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It is shown that a standard detinition of the locally increasing
returns to scale at a cost efficient input-output vector consti-
tutes neither sufficient nor necessary condition for the ray
average cost to decrease in a neighborhood of the current scale
of outputs at the given input prices. And then the most general
necessary and sufficient conditions are derived for the ray
average cost globally to increase, remain constant or decrease
for any given input prices as the level of outputs produced
increases proportionlly.

I. Introduction

The concept of scale economies and diseconomies plays an impor-
tant role in the theory of firm and market organization. It describes
whether a proportionate increase in the uses of inputs can or cannot
bring forth the corresponding increase in the outputs at a greater
proportion. Naturally these technological properties will properly
influence the structures of the associated cost functions. In fact the
same terminologies are widely being used to describe whether the
(ray) average cost curve slopes up- or down-ward. But these uses
have not been fully justified yet. Is it really true in general that the
ray average cost is increasing, constant, or decreasing as the out-
puts increase proportionately, if and only if the production technolo-
gy exhibits the decreasing, constant, or increasing returns to scale
respectively?

This equivalence relation was established long ago only for the
cases where the.production technologies are represented by
homogeneous production functions with convex isoquants. Recently
Baumol (1977) has shown that if a proportionate increase in the

* The author is professor at the department of economics, Seoul National University.
He appreciates the comments of Professors W.J. Baumol and Dosung Lee. The financial

aid from Asan Foundation is gratefully acknowledged.
[Seoul Journal of Economics 1990, Vol. 3, No. 1]



2 SEOUL JOURNAL OF ECONOMICS

uses of inputs at a cost efficient point can bring forth the corres-
ponding increase in the outputs at a greater proportion, then the ray
average cost will always decrease as the outputs increase prop-
ortionately from that point. Panzar and Willig (1977) established an
equivalence relation successfully between the technological prop-
erties and the structures of the associated ray average costs. But
this equivalence is not quite the same as the one raised in the above
paragraph! and furthermore is valid only when the production func-
tions and the cost functions are differentiable with respect to the
input and output variables.

In this paper, I will investigate the most general case in order to
clarify some conceptual problems and to generalize the pre-existing
results. It will be shown that a standard definition of the locally
increasing returns to scale at a cost efficient input-output vector
constitutes neither sufficient nor necessary condition for the ray
average cost to decrease in a neighborhood of the current scale of
outputs at the given input prices. And then the most general neces-
sary and sufficient conditions will be derived for the ray average
cost globally to increase, remain constant or decrease for any input
prices as the level of outputs produced increases proportionately. In
Section II, the basic notations and concepts will be introduced and
discussed. The Panzar-Willig equivalence is reviewed in Section
III, and our main results are reported in Section IV.

II. Notations, Definitions and Concepts

Consider the case where m outputs are produced from n inputs.
Let y € RY and x € R} denote the output and the input vector
respectively. Standard definition of the input requirement set V(y)
for producing the output vector y gives

V(y) = {x € R} |y can be produced from x{.

We assume that the set V(y) is nonempty and closed for every y in
RY. 1t is the only assumption regarding the production technology
that I make in this analysis. It is also standard to define.

Definition 1
Returns to scale are said to be increasing, if and only if x € V(y)
implies ax € Int V(ay) for every @ > 1 and for every y € R

'See Sections III and IV below
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Returns to scale are said to be constant, if and only if x € V(y)
implies ax & V(ay) for every @ > 0 and for every y € R
And returns to scale are said to be decreasing, if and only if x
V(y) implies ax € Int V(ay) for every @ € (0, 1) and for every y
€ Rp2

Of course this definition is a global one. The following L.emma
provides an alternative form of Definition 1.

Lemma

Returns to scale are increasing, if and only if x & Int V(y) im-
plies Bx & V(By) for every B € (0, 1) and for every y € R7.
Returns to scale are constant, if and only if x & V() implies Bx &
V(By) for every 8 > 0 and for every y € RY. And returns to
scale are decreasing, if and only if x # Int V(y) implies Bx & V(]
y) for every B > 1 and for every y & RT.

