WEBERE H309(1997. 8), 1-18.

A Study on Coarse-grained Service Object Model
for GIS Interoperation

Key-Ho Park*

Abstract : The OMEGA system is intended to support geoscientific modeling tasks, In this paper, we
emphasize those aspects of OMEGA that are relevant to the integration of distributed computational tools
and objects. OMEGA is capable of delegating specialized computations to a variety of external packages
through the SERVER objects and associated interface methods. In this sense, OMEGA may be viewed
as a software coupling system into which existing packages and application-specific softwares may be
plugged with minimal effort. Most of the engineering details of the coupling mechanism are encapsulated
and automated for the end-user.

Key Words: GIS, object-oriented, distributed, interoperability, client/server, service object model

2% : B d7dAe AR FdHe £ARYY FHS Adste A2 24 AAA Y OMEGA A
269 AAG 53] EHIY E2aEY de ARG BHETY BRI 23E Fol AHARA
269 43344 AIE BFHOZ NAY FXE BN, 4 FXUEE B FEHY Bt =3
t}. OMEGA Al2¥2 FZABEMF AT A3 2Ud tgd dF AZEYOE &3 AE
& AT E HASA. olE 98 ¥ 2AZEHAE AR golels EAM SERVERZ: AA FP29 &
BHE HAES B3 AH|AE ATAIHT OMEGA AAHY FALA2ZAN AN} ALd £2ZEY
e 1 7N15EE (1¥edd /s F rue” AA 9 o)§ o] &3te "FEMW, 2)YAALE A=
AW AA, QAAHEALH AA, 22 (DMEL MHAA] Feg A deMdy 4H 5& o
AF7RA AA e BEP G772 1 g HolE ol A Hlste] £ Aol AQE OMEGA Al
292 deolHY Age TRAA o W AA3 AL £Y8 F AT olE NP7 A% ol&3 7
<3 EdE #5332 Ut OMEGA A2¥e AT AFBAILH AFFH “FHI-A" 7x¢
“Componentware” & & shte] HIZHAE AN o AZE0] AA (Coupling) & AT 71V W&
dolg TFIL AUt 6 T8 AL AYFZBALY AA 7} sty AuA AAE ZYEJ}PSEZHN 0)F
2] 9l (heterogeneous) A2 BA|AE7bo] A3 S8 A) o] A ZE T}

FR0{: AARBALE, AANAF, AR, F3 L4, SetoldE/MY, Hu& AXNEY

[. INTRODUCTION

We present a new object-oriented system,
OMEGA (Object-based Modelling Environment
for Geoscientific Applications), which is focussed
on supporting data-intensive modeling activities

in geoscience, Such activities typically make use
of a large array of software tools. In this paper,
we emphasize those aspects of OMEGA that are
relevant for the integration of distributed,
autonomous, and interoperating computational tools
and objects.

* Assitant Professor, Department of Geography, College of Social Sciences, Seoul National University, Seoul Korea,

A Study on Coarse-grained Service Object Model for GIS Interoperation

A computational environment which supports
geoscientific modeling must facilitate the highly
interactive and iterative processes of constructing
and manipulating algorithms and models, as well
as large and complex datasets(Smith et al,
1995). In designing and implementing the
OMEGA system(Park, 1994), we have addressed
the issues involving the development and
integration of systems capable of the various
levels of abstraction of data and associated meta-
procedures envisioned in the EOS Data and
Information System (Asrar and Dokken, 1993).
A prototype of OMEGA has been implemented
and fully operational,

The computational environment for geoscientific
studies is a comprehensive system which
includes, in the least, the following components:

@ a rich data model accommodating a wide
spectrum of complex objects, @ language support
for data definition and manipulation, @ a
powerful and efficient programming language, @
a persistent storage management system and
query language, ® an application development
environment integrated with specialized computing
tools, ® friendly user interfaces,

Existing information systems do not provide
adequate support for higher level abstraction and
manipulation of computational modules for
geoscientific modeling activities. To facilitate
dynamic configurations of a user' s computational
environment, we propose a computational server
management system in which not only data but
also computations are abstracted, organized, and
accessed at the level of ‘server . By the generic
refer to the tools and

packages that geoscientists employ for their

term ‘server , we wil

research. An abundance of special purpose systems

systems and tools is available today: image
processing and data visualization, symbolic
computation for logic and mathematical equations,
statistical packages, to name a few., Most of the
current systems employed in geoscientific research
are either ad hoc integrations of components, or
monolithic systems that lump a large amount of
functionalities into a single module. That is, the
system architecture has either too little or too
much structure, which results in either absence
of or duplication of capabilities. Development of a
computation environment should not involve re-
inventing wheels. Instead, a system should be
dynamically extended and configured based on
together time-proven software packages that
scientists use. Systems of open and meodular
architecture are easier to modify and extend. The
coupling of various components of the system
must be loose enough that they may be replaced
with new, experimental, or custom-made pieces.
In this regards, we observe the lack of well-
founded abstractions for system components and
high-level protocols for the intra-system interfaces,

I. Overview of OMEGA

The goal of OMEGA is to build a better
computing environment for geoscientific researchers
(referred to as OMEGA ‘users). The scope of
OMEGA includes a conceptually rich and
uniform data model, an expressive user interface
language, specifications and methodologies for
manipulating spatial objects, a variety of value-
added system abstractions, and implementations
techniques that bridge theory and practice.
OMEGA embodies a new data model integrated

2

with novel abstractions as well as features drawn
from existing data models, In OMEGA, we have
refined the notion of ‘object’ by abstracting an
object as a ‘server, and encapsulating interface
methods of the object as its ‘services, A
particular server(object) has a name(Oid) to
which users submit their requests. Requests from
clients are valid if they are among the set of
services publically advertised by the server. A
client’ s request(method selection) is handled
within the server by dispatching (method
invocation) the appropriate service routine
(method implementation). When the execution of
the routine has completed, the server delivers the
results to the client. The main rationale for an
encapsulated service-based interface of objects is
that the conceptualization and processing of data
queries and transactions become clean and simple
because of the uniform protocols of client-server
interactions,

The clients interact with a server in a
fundamentally services are desired, but not the
services are to be processed inside the server.

