
地理學論難 第30號(1997.8) ， 1-18.

A Study on Coarse-grained Service Object Model
for GIS Interoperation

Key-Ho Park *

Abstract The OMEGA system is intended. to 없ppαt geoscientific mode파19ta와‘s. In 단ùs paper, we

empha획zeth∞e aspects of OMEGA that are relevant to the integration of 바stributed. ∞mputa디.on려 t∞，ls

and objects. OMEGA is capable of delegating spec빼zed ∞mputations to a variety of external packages

through the SERVER objects and associated. interface meth여s. In this sen않， OMEGA may be viewed.

as a software cx>up파19 system into which existing packages and applica디.on-s야￡퍼c ∞，ftwares may be

plugged. with minima1 effort. Most of the engineering de떠ils of the ∞up파19 mech따rism are encaps띠ated.

and automated. for 삼le end -user.

Key Words: GIS, object-orient려， distribu않d， interoperab피ty， client!server, seπi∞ object m여el

요약 : 본 연구에서는 지리정보가 동원되는 수치모텔령 작업을 지원하는 환경으로서 객체지향 OMEGA 시

스템올 제시한다. 특히 네트워크상에 분산되어 있는 자료와 분석도구의 통합기능에 초점올 두어 지리정보시

스댐의 상호운용성 제고를 목척으로 시스탬 구조를 분석하고， 각 컴포넌트별 특성과 구현기법에 관하여 논한

다.OMEGA 시스탬은 공간정보분석과 연산작업올 위해 고안된 다양한 외부 소프트웨어를 호출하여 처리할

수 있도록 설계하였다. 이를 위해 외부 소프트웨어를 객체지향이라는 툴에서 SERVER라는 객체 클래스와 클

래스 메소드를 통해 인터페이스로 재구성하였다.OMEGA 시스댐의 구성요소로서 객체화가 시도된 소프트웨

어는 그 기능별로 (1)형식논리에 기반을 둔 “ru1낭’ 객체와 이를 이용하는 “추론서버"， (2)영상처리를 전담하는

서버객체， (3)지리정보시스템 객체， 그리고 (4)새로운 서버객체의 관리를 위한 메타서버 잭체 등올 포함한다.

지금까지 객체화에 관련된 연구가 그 대상올 ‘데이터’ 에 국한시킨데 비하여 본 연구에서 제안된 OMEGA 시

스댐은 데이터의 처리라는 ‘프로세스’ 에 대한 객체화 작업을 수행할 수 있고 이를 지원하기 위한 이론적 기

술적 토대를 갖추고 있다. OMEGA 시스댐은 최근 지리정보시스템의 연구동향인 “플러그-인” 구조와

“Componentware"를 위한 하나의 접근방식을 제시하고 있으며 소프트웨어 연계(Coup뻐g)를 위한 기반 미들

웨어를 포함하고 있다. 더욱 중요한 것은 지리정보시스댐 자체가 하나의 서비스 객체로 모형화됨으로써 이질

적인 (heterogen∞us) 지리정보시스댐간의 상호운용성이 제고된다.

주요어: 지리정보시스댐， 객체지향， 분산형， 상호운용성， 클라이언트/서버， 서비스 객체모델

1 . INTRODUCTION in gl∞science. Such activities typically rnake use

of a large 라ray of software tools. In this paper,

We present a new object-oriented system, we empha잉ze those aspects of OMEGA that are

OMEGA (Object-based M여elling Environment relevant for the integration of distributed ,

for G∞S뎌.ent퍼c Applications) , which is focus싫 autonomous, and interoperating ∞mputa디0뼈 t∞Ils

on supporting data-intensive modeling activities and objects.

* As외없nt Professor, Department of G∞'graphy， College of S따al Scienα~， seo피 Nationa1 University, Seoul Korea.

A Study on Coarse-grained seπice Ob~t Model for GIS Intero야ration

A cαnputational environrnent which supports

geoscientific modeling must faci1itate the highly

interactive and iterative proces않s of constructing

and manipu1ating a1gorithms and models, as well

as large and complex datasets (Smith et al.,

1995). In designing and implementing the

OMEGA system(Park, 1994) , we have addres뚱d

the issues involving the development and

integration of systems capable of the various

levels of abstraction of data and 잃~뻐뻐i meta­

procedures envisioned in the EOS Data and

Information System (Asrar and Dokken, 1993).