Proof : Only the proof for increasing returns to scale will be pro-
vided. Suppose the returns are increasing. If the Lemma is false,
then there will be a number 8 = (0, 1) and x & Int V(y) such that
Bx e V(fy) holds. Now by Definition 1, one has (1/ 3)(8x) = Int
V({(1/ B8 X By)), which is contradictory. Consider the converse. If
there exists an x & V(y) and a number @ > 1 such that eax & Int
V(ay), then we have (1/a)ax) & V((1/a)(ay)), which is again
contradictory.
Q. E. D.
The expositions in Definition 1 and Lemma are mutually symmet-
ric. For instance, the increasing returns to scale of Definition 1
describe the scale characteristic when one expands the scale while
those of Lemma describe when one contracts. In view of this aspect,
the local definitions of increasing, constant and decreasing returns
to scale can also be given in two ways respectively. It is because,
given a production vector (x, y), the scale characteristics when one
expands the scale are not necessarily identical to those when one
contracts. The following Definition 2 provides the detail.

Definition 2

Returns to scale are locally increasing from the input-output vec-
tor (x, y) with x & V(y), if and only if there exists a real number u
> 1 such that ax = Int V(ay) for every @ = (1, u]. Returns to
scale are locally increasing up to the input-output vector (x, y) with

’Here the notation Int A denotes the interior of the set A.
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x & Int V(y), if and only if there exists a real number d = (0, 1)
such that fx & V(By) for every 8 < [d, 1). Returns to scale are
locally increasing at (x, y), if and only if they are locally increasing
both from and up to (x, y). Notice that the returns to scale cannot
increase locally at any (x, y), if either x € Int V(y) or x & V(y)
holds. Baumol’s definition is that of the increasing returns to scale
from only. Similar definitions can be provided for the cases of the
locally constant and decreasing returns to scale.

Let C(y) denote the cost necessary to produce the output vector y
according to the technology V(:). It is assumed that each input is
purchased at a constant price vector w = (wy, wa,-+-, w,), w; > 0 (i
= 1,---, n), in the competitive markets. The ray average cost,
according to Baumol, can be defined as C(Ay)/ A for each output
vector y, where the positive real number A plays the role of a scale
parameter.

The technology V() is not the only technology which will generate
the cost function C(-). Let

V() = {x € R} | There exists x” in coV(y)
such that x* < x holds}

where coV(y) denotes the closed convex hull of V(y). It is easy to
show that V*(y) is non-empty, closed, convex and monotone for every
y in R%. I will name this as the convexified technology of V().
When C*(-) denotes the cost function generated by the convexified
technology V*(*), it can be shown by a standard duality argument
that C(y) = C*(y) holds for every y in R%. Hence any technological
characteristic of V(-) that will influence the structure of the cost
function will be preserved in the convexified technology V*(-) exactly
and exhaustively. A natural step to infer the technological charac-
teristics from a given cost function will narrow the scope to the
investigation of the convexified technology V*(-) rather than the ori-
ginal V().

III. Panzar-Willig Equivalence

It will be useful to clarify exactly what is the equivalence relation
that Panzar and Willig (1977) established, before getting into our
main analysis. They assumed a continuous production function ¢ (*)
such that an output vector y can be produced from the input vector
x, if and only if ¢(x, y) > O holds. Their main interests were to
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FIGURE 1

find out the conditions when the marginal cost pricing can cover at
least the total production cost. In pursuing their goal, they derived
an equivalence relation of our interest, when the production function
and the cost function are differentiable with respect to the input
and output variables. This relation can virtually be stated as

9 ¢(Ax, Ay) > 0 iff 9 (M) < 0

o A a=1 < 9 A A i=1 >

if the input vector x is cost efficient for the output y. It is of
course a very remarkable and powerful result. But it is not suffi-
cient enough to conclude that the returns to scale are increasing,
constant or decreasing, if and only if the ray average cost is de-
creasing, constant or increasing globally or locally. The following
two examples will clarify this aspect.

