IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 12 DECEMBER 1998

|PAPER Special Issue on VLSI Design and CAD algorithms

Efficient and Flexible Cosimulation Environment for DSP

Applications*

SUMMARY Hardware software codesign using various hard-
ware and software implementation possibilities requires a cosim-
ulation environment which has both flexibility and efficiency. In
this paper, a hardware software cosimulation environment is de-
veloped using the backplane approach and optimized synchro-
nization. To seamlessly integrate a new simulator, this paper de-
fines and implements the backplane protocol for communication
and synchronization between client simulators. Automatic inter-
face generation facility is also devised for more effective cosimu-
lation environment. To enhance the performance of cosimulation
backplane, a series of optimized hardware software synchroniza-
tion methods are introduced. FEfforts are focused on reducing
control packets between simulators as well as concurrent execu-
tion of simulators without roll-back. The environment is imple-
mented based on Ptolemy and validated with a QAM example
run on different configurations. With optimized synchronization
method, we have achieved about 7 times speed-up compared with
the lock-step synchronization.

key words: Hardware-Software Cosimulation, Cosimulation
Backplane, Optimized Synchronization

1. Introduction

Cosimulation is the major tool to validate the model of
heterogeneous reactive embedded systems, which usu-
ally consist of programmable components as well as the
application specific hardware modules. Through cosim-
ulation, we can validate the functional correctness of
the hardware and software working together, ahead of
the final synthesis step. Also, cosimulation enables us
to evaluate each design decision such as partitioning
and component selection[1].

Cosimulation has gained extensive research focuses
but with diverse approaches depending on their differ-
ent emphasis on conflicting goals such as cosimulation
speed, accuracy, flexibility, and so on[2]. To make a
flexible cosimulation environment, we use a heteroge-
neous approach rather than a unified one. In the uni-
fied approach, the entire system, both hardware and
software, is described with a single specification model,
usually a hardware description language such as VHDL.
The unified simulation is simple but computationally
inefficient and not flexible. In a heterogeneous ap-
proach, component simulators are separate processes
running concurrently and cooperatively. We propose a

tThe authors are with the Department of Computer En-
gineering in Seoul National University

*Parts of this paper were presented at ASPDAC’98
and DATE’98 conferences. This work was supported by
KOSEF(971-0906-040-2).

Wonyong Sung! and Soonhoi Haf, Nonmembers

backplane approach, in which a new simulator has only
to define the interface to the backplane, leaving exis-
tent simulators unchanged. Then, we may employ dif-
ferent models of component simulators with a tradeoff
between accuracy and performance. Moreover, we can
perform distributed cosimulation, in which component
simulators run on different machines.

In a heterogeneous approach, component simula-
tors communicate with each other. The previous ap-
proaches usually adopt direct connection of hardware
simulators and software simulators(or host-compiled
processes) [3][4][5]. They have a major drawback that
a new simulator can not be added without cost of re-
defining the interfaces of previous existent simulators.
Defining interface, however, is a tedious and error prone
work. Moreover, in each design iteration, the partition
is remade and the interface code should be rewritten.
Our work also presents an automatic interface genera-
tion to reduce the user’s burden[6].

As system complexity grows, cosimulation speed
becomes a great concern. Research efforts on cosim-
ulation speedup include using hardware accelerator,
changing cosimulation models across levels of abstrac-
tions, and reducing the cosimulation overheads as tried
in this paper. Since the proposed backplane processes
the messages between component simulators with event
driven scheduling mechanism, timed cosimulation can
be performed. The time is synchronized when the hard-
ware and software simulators exchange messages[5]. To
reduce the cosimulation overhead, one may use the op-
timistic approach in which a component simulator rolls
back when it receives a past event from the other simu-
lator. This approach assumes that the component sim-
ulator supports rollback mechanism that is usually not
the case. In this paper, we propose another approach to
optimize the conservative timed cosimulation. In case
the application task graph is tree-structured, we obtain
a significant gain of cosimulation speed.

This paper is organized as follows: Section 2 re-
views our codesign workflow. Section 3 describes the
concept and implementation details of the proposed
cosimulation backplane with the automatic generation
facility. Section 4 presents methods to optimize the
cosimulation performance and section 5 shows an ex-
ample and experimental results. Finally, we conclude
by summerizing our main contribution.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 12 DECEMBER 1998

O— o

SDF or DDF Cé

O
O
Al gorilhv Simulation

Partition

VHDL ‘

\L interface insertion

|

Code generation
with interface

BP domain

| T e

compile with construction
Unix CC Simulato)

Compiler | Unix ——— VHDL Synthesize
Process cosi m¢ul ation simulator

EraluatiS Not satisfied
O.K.