OMEGA has a user-interface language, SOUL
(Structured OMEGA User Language). A user s
conceptualizations of an application problem may
be represented by the constructs and built-in
primitives in SOUL as a basis. SOUL is a
multi-faceted language, and an ultimate medium
through which users interact with, and hamness
the underlying computational infrastructure of
OMEGA. SOUL, as a computation command
language, has an extremely simple syntactic
structure, much like the “select from where” of
SQL. The structure of SOUL expression is a
triple “[O,M,P]”, where O,M,P represents
syntactic blocks that are respectively interpreted

MEEE H305R(1997. 8), 1-18,

(evaluated) to be an object, method, and
parameter,

P is optional and may be absent if the
method denoted by M requires no trailing
parameters, Each of these syntactic units may
have nested internal structures, which will
eventually be evaluated to be either object,
method, or parameters depending on the position
within the triple,

SOUL bears many similarities to the method
invocation of object oriented programming
languages. The differences are in the uniform
treatment of attributes and methods. SOUL
obviates the dot-notations ('’), which is used to
access object attributes in most object-oriented
languages. Unlike most other object-oriented
models, OMEGA allows uniform and clean user
interfaces to objects by treating attributes as
methods. The interfaces of reading and assigning
attributes of the OMEGA objcts are achieved
uniformly in terms of method invocations, While a
method may be for efficiency (ie, a method is a
constant function), the issue of whether methods
are stored or evaluated is really an implementation
issue that is orthogonal to the conceptual
uniformity of the method-based interface of the
OMEGA objects,

Unlike other extensible database systems that
are coupled with external programming languages
(eg., C++), programmability is a native feature
of SOUL. Therefore, SOUL is devoid of the
overhead incurring from interfacing with external
programming languages. Most realistic applications
involving arbitrary sequences of computations can
be written, modified, extended, and maintained
interactively in SOUL,

OMEGA supports persistency of its objects,

3

A Study on Coarse-grained Service Object Model for GIS Interoperation

and is thereby a fully operational database
system. OMEGA has built-in classes of spatial
objects and their manipulation primitives.
OMEGA is capable of delegating specialized
computations to a variety of external packages.
In this sense, OMEGA may be viewed as a
software coupling system into which many
existing packages and application-specific software
can be plugged with minimal effort, Most of the
engineering details of the coupling mechanism are
encapsulated and automated for the end-user.

II. Abstraction of Computational
Packages in OMEGA

OMEGA features a novel conceptualization for
integrating various computational packages into a
coherent and interoperable computing environment.
In particular, the software infrastructure provided
in terms of the class permits the encapsulation of
arbitrary external, autonomous, and heterogeneous
software packages, and their coupling to the
extensible OMEGA environment. The SERVER
objects embody external software components.
OMEGA makes SERVER available to the user as
a built-in class where system-level details in
implementing server are encapsulated in the class
methods. The underlying idea of the class stems
from the conceptualization of autonomous software
packages as SERVER. The net result of this
abstraction is that servers are fully supported as
first-class objects in OMEGA. All the internal
details of handling server objects (e.g., interprocess
communication protocols) are automated behind
the scene, and thus transparent to users. The
OMEGA user-language, SOUL, is augmented by

a small number of primitive methods built in
the SERVER class for creating and interacting
with server objcts, Also, users are provided with
several command directives. The interfaces with
server objects using the directives are operationally
equivalent to the method-based interfaces,

In the following sections, we discuss the general
motivation and conceptual framework of SERVER,
introduce user-level language primitives associated
with SERVER, and present operational semantics

of each of the primitives,

1. Background and Motivation

The primary motivation of explicit incorporation
of server objects stems from the observation
that geoscientists typically work with a diverse
array of computational tools in research. A typical
geoscientific computing environment may be
configured to include numerical analysis packages
for partial and ordinary differential equations, GIS
and Remote Sensing tools for processing digital
map layers and imagery, statistical packages, and
data visualization tools, The current practice of
system integration in geoscientific research,
however, is based on either partially interacting
components or a monolithic system that lumps
much functionality into a single module. Hence
current practices may result in the lack of, or the
duplication of computing capabilities. To remedy
the situation, we develop well-founded abstractions
for external software packages. We also define
logical protocols for the intra-system component
interfaces and user-level primitives that encapsulate
these protocols,

The main technical challenge involved in the
SERVER class is to design and implement a

._4_

software infrastructure that minimizes the ‘hacks’
of adding new components to an existing environ-
ment while preserving the sharing and interoper-
ability of services, Such system integration and
interfaces are based on an open and modular
architecture, and various components of the
system are coupled loosely to facilitate their
replacement,

There are system abstractions that make
distributed computing and networking more
amenable to system programmers, which range
from the ‘pipe abstraction of the logical ‘file
level, to ‘socket’, to ‘RPC-stub abstractions of
level. The
SERVER primitive described in this paper acheves
a higher level of abstraction of logical ‘program.
The major benefit of the SERVER abstraction and
associated primitives is that the tasks of program-

location-transparent ‘procedure’

ming system integration and configuration are
pushed down to the (even technically naive)
end-users without relying on the system
administrators. Users can extend and configure
their computing environment by creating, creating,
installing, andinteracting with diverse software

tools with minimum efforts using a few SOUL

primitives.