A prototype of OMEGA has 야en implemented

andft피y operationa1.

The ∞mputational environrnent for geoscienti좌C

studies is a comprehensive system which

includes, in the least, the fol1owing ∞mponents:

φ a rich data model accomm띠ating a wide

spectrum of ∞Implex ob~ts， @ 뻐멍uage support

for data definition and manipulation, @ a

powerful and efficient progr따nming 뻐핑uage， @

a persistent storage management system and

query 떠nguage， @ an application development

environrnent integrated with 얄leCiali갖d ∞mputing

tools, @ frien버.y user inter옮∞s.

Existing information systems do not provide

adequate support for 비gher level abstraction and

manipulation of computational modules for

geoscientific modeling activities. To facilitate

dynarnic con죄gurations of a user’ s ∞mputational

environrnent, we propose a ∞mputational server

management system in which not only data but

려so ∞mputations are abstracted, orgar따ed， and

accessed. at the level of ‘않，rver’ . By the generic

term ‘server’ , we will refer to the t∞，ls and

packages that geoscientists employ for their

re않arch. An abundance of spE였al purπ:>se systems

systems and tools is available today: image

processing and data visualization, symbo1ic

∞mputation for logic and mathematical equa다ons，

statisti떠lpa않ages， to narne a few. Most of the

current systems employed in geoscientific r앉농arch

are either ad hoc integrations of ∞mpαlents， or

monolithic systems that lump a 납ge amount of

functiona1ities into a single m여ule. That is, the

system architecture has either t∞ little or t∞

much structure, which results in either absen∞

of α duplication of capabi1ities. Development of a

computation 없vironrnent should not involve re­

inventing wheels. Instead, a system should be

dyn킹ni뎌lly extended and configured based on

together time-proven software packages that

scientists use. Systems of open and modular

architecture are 않외.er to m여ify and extend. The

∞upling of various components of the system

must be loose enough that they may be rep퍼.ced

with new, experimental, or custom-made pieces.

In this regards, we observe the 1ack of wel1-

founded abstractions for system ∞mponents and

피gh-level protocols for the intra-system interfa∞s.

n . Overview of OMEGA

The goal of OMEGA is to bui1d a better

∞mputing environrnent for geoscientific res않rchers

(referr어 to as OMEGA ‘users’). The sc때e of

OMEG A includes a conceptually rich and

uniform data m여eL 때 expres외.ve u않r interface

language, specifications 때d methodologies for

m때p띠a마19 얄빼al ob~ts， a variety of value­

added system abstractions, and implementations

techniques that bridge theory and practice.

OMEGA eml:x성ies a new data m여el integrated

- 2 -

with novel abstractions as well as features drawn

from existing data models. In OMEGA, we have

refined the notion of ‘ob~t’ by abstrac마19an

ob~t as a ‘server, and encaps띠a파19 interface

methods of the object as its ‘services. ’ A

particular server(object) has a name(Oid) to

which users submit their r，려uests. Requests from

clients are v，려id if they are among the set of

servi，∞s publically advertised by the server. A

c1ient’ s request (method selection) is handled

within the server by dispatching (method

invocation) the appropriate service routine

(method implementation). When the execution of

the routine has completed, the server delivers the

results to the client. The main rationa1e for an

encaps버ated service-based interface of ob~ts is

that the ∞nceptualization and processing of data

queries and transactions be∞，me d않n and simple

because of the uniforrn protocols of client-server

interactions.

The c1ients interact with a server in a

fundamentally services are desired, but not the

services are to be prlα않ed inside the server.

OMEGA has a u똥r-interface language, SOUL

(달.ructured QMEGA Q:ser ~anguage). A user’ S

∞nceptualizations of an application problem may

be represented by the constructs and built-in

primitives in SOUL as a basis. SOUL is a

m띠ti-faceted 퍼nguage， and an 버마nate m어ium

through which users interact with, and harness

the underlying computational infrastructure of

OMEGA. SOUL, as a computation command

language, has an extremely simple syntactic

structure, much 파ce the "select from where" of

SQL. The structure of SO UL expression is a

triple “ [O,M ,P J", where O,M ,P represents

syntactic blocks that are respectively interpreted

地理學論聲 第30號 (1997. 8) , 1-18.