DSP executablefilg

Fig. 1 Hardware Software Codesign Workflow

2. Codesign workflow

The codesign workflow consists of many stages from
system specification to system synthesis. The codesign
process presented in this paper is shown in figure 1.

A dataflow graph is chosen as an initial specifi-
cation for a given application and simulated for algo-
rithm verification. In a dataflow graph, a node rep-
resents a functional module and an arc represents the
flow of data which also indicates the dependency be-
tween nodes. A node can be executed only when all
its input arcs contain data samples produced from the
source node. Dataflow models are effective for repre-
senting most types of DSP applications[7].

The next step is to partition the initial dataflow
graph into two kinds of subgraphs, software graphs and
hardware graphs. After partitioning, each subgraph is
modified in order to add interface nodes at the graph
boundary. From partitioned graphs, C and VHDL
codes are generated including interface code. The gen-
erated C codes are compiled into UNIX processes and
the generated VHDL codes from the hardware graph
are passed to the VHDL simulator for hardware simu-
lation. Therefore, several UNIX processes are running
concurrently and cooperatively: C processes and VHDL
simulators.

With simulation results, the evaluation module
makes a decision whether the current partition satis-
fies the system requirements. Unless they are satisfied,
the codesign process continues to iterate from the parti-
tion stage to the evaluation stage. Otherwise, the soft-
ware executables and hardware modules are synthesized
through a compiler and a behavioral synthesis tool, re-
spectively. Of the whole codesign procedure in figure 1,
this paper covers the topics related with cosimulation
within the dashed line box.

3. Cosimulation Backplane
3.1 Cosimulation configurations in previous works

To build a cosimulation environment is to combine het-
erogeneous simulators. For hardware simulation, most
people use a hardware simulator such as a VHDL or
Verilog simulator. For software simulation, however,
there have been three approaches pursued with their
own merits and limitations.

First, a software program is executed with a pro-
cessor simulator connected to a hardware simulator,
which may achieve the most exact timing estimation[8].
For large systems, however, this approach is prohibitive
because of its extremely long simulation time. Second,
a software program is run as a module of the hardware
simulator via its foreign interface [9]. In this approach,
software processes, which are fully controlled by the
VHDL simulator, are not adequate to model separate
concurrent processes with the hardware.

Finally, a software program is executed on the de-
velopment processor and communicates with the hard-
ware simulator through UNIX IPC. In [3], the hard-
ware and software descriptions are treated as separate
UNIX processes which communicate through BSD sock-
ets. Since it is targeting a specific application, it uses a
fixed communication model between the hardware and
software. A similar approach in [4] maintains two sepa-
rate descriptions for hardware and software through the
entire codesign process and models the communication
as a message passing system. These works, however,
consider only a fixed combination of simulators and a
fixed topology of connections.

In all aforementioned approaches, there is no stan-
dard interface defined so that new communication code
needs to be defined to integrate a new simulator. Also,
data exchange between the software and the hardware
parts is hidden in the simulated program. So, it is not
visible to be probed. For arbitrary connection of vari-
ous simulators, [10] defines a standard interface through
which each simulator can communicate with others. In
their approach, they use a C process as a standard inter-
face so that a simulator should send the data to an auto-
matically synthesized C process from which the destina-
tion simulator receives it. Their approach supports only
dataflow model of computation, which implies timed
cosimulation is not possible. Using a standard inter-
face between heterogeneous simulators is the main fea-
ture of the Ptolemy[11], their cosimulation platform.
Even though our research is also based on the Ptolemy
environment, we propose another approach: backplane
approach.

In our backplane approach, software simula-
tors(processes) are run on the development processor
and communicate with the backplane. A hardware sim-
ulator also communicates with the backplane. There-
fore, the backplane is the master process to manage

SUNG and HA: EFFICIENT AND FLEXIBLE COSIMULATION ENVIRONMENT FOR DSP APPLICATIONS

Synchronization Rules

Simulators
"\\Communication Rules

Link Modules|

Implermentation Rules

Backplane

Cosimulation Environment Program

Fig. 2 The architecture of cosimulation backplane

the interprocess communication between software pro-
cesses and the hardware simulators. As a standard in-
terface for cosimulation, the backplane defines several
rules that the client processes should meet. A new sim-
ulator can be seamlessly integrated with the backplane
if it satisfies the interface rules.