2. Conceptual Framework of SERVER

The conceptualization of the ‘server objects that
are intended to embody external software
packages is deceptively simple, and yet powerful.
In the OMEGA data model, every object is
abstracted as a logical server. Reversely, we may
also conceptualize physical servers(ie, autonomous
packages) as logical objects. The computational

capabilities that each package delivers are

HPLEZEE S5309% (1997, 8), 1-18.

encapsulated as the methods of the server object.
Note that the notion of OMEGA objects does
not have to be modified, and the integrity and
uniformity of the OMEGA data model is not
undermined in accommodating arbitrary pieces of
external softwares as SERVER objects., Moreover,
the syntactic unformity of SOUL is preserved.
Consider the following example of an interactive
OMEGA session prompted by ‘OMEGA> .

OMEGA> p1 distance p2
OMEGA> grass>r. overlay soil landcover

The obect ‘pl’ in the first example is, in
essence, a server, and one of the services it can
handle is a ‘distance’ computation. As such,
‘distance’ appended by the trailing parameter
‘p2 constitutes a complete request of service
submitted to ‘p1’.

In the second example, ‘grass>’ is SERVER
obect in which a GIS package, GRASS, and its
services are abstracted. The particular object
name(OID) was chosen as ‘grass>’ since it
resembles the system prompt when GRASS is
used independently. One of the module(services)
the GRASS package provides is the raster map
overlay command ‘r.overlay’. It requires two
parameters of raster maps, which, in this example,
are soil and ‘landcover. During an independent
session of GRASS, a user would have entered
exactly the same expression at the GRASS
prompt ‘grass> . The only difference when
GRASS is made as a server object and used in
OMEGA environment is that users explicitly type
in the object name (‘orass)>’) just like any other
SOUL expressions, Note the obvious parallelism
between ‘object-method-parameter and ‘server-

service-parameter triples.

_5__

A Study on Coarse-grained Service Object Model for GIS Interoperation

3. Architecture of SERVER Object

The SERVER class and associated primitives
are designed and implemented in OMEGA to
meet several technical challenges: It should allow
easy and seamless accommodation of existing
packages, It also should facilitate user' s computa-
tional environment facilitate incremental extensions
(scalability), dynamic and network-transparent
configuration of user s computational environment,

Some of the complications involved in importing
external software packages into any integrated
computing environment are that they are external,
autonomous, and heterogeneous. They are written
in various external programming languages such
as ‘FORTRAN’, ‘C’, ‘C++ etc. These packages
are built without any consideration that they will
be used in the OMEGA environment, Extemnal
packages are autonomous, running independently
of other packages. User-interfaces are also very
different from package to package, and the run
time environments required for these packages are
heterogeneous, We believe that the integration of
external software should be based on a loosely
coupled ‘client-server paradigm, in which the
autonomous and heterogeneous nature of the
packages are maintained,

The common practice of tight coupling of
packages in terms of local interprocess communi-
cation is thus insufficient. In this practice, it is
the individual subprocesses created by a parent
process (through the ‘fork’ system call) which
would run as external programs. The interaction
among them relies on local communication ‘pipes’,
and thus will not be suited for a heterogeneous
environment spanning over a network. Moreover,

the autonomy of each subprocess is not possible

because they will terminate as the parent process

terminates. This ‘master-slave’

paradigm of
software interaction is quite inferior to the ‘client-
server counterpart,

One of the popular approaches to network-
distributed objects and interoperable functionalities
is the (RPC) facility. We implemented the
mechanistics and functionalities of the SERVER
class primitives based on RPC/XDR technology.
RPC is a mechanism for providing synchronized
and type-safe communication between two
processes, This mechanism is used for transferring
control and data among processes distributed
over a number of computers interconnected by
a high-speed communication network. The RPC
facility, together with the ‘external data
representation’ standards (XDR), allows application
programs to make use of distributed services by
calling remote procedures by name, and hides the
details of underlying layers such as transport
protocols, etc.

The basic approach that OMEGA adopts inn
integrating a suite of external packages and tools
into a single environment is based on the ‘virtual

Result q RPC-Port

Request .- 1
)4
RPC-Stub
Trap
Kerel
External Software Package

{Figure 1) Wrapping External Software Server

._6_

wrapping mechanism. As shown in {(Figure 1),
the server-wrapping consists of the three logical
layers of Port, Stub, and Trap: An interprocess
communication poty is allocated for exchanging
RPC packets, A stub layer is generated which
packs/unpacks data suitable for network transport,
A trap layer is provided, which is responsible for
translating requests in OMEGA languages into
the native commands that the underlying external
server understands,

The communication port and stub will be
transparent to users and will be automatically
allocated at the time of server wrapping. The
system also provides a default trap layer which
simply passes requests to the underlying package
without any translations. Users may write
application-specific trap layers.