(evaluated) to be an object, method, and

parameter.

P is optional and may be absent if the

method denoted by M requires no trailing

parameters. Each of these syntactic units may

have nested internal structures, which will

eventually be evaluated to be either object,

method, α parameters depending on the pc셉tion

within the triple.

SOUL bears many simi1arities to the meth여

invocation of object oriented programming

languages. The differences are in the uniform

treatment of attributes and methods. SOUL

ob띠ates the dot-notations (,:), which is 떠ed to

access object attributes in most object-oriented

languages. Un1ike most other object-oriented

models. OMEGA allows uniform and c1ean u똥r

interfaces to objects by treating attributes as

meth떠s. The interfaces of reading and as외gning

a따butes of the OMEGA ob~ts are achieved

uniform1y in terms of meth여 invocations. While a

meth여 may be for efficiency (i.e., a method 엽 a

cons없nt function) , the issue of whether methods

are stored or evaluated is really an implementation

issue that is orthogonal to the conceptual

uniformity of the method-벼sed interface of the

OMEGA ob폼cts'

Unlike other extensible data밟se syst얹lS that

are coupled with externa1 programming languages

(e.g., C++) , programmability is a native feature

of SOUL. Therefore, SOUL is devoid of the

overhead incurring from interfacing with externa1

programming 1anguages. Most rea1istic applications

involving arbitrary sequenα~ of cαnputations 떠n

be written, m여ified， extended, and maintained

interactively in SOUL.

OMEGA supports persistency of its objects,

’ j

A Study on C떠rse-grained seπice Object M여.el for GIS Int.ero야:ration

and is thereby a fully operationa1 database

system. OMEGA has built-in classes of spatial

objects and their manipu1ation primitives.

OMEGA is capab1e of de1egating specia1ized

∞mputations to a variety of externa1 packages.

In this sense, OMEGA may be viewed as a

software coupling system into which many

e피S파19pa않ages and application-spec:퍼c software

떠n be p1ugged with minima1 effort. Most of the

en휠n않:ring de없ils of the coup1ing mec뻐nism 하e

encaps띠ated and automated. for the end-user.

m. Abstraction of Computationa1

Packages in OMEGA

OMEGA features a nove1 ∞nceptualization for

integrating various ∞Imputationa1 pa않ages into a

∞herent and interoperab1e ∞mputing environment.

In particular, the software infrastructure provided.

in terms of the class permits the encapsu1ation of

arbitrary externa1, autonomous, and heterogeneous

software packages, and their coupling to the

extensib1e OMEGA environment. The SERVER

objects embody externa1 software components.

OMEGA makes SERVER availab1e to the user as

a bui1t-in c1ass where system-1eve1 detai1s in

imp1emen파19 server are encapsu1ated. in the class

methods. The under1ying idea of the 따ss stems

from the ∞nceptualization of autonomous software

packages as SERVER. The net resu1t of this

abstraction is that se:πers are ft피y supported. as

first-class objects in OMEGA. All the interna1

de떠ils of 벼n이ing server objects (e.g., interprocess

∞mmunication protoco1s) are automated behind

the scene, and thus transparent to users. The

OMEGA u뚱:r-language， SOUL, is augmented. by

a small number of primitive methods built in

the SERVER class for αea마19 and interacting

with server objects. A1so, users are provided. with

sever려 ∞mmand directives. The interfaces with

se:πer objects u외ng the directives are operationally

equiva1ent to the meth여-ba않d inter훨ces.

In the following 앉~tions， we di앙lSS the genera1

motivation and ∞nceptua1 framework of SERVER,

intr여uce u않r-1eve1 language primitives associated.

with SERVER, and present operationa1 semantics

of each of the primitives.