A study on automatic interface synthesis for cosim-
ulation is found in [12], where the VCI tool is devel-
oped in order to generate VHDL entities from the in-
terface description called VCI specification. However,
a designer should make the I/O descriptions whenever
the graph topology is modified. A more automated ap-
proach of interface generation is studied in [10]. In their
work, however, the application specification semantics
are limited to a specific class of dataflow known as
SDF[7]. Within the limitation of SDF semantics, they
are able to statically schedule the graph and guarantee
a deadlock free execution.

We aim to develop a technique of automatic in-
terface generation from the partitioned dataflow graph.
As shown in figure 1, the automatic interface genera-
tion is simply realized by insertion of communication
nodes and generation of C or VHDL codes from them.
Communication nodes are predefined in the library. [6]
describes implementation details of automatically gen-
erated interface for VHDL simulation. The generated
interface is compliant to the backplane protocol which
is described in the following section.

3.2 Cosimulation Backplane

Figure 2 shows an architecture of the simulation back-
plane environment designed and implemented in this
paper. The cosimulation environment is composed of
three parts: the backplane program, interface link mod-
ules (one for each simulator) and the client simulators.
To integrate a simulator, one link module needs to be
created and placed between the simulator and the back-
plane. It acts as an interpreter between the simulator
specific communication protocol and the backplane pro-
tocol. When a simulator runs with the generated code,
the need for interprocess communication between the
client simulator and the backplane arises. The back-
plane protocol is a standard way of communication be-
tween them. It consists of three groups of rules. They
are communication rules, synchronization rules, and
implementation rules.

Communication Rules This group of rules de-
termines how the simulator and the backplane estab-
lish, maintain, and terminate the connection. Since the
client simulator is invoked by the backplane, the back-
plane takes the initiative for the establishment of con-
nection by calling a function defined in the link module
for the simulator. Since we use the Berkeley socket IPC
mechanism, the client process may run on a different
machine to make a distributed cosimulation. The back-
plane is the scheduling engine of event driven model
of computation. During cosimulation, the exchange of
packets is serialized by the backplane to ensure the ex-
ecution order of communication among multiple simu-
lators. To terminate the connection, a special control
packet is used. By receiving the termination packet
generated by the backplane, a link module terminates
the connection. When the client module terminates
the simulation by itself, the simulator should notify the
backplane by the sending a termination packet.

Synchronization Rules A group of rules is re-
quired for synchronization between client simulators.
Though there is one physical socket connection between
the backplane and a client process, there may be mul-
tiple logical connections in case there are more than
one arcs at the partitioned boundary. Therefore, each
packet needs to be identified from which port it is sent
or to which port it is delivered. We assign a unique
identification number to each port of the partitioned
graph. When the backplane sends a packet to the client
process, this id number is delivered as a part of the
packet header. Since the backplane also inserts a time
stamp into a header, a packet from the backplane con-
tains three fields: id, time stamp, and message(data).

We enforce that the client process sends a signal-
ing message, DONE signal packet, even though it does
not generate a valid message at the current execution.
In case multiple messages are transferred from/to the
same port, a GO signal packet or a DONE signal packet
is appended on each sequence of packets. By receiving
this signal packet, the client simulator and the back-
plane can detect the end of transmission. These control
packets are associated with negative id numbers.

The difficulty of synchronization among multi-
ple concurrent event driven simulators is well under-
stood[13]. If simulators use different time scales, the
time scale is changed when packing and unpacking the
message. By exchanging the time information, each
simulator is controlled not to make a causality error,
which is a main issue of section 4.

Implementation Rules This group of rules de-
fines how to implement the link module which plays a
role of a driver for its simulator. Like a conventional
device driver in an operating system, its internal im-
plementation is dependent on the supporting simulator
while the backplane calls the same function. There are
five call-back functions defined in the current imple-
mentation as listed in table 1.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 12 DECEMBER 1998

In the setup stage, the backplane calls “modify-
Galaxy” and “setPTInterface” functions once for each
link module. In the “modifyGalaxy” function, the link
module modifies the partitioned graph by inserting the
communication nodes. The “setPTInterface” function
makes a socket code with TCP port number given as
an input parameter. After the C and VHDL codes
are generated, the client simulators are invoked. At
the beginning of cosimulation the client simulator calls
“hostConnect” function to establish a socket connec-
tion with the backplane. In fact, a socket connection is
established between the link module and the simulator.