A trap layer consists of a set of procedures
corresponding to each services that a particular
server can deliver via the external package. These
service routines are viewed as methods associated
with the given server object. The external
package is considered a kemel in the sense of a
UNIX kemnel, A trap layer, then, may be viewed
as an interface shell which is responsible for
interpreting user commands, dispatching service
routines stored in the kemel, and delivering results
back to the clients,

4, Characteristics of SERVER Object

We now assess the value of our approach to
abstracting SERVER objects with respect to the
following criteria: (1) the manner and degree to
which they extend systems and components, and
(2) the degree to which they facilitate distributed
computing.

HERRE H3091(1997. 8), 1-18.

1) Extended computing environment through
the SERVER objkcts

A major benefit incurred from the layered
wrapping approach to server construction is that
the work required from users to extend their
computing environment is greatly simplified.
The actual extensions can be observed at two
different levels: (1) the system level, and (2) the
individual component level At the level of the
system as a whole, the capability of computing
environments will be dynamically extended by
the integration of external software packages. At
the individual component level, the interface of
external software will be dynamically extended by
modifying trap layers associated with them.

A particular computing environment is a sum
total of various component software packages. A
notable feature of our approach to system
integration is its seamless and dynamic nature. By
seamless integration, we mean that external
packages are imported as server kernels without
any modifications of their internal codes, and
thereby its autonomy is preserved. By dynamic
integration, we mean that SERVER obgcts can
be created dynamically even while the system is
running without any re-compilation or re-linking
of modules. External packages are indeed
treated very much like dynamically loadable run-
time libraries.

We also can observe seamless and dynamic
extensibility at the level of each individual
SERVER object, The wrapping mechanism is
‘virtual' in the sense that each wrapping does
not require physical duplication of kernels. The
kemels, of course, may be accessed and used as
stand-alone as usual Virtual wrapping of software

packages, in effect, simply provides different

-7 -

A Study on Coarse-grained Service Object Model for GIS Interoperation

access paths to them. A single copy of software
may be wrapped into any number of server
objcts at run time, Each different wrapping wil
result in different interfaces to a single underlying
software, because an interface is encapsulated in a
trap layer.

(Figure 2) illustrates a case where a single
kemel is wrapped into three different versions of
SERVER objcts, each of which provides separate
accesses and interfaces. Multiple Versions of
Server As such, users merely have to modify a
few trap routines in modifying external interface
of software; the internal codes of that software
remain intact as kernel.

Request l Result

Server-b

Request l

Server-a

{Figure 2) Multiple Version of Server

2) Distributed computing through the
SERVER objects

Transparent support for distributed computing is
another significant benefit of our approach to
creating SERVER obgcts through wrapping. The
essential requirements for supporting distributions
are location transparency and accommodation of
heterogeneity. The physical location in which a

particular piece of software resides becomes a

non-issue, because the ‘port layer of a server
object encapsulates locational transparency.
Interactions with server objects occur across
communication networks through the remote
procedure calling facility.

The heterogeneity of hardware platforms also
becomes a non-issue, Any idiosyncrasies associated
with platforms, for which a particular piece of
software is compiled, will be localized since
requested .procedures will be executed in the
native platforms regardless of where the requests
originate,

IV. OMEGA Server Pool Management

The idea of the server pool and its management
is motivated by the benefits of organizing and
accessing servers hierarchically according to their
functionalities, locations, and requirements of
special hardwares and/or ancillary softwares, By
the server pool, we mean the set of servers that
are running (or at least able to start on demand)
and configured to be accessible by clients. An
early logistic design decision we made was to
develop a system abstraction of ‘meta-servers,
which manage the virtual boundaries and sub-
boundaries of the server pool.

1. Server Pool and Meta-Server

Meta-server plays the role of a central registrar
for a given pool of servers active in the OMEGA
environment, That is, even after a server is
wrapped and put into a network, there should be
some mechanism to advertise its availability to

potential client processes. Meta-server is envisioned

8

as a centralized directory service of “Who's
Who: in the net-land.

Meta-server also is responsible for logical
organizations and managements of a set of
servers within the context of the server pool. We
define the server pool as the set of servers
accessible by clients in the OMEGA environment.

The server-pool boundary is then effectively-
defined in terms of the content of registration
maintained by a particular meta-server.

The idea of meta-server has been used in
many systems, In the UNIX/SUN environment,
inetd and yellow-page daemon are such examples,
In the context of database systems, however, we
are not aware of any system that implements the

notion of a meta-server, although its architecture

Pm:ﬂ‘pncen:n
NEPWORK. "

(Figure 3) Server Pool Management by Meta-Server

Meta-Server

O

Statistical Analysis Server Pool
Persistent Object Server Pool

{Figure 4) Hierachical Organization Server Pool

MBS #3058 (1997, 8), 1-18.

may employ a client-server model between a
query engine front-end and a storage manager
back-end.

The role of meta-server is not limited to flat
server pool management. We can impose
hierarchies and organize servers and the server
pool in arbitrary ways, {(Figure 4) depicts one
such example where servers are organized in
sub-pools based on their functionality, i.e.,
whether they are for image processing, statistical
analysis, etc. We make two observations here that
all servers are the client of at least one of the
meta-servers, and that all servers may be the

client of any number of servers in the pool.

2. Meta-Server Methods and Configuration

Some of the major methods associated with a
meta-server include list and find : The list method
will return the set of all server names registered
at the time of the method invocation. The find
method will return the port address of the server
given as an argument,

Via meta-server, clients can locate any server
currently available. One of the remaining problems
is that how the clients locate the meta-server
itself? A common solution to this problem involves
the notion of “well-known-port”; port; every
client process has a hard-coded address of
communication port, on which the meta-server
will listen for the duration of its existence. We
find this approach only partially satisfactory
because it would unduly burden system
maintenance and configuration. Cases may arise
when the meta-server should be reconfigured to
have different addresses (eg., a particular host

crashes).