1. Background and Motivation

The primary motivation of ex마다tin∞rporation

of server objects stems from the observation

that g'∞scientists typically work with a diverse

array of ∞mputationa1 t∞Js in res않rch. A typica1

geoscientific computing environment may be

∞nfigur어 to inc1ude numerica1 하laly외s packages

for partial and ordinary differential equations, GIS

and Remote Sen외ngt∞11s for processing 바gi때

map layers and imag.ery, statistical 맹않ages， 킹ld

data visualization too1s. The current practice of

system integration in geoscientific research,

however, is ba않d on either partia11y interacting

∞mponents or a monolithic system that 1umps

much functionality into a 와ng1e mod띠e. Hence

current practices may resu1t in the lack of, or the

duplication of ∞mputing capabilities. To remed.y

the situation, we deve10p well-found어 abstractions

for externa1 software packages. We a1so de펴le

10gi떠1 prl야.oco1s for the intra -system ∞mponent

inter옮.ces and user-1eve1 primitives that encapsu1ate

th양;e protα::o1s.

The main technica1 ch려lenge invo1ved. in the

SERVER class is to design and imp1ement a

- 4 -

地理學論裝 第30號(1997.8) ， 1-18.

encaps버ated as the methods of the seπ'er ob~t.

Note that the notion of OMEGA ob~ts does

not have to be m여ifi려， and the integrity and

uniformity of the OMEGA data model is not

'hacks'

of adding new ∞mpαlents to an e영S마19 en찌ron­

ment w비le preserving the sharing and intero야r­

ability of services. Such system integration and

software infrastructure that minirnizes the

undermined in aα::omm여ating arbitrary pieces of

external softwares as SERVER ob~ts. Moreover,

the syntactic unformity of SOUL is pr，않erved.

Consider the following example of an interactive

OMEGA ses잉on prompted by 'OMEGA>’ :

interfaces are based on an 0야n and modu1ar

architecture, and various components of the

are coupled loosely to facilitate their

replaæment.
system

abstractions that make There are system

distributed computing and networking more
OMEGA> p1 di앙ance p2
OME<꾀>g대ss>r. over1ay soil 뻐념∞Iver

amenable to system programmers, which range

‘'pipe’ abstraction of the logical ‘file’

‘gχket’ m ‘RPC-stub’ in the first example is, in

essenæ, a server, and one of the services it can

‘pl’ The ob~t abstractions of

from the

leveL to

location -transparent

computation. As such,

appended by the trailing parameter

constitutes a complete request of service

‘distance’ handle is a

‘distance

The

SERVER primitive describE화 in this paper acheves

a higher level of abstraction of logical ‘program.

The majJr bene회t of the SERVER abstraction and

leve1. ‘procedure’

‘p2’

subrnitted to ‘pl’ .

In the second example,

ob~t in which a GIS package, GRASS, and i않

services are abstracted. The particular object

was chosen as ‘orass)' since it

is SERVER ‘orass>’

associated primitives is that the 없밟S of program­

ming system integration and configuration are

pushed down to the (even technically naive)

system the on relying without end-users

resembles the system prompt when GRASS is

used independently. One of the m여띠e(seπices)

the G RASS package provides is the raster map

command ‘r.overlay'. It requires two

parameters of raster maps, which, in 단lÌS example,

are 능oiI’ and landcovei. During an independent

name(OID) U않rs can extend and configure

their ∞mputing environment by αea파19， crea따19，

installirlg, andinteracting with diverse software

t∞11s with rninimum efforts using a few SOUL

administrators

overlay prirnitives.

ses허on of GRASS, a u않r would have entered

exactly the same expression at the G RASS

‘orass)'. The only difference w hen

G RASS is made as a server object and used in

OMEGA environment is that users explicitly type

in the ob~t name (‘or뿔s)') just like any other

2. Conceptual Framework of SERVER

The ∞næptualization of the 'seπer' ob~ts that

are intended to embody external software prompt

packages is deæptively 외mple， and yet powerful.

data model, every object is OMEGA In the

and ‘server-

SOUL expressions. Note the obvious 맹ra11eli않n

between ‘object-method -parameter’

seπiæ-par와neter’ triples.

F

、“

abstracted as a logical server. Reversely, we may

려so ∞næpt뻐lize phy.외떠1 servers (i.e., autonomous

packages) as 10.휠때 objects. The ∞mputational

capabilities that each package delivers are

A Study on Coarse-grained. Service Object Model for GIS Interoperation

3. Architecture 01 SERVER Object

The SERVER class and associated primitives

are designed and implemented in OMEGA to

meet sever，외 techni떠1 challenges; It shou1d 려low

easy and seamless accommodation of existing

pa않ages. It 려.so shou1d facilitate user' s ∞mputa­

tiona1 environment facilitate incrementa1 extensions

(sca1ab피ty) , dynamic and network-transparent

∞n죄guration of user’ s ∞mputationa1 environment.