Before the simulation of VHDL subgraph, the
VHDL entities defined as communication nodes are in-
serted by the “modifyGalaxy” function. Therefore, any
VHDL simulator supporting a foreign interface can be
added without any modification of the program source,
which is an important requirement for a backplane
to support a commercial simulator like Synopsys VSS
simulator. Sending and receiving messages from/to
the backplane is done by the “ReadFromDevice” and
“WriteToDevice” functions, respectively. The internals
of the functions are dependent on the link module im-
plementation. How the automatically inserted entities
work can be found in [6].

4. Optimized Cosimulation

This section describes a series of methods to enhance
cosimulatin performance, while not loosing the bene-
fits of our cosimulation backplane. There are two con-
siderations from which the optimization mode of the
cosimulation is selected before the cosimulation is per-
formed. One is the topology of the partitioned graph
and the other is whether the client simulator discloses
its scheduling information or not.

Basic Conservative Timed Cosimulation:
When the backplane sends a message to the client simu-
lator, it appends the timestamp to indicate the current
global time. The client simulator executes until its lo-
cal clock reaches the global current time and sends the
response packet. Even when there is no response packet
at the current global clock, the client simulator sends
a dummy response packet to notify the end of the time
advancement and the local next event time. On receiv-
ing the response packet, the backplane schedules this
response packet to its event queue.

Since not all the event driven simulators allow the
user to get the next event time, the local next time is
assumed a unit time increment from the current local

Table 1 Call-back Functions
modify Galaxy add communication nodes
setP TInterface create socket connection code
hostConnect make a socket connection
ReadFromDevice send a message
WriteToDevice receive a message

start(Lc) =t-1 last(Le) =t

(a) Basic Lock-Step Synchronization

dart(Le) =t-a start(Le) =t-a

last(Lc) =4
(c) Optimization Mode2 (¢ > B)

last(Lc) = t4e
(d) Optimization Mode2 (g <)

Fig.3 Synchronization schemes in various optimization modes

time. This is the basic lock-step synchronization mode
and is depicted in figure 3(a).

While this scheme always guarantees timing cor-
rectness, it will be very inefficient especially when the
event interval of the client simulator is much shorter
than that of the backplane. Since the local clock of
the client simulator can not advance without the back-
plane’s intervention, at least two messages should be ex-
changed at each clock advancement between the back-
plane and the client simulator.

Optimization Mode 1 : The simple but effec-
tive optimization is the use of the next event time to
reduce the synchronization points of cosimulation. If
the client simulator has an API to get the next event
time, the client simulator requests to the backplane to
schedule itself at the next event time not after a unit-
time increment. For example, Synopsys VSS VHDL
simulator provides getNextEventTime() in the CLI
library. As shown in figure 3(b), it reduces the synchro-
nization points drastically especially when the time unit
of the client simulator is much smaller than the event
interval. In basic and optimization mode 1, following
inequality(1) is always true, which means the local clock
is never ahead of the global clock.

(1) G, = last(L.) = start(L.)

Optimization Mode 2 : In mode 2, we allow
the local clock to be ahead of the global clock while in-
equality (2) and (3) is true. The two inequalities mean
that the client simulator is confirmed not to receive any
past event.

(2) G, = start(L,.)

(3) t + € = next(G,.) 2 last(Lc)

As shown in figure 3(c) and (d), if there is only
one client simulator, the backplane sends the global
next event time, which becomes the stop time of the

SUNG and HA: EFFICIENT AND FLEXIBLE COSIMULATION ENVIRONMENT FOR DSP APPLICATIONS

Fig. 4 Mode3 for tree structured graphs

client simulator, with input messages. Then, the client
simulator can proceed until its local clock reaches the
given stop time (case in (d)) or it generates a response
message to the backplane(case in (¢)). If it generates a
response message before the stop time as in figure 3(c),
the message becomes the next event in the backplane.
Otherwise, the client simulator reaches the global next
event time without producing result data as shown in
figure 3(d). Then, the client simulator sends a response
packet which contains the local next event time when
the backplane will reschedule the client simulator.