.9

A Study on Coarse-grained Service Object Model for GIS Interoperation

Just like objects are abstracted and referred to
by its Oid, the implementation details of the
meta-server (e.g., its host and port address)
should be abstracted and be made transparent
to clients, The OMEGA meta-server will have its
configuration information encapsulated in a
procedure, which is shared among the meta-
server and other servers and clients, At the time
of initialization, meta-server will invoke this
procedure to position itself in the network host/
port address space dictated by the configuration
procedure, Client processes, then, invoke the same
procedure to figure out the address of the meta-
server. The procedural configuration allows the
system administrator to freely change the location
of the meta-server by simply changing the
oconfiguration procedures code. This idea is similar
to the procedural encapsulation of ‘method’

interface for objects and their behaviors,

V. Protocols and User Language
Constructs for Server Management

In this section, we present user-level language
oconstructs for creating and interacting with server
objects. The overall protocols for client-server
interactions are summarized in {Figure 5), which
will be elaborated in the following sections,

1. Becoming a Server

Any process can make itself available as a server
by invoking a simple command ‘become_server_as
followed by the name by which the current
process wants to be known to clients. Registering

itself to a meta-server will be taken care of

Server Side Client Side
Server
Process
beta>

become client of meta-server >

Locate Meta-Server through Config Procedure
Establish RPC-channel to Meta-Server

become server as beta > become client of beta
bﬂﬁﬂhe RPC handler Initialize RPC handler
Register 1o Meta-Server Locate beta > through Meta-Server
Spawn Request Handling Subp Establish RPC-channel to beta >
Create Local SERVER Object beta >
Sbmﬂl:;r beta > request
ocess ;| Package Request into RPC Packet
«—= Send Request to beta >
~——»1 Wait for Results from beta>
Listen on Advertised RPC Port beta > & request
Receive Request From Clients
Trap and Parse Request i | Package Request into RPC Packet
Dispatch Request Handler =" Send Asynchronous Request to beta >
Package Results into RPC Packet | Activate a Callback Process for
SendResultto Client | ...ie.s > Results Packet from beta >
Retum Immediately

{Figure 5) OMEGA Client-Server Protocol

internally. The underscores are optional, e.g.,
‘become server as'’ will be parsed exactly the
same, If this command is invoked interactively,
the session prompt will be changed from the
default ‘'OMEGA> to the user-specified server
name, When the current process (as a server
advertised as ‘alphad’) is accessed from remote
clients, only the routines defined in terms of trap
will be made available to the public as the
services of alpha>

OMEGA> become server as alphad>
apha>

The command may have optional arguments for
specifying the desired port number(by default, the
system will select one from available ports). This
command triggers the OMEGA parser to execute
the following logical steps:

10

@ spawn a subprocess to handle requests from
the clients

® initialize a RPC-based port and trap routines

® locate the meta-server, ‘meta) , and register
to it a name and a network port

@ have the subprocess listen on the advertised
port for any requests from the clients

® trap and dispatch any subsequent client
request

2. Writing Trap Routines

The trap routines intercept client requests and
translate them into procedures native to the
server. SOUL provides a directive called ‘“rap’,
and writing trap routines is very similar to writing
ordinary method procedures using the program-
ming constructs of SOUL. We will look at an
example of a trap routine for the GRASS package.
GRASS provides ‘m.l12u’ for converting a map
of the Lat/Long coordinate system to a new map
of the UTM system.: In OMEGA, we may use
this facility of GRASS as ‘geog2utm’ methods
available as a service from the server ‘grassd’ . In
this case, the necessary translation is very simple

as is shown below,

trap geog2utm args {
m.li2u $args

3. Becoming a Client

In the following sequence of examples, we show
how a user may (1) find out which servers are
currently available, (2) pick a particular server
and become its client, and (3) submit requests
that the server is known to handle.

HIREE H309%(1997. 8), 1-18,

OMEGA> meta-server> list

==> grass> mathematica> coral> . .
OMEGA> become client of grass>

==> SERVER object “grass>” is created.
OMEGA> grass> d.rast soilmap

Any process can make itself a client to servers
by invoking a simple command ‘become client of
followed by the name by which the server
process is registered to a given server pool. Note
that thescoping of ‘grass> is local to the calling
process (client). More specifically, this session has
created its local link to the server ‘grass ; it

becomes grass s client.

4. Asynchronous Server Interface Protocols

By default, all the requests to, and replies from
the server are synchronous, There are, however,
cases where the synchronous communication is
undesirable. For example, when an execution of a
request takes a long time, clients may not want
to wait until the entire processing finish on the
server side, A more drastic situation may be
when the server processes crashes, clients would
unknowingly wait for replies that will never be
delivered.

OMEGA supports the asynchronous mode of
interface for SERVER. Users may choose the
mode of interface at each time of method
invocations, If the next task of a client is not
dependent on the reply from the server, the client
may submit request and immediately resume its
local tasks. The server side, after finishing the
request, will notify the client and deliver the result
asynchronously. This mode is similar to the
handling of background jobs in the UNIX environ-
ment, SOUL is augmented by the constructs for

.11

A Study on Coarse-grained Service Object Model for GIS Interoperation

the asynchronous SERVER interface, If the server
object name is suffixed by the symbol ‘&, then
the method request is sent to the server in the
asynchronous mode., The following example
shows that the client may resume other tasks
right after it submits an asynchronous request.

