were not
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Fig. 5. Fatty acid profiles of strain KK1 cells exposed to
phenanthrene.

Total cellular fatty acids were extracted from either TSB- or phenanthrene-
grown cells, and analyzed by GC-FID.
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detectable when the cells were grown on TSA, increased
following the exposure of the cells to phenanthrene. Such
changes in cellular fatty acids composition before and after
exposure to phenanthrene can be ascribed to transport-
related physiological adaptation of the cells in response to
available carbon sources or toxic chemicals. Warth [29]
reported that the conversion of unsaturated fatty acids from
cis to trans has been linked to prevention of membrane
damage by decreasing membrane fluidity. A Pseudomonas
putida strain that was solvent-tolerant and solvent-sensitive
was found to be able to produce rtrans-unsaturated
fatty acids following exposure to o-xylene [21]. Shifts to
utilizable fatty acids have been extensively analyzed in
Alcaligenes, Arthrobacter, Burkholderia, Ochrobacterium,
and Pseudomonas [14, 20]. As for Burkholderia sp. KP
3, capable of mineralizing PAHs including phenanthrene,
lipids 17:0 cyclo and 19:0 cyclo ®8¢ increased in cells
grown in phenanthrene, whereas 16:0, 16:107c, and 18:1m7¢
decreased. A similar shift of fatty acids composition was
also observed in KK1 cells.
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