Example 1.

Let Q(y) be the isoquant for the output y. Suppose the returns to
scale are locally constant at (x, y) in Figure 1, iie., ax € V(ay)
for every a € [d, u] for some d € (0, 1) and u > 1. Thus
i’“a“;%”w = ,ajf(ﬁ(%xl)l ._, = 0 holds in this case. But if the
expansion path passes through A — x — B as depicted in Figure 1,
then one must have C(Ay)/ A < C(y) for every A € [d, u] with
A # 1, and therefore the ray average cost is not constant in any

neighborhood of the current scale of the output y.
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FIGURE 2

Example 2

Consider the non-convex technology of Figure 2. Its convexified
technology V*(*) exhibits globally increasing returns to scale. Then
the ray average cost will decrease as the scale of production is
augmented for any output vector y > 0,2 ie.

2 ,C(1y)
o A ( A )' =1 <0
holds everywhere for every w > 0. Consequently
9 ¢(Ax, Ay)
d A a=1 >0

will hold for each cost efficient input-output vector (x, y) at any w
> 0. But the input vector x° in Figure 2 can never be cost efficient
for the output vector y° at any price vector w > 0. So it is not
precluded that the returns to scale are locally decreasing at xY even
when the ray average cost is decreasing in a neighborhood of the
current scale of the output y°.

IV. Theorems and Proofs

First I will investigate the possibility of the local equivalence

3See Theorem 2 in Section IV



RETURNS TO SCALE 7

and then derive the global equivalence relation. The following
Theorem 1 summarizes the results for the local returns to scale and
the slope of the ray average cost curve.

Theorem 1
Let C(y) > 0, x € V(y) and C(y) =

1) If ax € Int V*(ay) holds for every @ & (1, u) for some
number u > 1, then one has C(y) > Clay)/ a.

2) If C(By)/B > C(y) holds for every 8 € (I, 1) for some
number [ € (0, 1), then one has Bx & Int V*(By).

Proof : 1) This was proved by Baumol originally. Since one has ax
€ Int V*(ay), it immediately follows C(ay) < wax = aC(y).
2) Assume FBx € Int V*(8y). Then one obtains B C(y) = Bwx >

C(By), which is a contradiction.
Q. E. D.

The first part implies that when x is cost efficient for y and the
returns to scale are locally increasing from (x, y), then the ray
average cost will decrease at least for a while as the level of out-
puts increases proportionately from y. The second part implies that
when the ray average cost increases at least for a while as the level
of outputs decreases proportionately from y, then the returns to
scale are locally increasing up to (x, y). A theorem parallel to
Theorem 1 can be easily established for the locally decreasing re-
turns to scale and increasing ray average cost in a symmetric way.
The converse of each part in Theorem 1 is not necessarily true. The
following Examples 3 and 4 illustrate this.

Example 3

Consider the two isoquants Q(y%) and Q(ay®) in Figure 3. The
input vectors x° and x* are cost efficient for the output vectors y°
and ay® respectwely The value of the real number @ is given so
that the point a x° lies between A and mx in Figure 3. For each
number ¥ € (0, 1) let the point 7 x4 (1 — 7 )x’ be the cost
efficient input vector for the output 7y° 4 (1 — 7)a y°. Then one
obtains

CLy +A=7)ay)y=wl[rx®+ (1 — rn] <

[7 + A= 7)a)m®=[7 + 1 — 7)a]C(O)
and so the ray average cost decreases at least for a while as the
outputs increase proportionately from y°. Now let the point [Y +
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FIGURE 3

(1 — 7)m]x°® lie on the isoquant Q([7 + (1 — 7)a]y°) for each
Y € (0, 1). Then one obtains a case where the returns to scale are
locally decreasing from (x°, y°) in spite of the decreasing ray aver-
age cost.