OMEGA> grass>& d.rast soil
OMEGA>

‘&' is chosen for the asynchronous request
specification since it is commonly understood as a
‘background’ job request in the UNIX environment,
When the server side finishes processing the
request, it notifies the client by beeping on the
client' s terminal, for example. It then writes the
results in a location (named by a variable) so
that the client can fetch the results later. This
protocol is implemented by way of ‘callback’
facilities, Callback is a routine which a client
piggybacks along with a request. The server will
invoke the callback routine with the results as a
parameter.

5. Indirect Access to Server

We now describe an indirect accesses to
SERVER objects and the situations that call for
such interfaces. Consider, for example, an
application that requires services from two
hypothetical servers, beta> and gamma>, Further
consider that gammad> is separated (for reasons
such as network ‘firewall) from the current
process, If betad> can access gamma>, then we
might be able to ask beta) to pass our request
to gamma> and also deliver the results from back
to us. In this case, beta> plays a role of a middle
‘agent’ who relays requests and results between

us and gamma>, This access mode to a server
through agents is called indirect access.

There will be another situation where indirect
accesses make sense. Suppose we need to process
a large dataset (eg, a Landsat Image), which is
stored and managed by betad, gamma> is an
image processing package that runs the particular
algorithm that we need. It would be very
inefficient, in this case, if we first retrieve the
dataset from beta, and then pass this dataset as a
parameter to gamma> for processing: large dataset
dataset has to be moved twice over the network.
Instead, we would like to have beta> send its
dataset directly to gamma>, and relay to us just
the results. This indirect access involves just a
single transfer of the dataset.

The required steps to set up the indirect
access of our example will be as follows, First,
the current process that runs our session of
OMEGA must be made a client of ‘beta .
Second, a request is sent to beta, asking beta> to
‘become a client of gamma>’ . Now the servers
are correctly configured and we are ready to
access gamma> indirectly for its service ‘gamma’s.
expertise by asking beta> to make the request to
gamma).

become client of beta>

(=)

beta> become client of gamma>]

006

{Figure 6) Indirect Access to gamma) via beta)

VI. Implementation of OMEGA Prototype

12

The architecture of the OMEGA system is
guided primarily by the goals of extensibility
and loose-coupling of interoperable subsystems
over the network. OMEGA can be dynamically
configured to respond to the varied requirements
of new and different applications by integrating
either public domain or off-the-shelf commercial
packages. The OMEGA infrastructure consists of
several layers of system components which
interact in the mode of client-server and can
always be replaced with new, experimental
components, A fully operational version of the
OMEGA prototype has been completed and
released through WWW, The OMEGA shell runs
on UNIX platforms, and porting to other platforms
platforms is currently underway. It consists of
some 15,000 lines of Tcl as well as 2,000 lines of
C programs on top of a number of libraries. The
important components include an extensible
OMEGA kemel of class library, a SOUL parser, a
graphical user interface, a persistent storage server,
computation server coupling module, and a
gateway server as shown in (Figure 7). We
describe some of the components in the following

sections,

1. Data Server

The data server component comprises a database
back-end that manages the physical storage of
data items, OMEGA currently employs the
storage manager subsystems of POSTGRESS
(Stonebrzker and Rowe, 1986) as a platform for
persistent data server. The OMEGA data server
provides persistency to valid object, be it an
obect, a class objkct, or a method obect. The
persistent store is shared and accessed by multi-

MBI F309%(1997. 8), 1-18.

OMEGA> become client of beta>

OMEGA> beta> become client of gamma>

OMEGA> beta> gamma> gamma’ s_expertise

users, OMEGA relies on the Postgres transaction
mechanisms (based on 2PL-protocol) to control
concurrent accesses. In OMEGA, the Postgres
storage manager runs behind the scene. The user
interacts with Postgres indirectly through the
primitives, such as persist, load, and perish,

A direct interface to Postgres is also possible
within OMEGA in terms of the local SERVER
object named postgres>, The non-OMEGA data
stored in Postgres can be accessed by redirecting
POSTQUEL to the server.

2. Gomputation Server

OMEGA is a comprehensive application
development environment consisting of numerous
servers for highly specialized computations, We
illustrate some of the integral subsystems coupled
in OMEGA according to their functionalities,

1) Equational Object Server

OMEGA employs ‘mathematica’ as a specialized
computation server for a wide range of
mathematical calculations. Equations and other
mathematical structures are represented in
symbolic expressions, Manipulation of algebraic
formulas is well supported as are differential
equations and other numerical computations such
as integrations and linear programming. In the
OMEGA environment users will call upon
mathematical computations through a server

object ‘math’.

13

A Study on Coarse-grained Service Object Model for GIS Interoperation

2) Axiomatic Rule Object and Inference Server

OMEGA employs CORAL as an inference
engine to process axiomatic rule base, CORAL is
a logic-based database language developed at the
University of Wisconsin-Madison (Ramakrishman
et al, 1993). It seeks to combine features of a
database query language with those of a logic
programming language. It is distinguished from
conventional database languages by its inference

capabilities based on first-order logic. Although
its syntax is not entirely suitable for general
purpose programming, the rule-based inferences
are attractive because they represent and process
certain knowledge succinctly and declaratively, We
have used CORAL in implementing an early pilot
system of OMEGA, OMEGA entrusts CORAL
with such tasks as rapid prototyping of algorithms,
algorithms, constraint programming, and problem-

{Figure 7) System Architecture of OMEGA

14

solving based on transitive closure. In the OMEGA
environment, users will call upon CORAL's

inference capabilities through a server object ‘coral’.