Optimization mode 3 : Up to mode 2, the
backplane waits until the client simulator responds af-
ter it sends input messages. Therefore, no parallelism
is exploited in the distributed cosimulation. In mode 3,
we allow to send the simultaneous messages to multiple
client simulators at the current global time. The global
clock of the backplane, however, can not advance until
it receives response packets from the client simulators.
We run client simulators concurrently in the distributed
environment.

The more optimization is possible when the par-
titioned graph is tree-structured as shown in figure 4.
Here, the inequality (1), (2), and (3) are not forced to
meet while inequality (4) and (5) are met.

(4) Lc2 2 LcB 2 Lc4

(5) for eachi,next(Le;) = Le;

We topologically sort the partitioned graph : back-
plane, VHDLI1, backplane, VHDL2 in figure 2. Then,
the ancestor simulator can be ahead of the descendant
simulator. Therefore, the backplane keeps track of an
event time for each arc separately, not for the whole
event queue. The backplane allows a past event to the
global queue as long as it is not a past event on the
associated arc. In our experiments, only the top-most
client simulator run in mode 2. The other simulators
run in mode 1 because it is not guaranteed that it will
not receive any past event from the ancestor simulator
after local clock advancement. While other optimiza-
tion ideas are also found in previous works, we believe
that this optimization based on the topological sort is
unique in this paper.

5. Experiments

A 16-QAM modulation is chosen to demonstrate the
proposed cosimulation environment. The QAM16 mod-
ulator produces a 16-point quadrature amplitude mod-
ulated signal. To make a modulated signal wave, a

Table 2 Runtime performance of cosimulation in various
timed cosimulation mode

Mode Total(msec.) BP HW | SW IPC

Basic 2,105,881 13.7% | 4.2% | 0.1% 82%

Model 473,277 39.8% | 0.9% | 0.4% | 58.9%
Mode2 308,643 75.1% 1% 0.7% | 23.2%
Table 3 Number of Control/Data Packets(unit : packet)
Mode Total Data Control

Basic 667,047 3,842 663,205

Model || 24,805 | 3,842 | 20,963

Mode2 21,755 3,842 17,913

Mode3 29,801 10,535 19,266

Table 4 Comparison cosimulation time between serialized and
parallel execution in mode 3 (unit : msec.)

Total HW1 | HW2 SwW IPC

Serial 934,169 | 7,515 | 4,076 | 2,088 | 411,672

Parallel || 586,772 | 7,417 | 4,212 | 2,048 | 403,998

raised cosine pulse is used, where the excess bandwidth
is 100% and the carrier frequency is twice the symbol
rate. At this state, we manually partitioned the graph
into software and hardware aiming to validate the cor-
rectness of the proposed cosimulation method.

The results shown in table 2, 3 and 4 are cosim-
ulation time and overhead obtained by reading sys-
tem timer at certain time points using gettimeofday|()
UNIX system call. We define the cosimulation time into
four parts: VHDL simulation time, software simulation
time, cosimulation backplane time, and transmission
time (IPC : InterProcess Communication). After we
measure the other times, we calculate the backplane
time by subtracting them from the total time. Pro-
filing results in table 2 and 4 are gathered after we
cosimulate the QAM example with 320 loop counts.
Under assumption that the transmission bandwidth is
19,200bps, the 320 loop counts mean 1 second of real
time. The reason why the VHDL simulation time is
much smaller than the total cosimulation time is that
the VHDL model is very simple. The main source of
low performance of cosimulation is the IPC overhead.
The IPC overhead is mainly due to the number of con-
trol packets between the backplane and the client sim-
ulator. Table 3 shows how many control packets are
needed between the backplane and the VHDL simula-
tor. The IPC time as well as the number of control
packets is reduced using mode 1 and 2. The backplane
part, which includes the global event queue manage-
ment, is also reduced according to the reduction of the
number of control packets.

To experiment the optimization mode 3, we par-
tition the hardware module into two parts. Each sub-
module is simulated on the different machine. FEven
though more computational resources are used, as
shown in table 3, the QAM simulation in mode 3 shows
worse performance than mode 2 because the number of
packets are increased due to the partition of the VHDL

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 12 DECEMBER 1998

module. The other reason is that only one of the two
VHDL simulators uses the mode 2. Since the optimiza-
tion approach as well as the partitioned graph in mode
3 are quite different, comparison of mode 3 with other
modes is not meaningful. Thus, we compare the result
in case of serialized run of simulators with that in case
of parallel run.