Example 4

Consider the two isoquants Q(yo) and Q(ﬁyo) in Figure 4. Again
the input vectors x° and x are cost efficient for the output vectors
y% and By° respectively. The value of the number & is chosen such
that the point 8x° lies between B and mx° in Figure 3. For each
number ¥ € (0, 1) let the input vector ¥y mx’ 4+ (1 — ¥ i’ = [Ym
4 (1 — 7)]x° lie on the isoquant for the output [¥ 8 + (1 — 7)]
y%. Then it is clear from the figure that the input [¥ 8 + (1 — 7)]
x° cannot produce the output [¥ 8 + (1 — 7)]y° since we have ¥
B+AQ—7v)< rm+ (1 — 7) for each v & (0, 1). Therefore
the technology exhibits locally increasing returns to scale up to (x°
yO). Now let the point 7 x 4 (1 — 7 )x° be the cost efficient input
vector for producing the output [¥ 8 + (1 — 7)]y° respectively
for each ¥ € (0, 1). Then one has

CLr B+ —7H)=wlrx+1— i
=7wx+1— 7w’ < rwpBx®+ 1 — 7)mx°
=[7 B8 +Q1Q— 7)]CHO.

Thus the ray average cost decreases here at least for a while as the
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outputs decrease proportionately from y° even though the returns to
scale are locally increasing up to x°, y%.

Let the input vector x be the cost-minimizer for the output vector
y at the current input prices. It is important to notice that neither
“the locally increasing returns to scale at (x, y)” nor “the falling ray
average cost in a neighborhood of the current production scale”
implies each other. The above Examples 3 and 4 can be made use of
to construct the relevant counter-examples. First, let the returns to
scale increase locally at (x, y) but follow the manner of Example 4
up to (x, y). Then the ray average cost will not be monotone de-
creasing in any neighborhood of the current production scale.
Second, let the ray average cost be monotone decreasing in a neigh-
borhood of the current production scale but follow the manner of
Example 3 when one expands the production scale. Then we have the
locally decreasing returns to scale from (x, y) here.

So far we have not been able to establish the local equivalence
relation between the returns to scale and the shape of ray average
cost curves. But the situation changes when we investigate the glob-
al equivalence. The following Theorem 2 summarizes the most
general necessary and sufficient conditions for the ray average cost
globally to increase, to remain constant, or to decrease as the out-
puts increase proportionately at all outputs y > 0 and at all input
prices w > 0.
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Theorem 2

The ray average cost C(Ay)/ A is globally decreasing, constant,
or increasing for every output vector y > 0 and for every input
price vector w > 0 as the scale parameter A increases, if and only
if the returns to scale are globally increasing, constant, or decreas-
ing respectively in the convexified technology V*(:).

Proof : The sufficient part for the ray average cost to be globally
constant is widely known. Now suppose the returns to scale are
globally increasing in V*(). Let x be cost efficient for some y > 0
at some input price w > 0. For any A > 1 one has wix > C(Ay),
since it holds Ax € Int V*(Ay). Thus A C(y) > C(Ay) holds for
every ¥y > 0 and for every A > 1, which implies a strictly decreas-
ing ray average cost for every y > 0 at any w > 0. The proof for
the ray average cost to increase can be obtained in a similar manner
when one utilizes the definition given in the Lemma.

Now let us prove the necessary part for the ray average cost to
decrease. Let C(y) > C(Ay)/ A hold for every y > 0, for every w
> 0, and for any A > 1. Let x & Int V*(y). It suffices to show that
Bx & V*(By) for every B € (0, 1). By Minkowski’s “Supporting
Hyperplane Theorem” there exists a vector w # 0 such that wx <
wz for every z € V*(y). From the monotonicity of V*(), one can
conclude w > 0. Suppose that the input price vector is given as this
w. Then clearly one has wx < C(y). Now assume that there exists a
number 3’ € (0, 1) such that 8'x € V*(8°y) holds. It follows that
C(B’y) < B'wx < B’C(y) and in turn C(B3°y)/ 8" < C(y), which is a
contradiction to the falling ray average cost. So we must have j3'x
& V*(B’y) for any number 3’ € (0, 1). Similar proofs can be
provided to the cases where the ray average cost is constant or
increasing.

Q. E. D.
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