3) Image Processing Subsystem

OMEGA employs ‘Khoros and ‘IPW’ for their
image processing capabilities, IPW (image
processing workbench) is a development environ-
ment for image manipulation algorithms and
applications with particular emphasis on satellite
imagery(Frew, 1990). IPW offers a single,
portable image data format that accommodates
both integer and floating-point data representations,
as well as an unlimited amount of ancillary
information, Image data may have an arbitrary
number of channels or bands, In the OMEGA
environment, users will call upon image processing
operations of IPW through a server objct ‘ipw> .
Users can also use SOUL scripting for program-
ming the sequence of desired actions,

4) GIS Subsystem

The OMEGA environment provides the core
functionality of a GIS as its sub-system. GRASS
(CERL, 1993) is imported into OMEGA as a
spatial operator library, which is made available
either through the server object ‘grass)> , or
through the set of OMEGA primitives trapped
into GRASS procedures. The OMEGA shell
provides a powerful front-end to GRASS, in
which the subroutines native to GRASS may
intermix with other programs to produce arbitrarily
complex applications, The data files on which
GRASS programs operate are encapsulated as
OMEGA objects, and the GRASS programs are
encapsulated as methods. The OMEGA persistent
store provides a reliable database back-end to

MEEBRHH H309%(1997. 8), 1-18.

GRASS. (Table 1) lists examples of the GRASS
programs that are ‘wrapped as OMEGA’s
primitive spatial operators,

Table 1. GRASS Program Conversion

OMEGA GRASS Program

class method

Map geogZutm mll2u
Map utm2geog m.u2ll
Vector vect2rast vtorast
Raster info rinfo
Raster theme r.cats
Raster overlay I.Cross
Raster combine r.combine
Raster filter r.infer
DEM basin r.basins fill
DEM drain r.drain

VI. OMEGA Gateway Server

Information access through a wide-area network
is exploding at a remarkable rate. The existing
hardware and software to tap on the Internet
through World Wide Web(WWW) has matured,
WWW is an embodiment of the universe of
network-accessible information. With the advent
of WWW technologies, the possibility has arisen
to provide information holdings of OMEGA to
The main thrust of the
OMEGA gateway server is that we cannot expect

much wider clients,

every remote site to have an OMEGA system
installed, but we can still expect them to access
resources maintained by a local OMEGA through
WWW, and vice versa, The WWW-based access
to data in OMEGA is ‘self-sufficient since the of
the data are also made available. The subsystem

of OMEGA for exchanging information across

15

A Study on Coarse-grained Service Object Model for GIS Interoperation

networks is founded on the so-called ‘gateway’
technology. We have configured and implemented
an operational gateway server of OMEGA. This
section describes the motivation, and sketches
architecture and some of the engineering details of
our implementation describes the OMEGA

gateway servers in greater detail,

1. Why Gateway?

The success of collaborative scientific researches
relies on effective and efficient information
exchanges among distributed sites. The information
exchanges involve datasets, programs, models,
and analysis results. The datasets fetched
(through ftp) would be of little use without the
processing modules to manipulate them. The
current practice of data exchange involves
importing raw data from remote sites, and
developing programs locally to process them. If
the remote sites also maintain processing
programs, they will be fetched and compiled
locally, In any case, there will be traffic of either
moving data to algorithms, or moving algorithms
to data. The self-sufficient mode of information
exchange, however, will only involve migrations of
‘value-added’ data being processed at the site of
the information provider. The ‘Archie’ and
‘Gopher servers have some capabilities of queries
processing to filter desired datasets. But these
processings are limited to simple search conditions.
The general mechanisms for data transformation
and manipulation are absent in these servers, The
‘gateway referes to a piece of software coupled
with a WWW server. Gateway servers are
executable programs that can run by themselves,
They have been made external programs in order

to allow them to run under various information
servers interchangeably, A gateway server accepts
queries from remote clients through a locally
installed HTTP-server. The queries will be
processed in the local query engine, and the
results will be sent back to the clients. The
results are usually packaged by HTML directives,
These directives tell the client (such as Netscape)
how the data should be interpreted and possibly
visualized. The main motivation of incorporating
gateway technology into OMEGA is to serve and
exchange information resources maintained by
OMEGA with other information sources. Simply
put, the benefit of the OMEGA gateway is that
not only the data holdings but also the entire
functionalities of OMEGA are made available to
remote users, OMEGA gateways offer the
following benefit in distributed objct management:

@ 1t allows self-sufficient interface to clients
from remote, external, and heterogeneous
environments,

® It guides remote clients via query-forms
which are adaptive to database states.

® It servers as network-wide data exchange
port.

@ Remote systems (ie, their capabilities) are
‘connected to through gateway rather than
‘installed’ as a local copy.