6. Conclusion

In this paper, we have described a backplane approach
of cosimulation. Using the backplane protocols, defined
and implemented in this paper, we can achieve a cosim-
ulation environment which integrates a new simulator
seamlessly. Only a link module is needed to be cre-
ated for integration and no modification of simulator
source code is required. We assumed that the input
specification is a coarse-grain dataflow graph which is
partitioned into software and hardware subgraphs. By
adding communication nodes to the partitioned sub-
graphs, we achieve automatic interface generation.

Within our cosimulation environment, various
cosimulation speedup approaches are devised and im-
plemented. The efforts are divided into two categories:
shrinking the number of control packets and utilizing
concurrent simulation. Our efficient yet flexible cosim-
ulation environment will be an useful validation and
evaluation tool in the core-based design era.

The proposed approaches have been implemented
based on Ptolemy, which provides our system with
strong facilities such as graphical user interface, vi-
sualization, and C/VHDL code generation from the
dataflow graph. To validate our cosimulation environ-
ment, we showed a QAM example which runs on two
different, configurations of cosimulation.

References

[1] C. Passerone, et. al.,, “Fast and Accurate Hardware-
Software Co-simulation Using Software Timing Estimates”,
CODES/CASHE’ 96, 1996.

[2] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vincentelli, “Design of Embedded Systems: Formal Meth-
ods, Validation, and Synthesis”, Proceedings of the IEEE,
Vol. 85, No. 3,March 1997.

[3] D. Becker, R. Singh, and S. Tell, “An Engineering Environ-
ment for Hardware/Software Cosimulation”, Proc. Design
Automation Conf. ACM, 1992, pp. 129-134

[4] Donald E. Thomas, J. K. Adams, H. Schmit, “A Model
and Methodology for Hardware-Software Codesign”, IEEE
Design and Test of Computers, pp.16-28,September 1993.

[5] K. ten Hagen and H. Meyer, “Timed and Untimed Hard-
ware/Software Co-simulation : Application and Efficient
Implementation”, 2nd. International Workshop on Hard-
ware Software Codesign, Cambridge, Massachusetts, Oct.
7-8, 1993

[6] Wonyong Sung, Moonwook Oh and Soonhoi Ha, ”Interface
Design of VHDL Simulation for Hardware-Software Cosim-
ulation”, Proceedings of APCHDL’97, 1997

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous Data

Flow”, proceedings of the IEEE, vol. 75, no. 9, pp. 1235-
1245, 1987

[8] R. Gupta, C. Coelho, and G. Demicheli, “Synthesis and
Simulation of Digital Systems Containing Interacting Hard-
ware and Software components”, 29th DAC, pp.225-230,
1992

[9] J. P. Soninen, et. al. , “Co-simulation of Real-Time Control
Systems”, IEEE/ACM Proc. of Euro-Dac’95, pp. 170-175,
1995

[10] J. Pino, Michael C. Williamson and Edward A. Lee, “In-
terface Synthesis in Heterogeneous System-Level DSP De-
sign Tools”, IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1996.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschimitt,
“Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems”, Int. Journal of Computer Sim-
ulation, special issue on “Simulation Software Develop-
ment”,vol.4, pp. 155-182, April, 1994.

[12] C. A. Valderrama, et. al. , “A Unified Model of Co-
simulation and Co-Synthesis of Mixed Hardware/Software
Systems”, European Design and Test Conference, 1995

[13] Jayadev Misra, “Distributed Event-Driven Simulation”,
ACM Computing Surveys, Vol. 18,no. 1,pp. 39-65, Mar.,
1986.

Wonyong Sung received his B.S. and
M.S. in computer engineering from
Seoul National University, Korea, in
1990 and 1992, respectively. From
1992 to 1994, he was a member of
technical staff at Nanum Tech. Inc.
in Seoul, Korea. Currently, he is
working towords Ph.D degree at the
same university. His research in-
terest is hardware software codesign
and cosimulation.

Soonhoi Ha is an assistant professor
in the Computer Engineering De-
partment at Seoul National Univer-
sity, Seoul, Korea. His research in-
terests include parallel processing,
design methodology for digital sys-
tems, and hardware-software code-
sign. He has been actively involved
in the Ptolemy project since its
birth. He received the B.S. and
the M.S. degrees in electronics from
Seoul National University, Seoul, Korea, in 1985 and
1987, respectively. He received the Ph.D. degree in the
Electrical Engineering and Computer Science Depart-
ment at U.C. Berkeley in 1992. He is a member of ACM
and the IEEE Computer Society.