2. Construction of OMEGA Gateway Server

A particular standard of a gateway interface
protocol gaining wide acceptance among the
WWW is ‘Common Gateway Interface’ (CGI).
A WWW-server that is configured to accept
CGI protocol has been developed in National

16

Center for Supercomputing Applications (NCSA):
http (current version 1.1). The OMEGA gateway
server is implemented to meet the specifications of
the CGI protocol and employs RPC as- the
backend which handles WWW clients and their
requests in CGI. The OMEGA gateway is a
stateless server in the sense that no state
information is cached internally by the server side
on behalf of the client. The necessary information
is piggy-backed to and from clients in the form
of a URL (Universal Resource Locator). The
implementation and configuration of the OMEGA
gateway server and a WWW front-end server

involves the following steps:

@ local installation of ‘httpd’ with an URL
@ external view and access configuration of
the OMEGA system including a gateway
query form server
® compilation of CGI-conforming query forms
@ installation of a gateway query form parser
® coupling of gateway servers with the meta-
server and the OMEGA kernel
The gateway query form is a mechanism for
soliciting the information from a remote user. It
consists of the dialog window., A variety of
graphical interface elements are embedded within
the query form to which users can point and
click to fill out the query request form. The
interface elements typically ranges over the
menubar, scrollable selection windows, buttons,
text input dialog boxes, etc. The idea of multiple
query forms and a query form server can be
described in the following interface scenario, First,
on the client’'s request, the query server suggests
a set of query forms accepted by the server,
Then the client decides the format in which he

WIS H3052(1997. 8), 1-18.

will express his queries and fills out the query
form and submits it back to the query server.
The query server will pre-parse the submitted
query, translate it into SOUL, have the local
OMEGA server process the query, and finally,
deliver the packaged results back to the client.
This protocol is depicted in {Figure 8).

WorldWide Web Gateway to OMEGA

hitpihawal cs ucsd. sduomeg) y

look-up query forms

send query form meny

Dephawed cs.ucsb

00 query resut n CGR-doc

{Figure 8) WWW-Gateway Interface of OMEGA

VI. Conclusion

A distributed and heterogeneous computing
environment is the rule rather than the exception
in experimental geoscientific research conducted
on high-level testbeds consisting of unique
hardware and software architectures. The ensuing
problems in accommodating heterogeneity and
integrating various components have been widely

recognized. OMEGA is an environment where

.17

A Study on Coarse-grained Service Object Model for GIS Interoperation

heterogeneous computer systems share a small set
of key interface primitivess We emphasize that
the OMEGA environment is a loose form of
interconnection at the service level, rather than
seeking to construct a transparent operating
system bridge between heterogeneous systems, In
other words, OMEGA accommodates multiple
standards and the autonomy of individual systems
(instead of legislating another standard) while the
integration is still accomplished among a large
number of system types with a small number of
instances, We are convinced that loose-coupling is
the only viable design to meet the highly
dynamic nature of geoscientific modeling for its
demand of various tools,

It is the SERVER class that provides the
necessary software infrastructure to minimize the
‘hacks of adding new systems to an existing
environment. We developed a system abstraction
of SERVER and associated user level primitves,
and implementation techniques that bridge
theory and practice. We investigated the extent
to which abstraction techniques and language
primitives can hide low-level details about
data and computations involved in advanced
geoscientific applications, An initial evaluation of
our work based on a prototype implementation
of OMEGA is very positive and encouraging.

References

Asrar G. and D. Dokken, 1993, EOS Reference
Handbook, NASA Publication: NP-202, March
1993.

CERL, 1993, GRASS 41 User's Reference Manual,
Construction Engineering Research Lab,

Frew, J, 1990, The Image Processing Workbench,
PhD thesis, University of California, Santa Barbara,
Santa Barbara, CA,, July 1990.

Object Management Group, 1997, Common Object
Request Broker: Architecture and Specification,
Technical Report,

Park, K., 1994, SOUL of OMEGA: Design and
Implementation of an Object-based Modelling
Environment for Geoscientific Applications, PhD
thesis, University of California, Santa Barbara,
Santa Barbara, CA,, June 1994,

Ramakrishman, R, Seshadri, P, Srivastava, D. and
Sudarshan, S., 1993, The CORAL Manual,
Computer Science Dept., Univ. of Wisconsin-
Madison, Madison, W1,

Schek, H. and A. Wolf, 1993, “From Extensible
Databases To Interoperability Between Muitiple
Databases and GIS Applications”, in Proc, of 3rd
Int, Symposium on Advances in Spatial Databases,
(Singapore), pp. 207-238, Springer-Verlag.

Smith, T, Su, J, Abbadi AEl Agrawal, D. and
Saran, A., 1995, “Computational Modelling
Systems,” Journal of Information Systems, vol.19,
no4.

Stonebraker, M. and L. Rowe, 1986, “The Design of
POSTGRESS,” in Proc. ACM SIGMOD Int’l
Conf on Management of Data, (Washington, D.C.),
pp 340-355, May 1986,

18

	Abstract
	요약
	I. INTRODUCTION
	II. Overview of OMEGA
	III. Abstraction of Computational Packages in OMEGA
	1. Background and Motivation
	2. Conceptual Framework of SERVER
	3. Architecture 01 SERVER Object
	4. Characteristics 01 SERVER Object

	IV.OMEGA Seπer Pool Management
	1. Server Pool and Meta-Server
	2. Meta-Server Methods and Configuration

	V. Protoco1s and User Language Constructs for Seπer Management
	1. Becoming a Server
	2. Writing Trap Routines
	3. Becoming a Client
	4. Asynchronous Server Interface Protocols
	5. Indirect Access to Server

	VI. Implementation of OMEGA Prototype
	1. Data Server
	2. Computation Server

	VII. OMEGA Gateway Server
	1. Why Gateway?
	2. Construction of OMEGA Gateway Server

	VIII. Conclusion
	References