Some of the ∞mplications involved in importing

external software packages into any integrated

cαnputing environment are that they are external,

autonomous, and heterogeneous. They are written

in various externa1 prograrnming 1anguages such

as ‘FORTRAN’ , ‘C’ , ‘C++’ etc. These packages

are bui1t without any ∞nsideration that they wi11

beu뚱쉰 in the OMEGA environment. Externa1

pa않ages are autonomous, running independently

of other packages. U똥r-interfaces are 외50 very

different from package to package, and the run

time environments required for these pa않ages are

heterogeneous. We believe that the integration of

exten때 ∞ftware shou1d be ba않donal，αæly

coupled ‘dient-server’ paradigm, in which the

autonomous and heterogeneous nature of the

packages are rr녕m없ined.

The common practice of tight coupling of

packages in terrns of local interprocess ∞ImmUl피­

cation is thus insufficient. In this practice, it is

the individua1 subproces않S αeated by a parent

process (through the 'fork' system call) which

wou1d run as external programs. The interaction

among them relies on local communication 'pipes' ,

and thus wi11 not be suited for a heterogen∞us

environment spanning over a network. Moreover,

the autonomy of each subprocess is not π짧.ble

because they w i11 terrninate as the parent process

terminates. This ‘ma5ter-slave’ paradigm of

화tware interaction is q띠.te inferior to the ‘'client­

server’ ∞unte뼈rt.

One of the popu1ar approaches to network­

distributed objects and interoperable function려ities

is the (RPC) facility. We implemented the

mech없1istics and functiona1ities of the SERVER

왜ss primitives based on RPC/XDR technolo.망.

RPC is a mechanisrn for providing synchronÍZE화

and type-safe communication between two

processes. T피smechar꾀sm is used for transferring

control and data among processes distributed

over a number of ∞mputers inter，∞nnected by

a high-speed ∞mmunication network. The RPC

facility , together with the ‘external data

repre똥nta다on’ S없n따rds (XDR) , allows application

programs to make use of distributed services by

떠피ng remote procedures by name, and hides the

details of underlying layers such as transport

protocols, etc.

The basic approach that OMEGA adopts inn

integrating a suite of external pac없ges and t001s

into a single environment is ba않d on the ‘virtua1

(Fi밑re 1> Wrapping' External Software Server

- 6 -

wrapping' mechanism. As shown in (Figure 1),

the server-wrapping consists of the thræ logi혀l

layers of Port. Stub, and Trap: An interprocess

∞mmunication poty is allocated for exchan밍ng

RPC 앤ckets. A stub 1ayer is generated which

packs/unpacks data s띠.table for network transport.

A trap layer is provided, w hich is responsible for

translating requests in OMEGA languages into

the native ∞Immands that the under1ying external

server understands.

The communication port and stub will be

transparent to u않rs and w피 be automatically

a11α:ated at the time of server wrapping. The

system 려so provides a defau1t trap 1ayer which

잉mply passes requests to the under1ying package

without any translations. Users may write

application -spec:퍼c trap 1ayers.

A trap 1ayer ∞n잉S성 of a set of prlα::edures

corresponding to each services that a particu1ar

server can deliver via the external package. These

service routines are viewed as meth여s associated

with the given server object. The external

package is ∞nsidered a kemel in the sense of a

UNIX keme1. A trap layer, then, may be viewed

as an interface shell which is responsible for

interpreting user ∞mmands， dispatc비ng servi∞

routines stored in the kemeL 없d delivering res띠ts

back to the clients

4. Characteristics 01 SERVER Object

We now assess the va1ue of our approach to

abstracting SERVER ob~ts with res야ct to the

following criteria: (1) the manner and degræ to

which they extend systems and ∞mponents， and

(2) the degræ to which they faci1itate distributed

computing.

地理學論훌훌 第30號(1997. 8) , 1-18.

1) Extended cαnputing environment through

the SERVER ob~ts

A major benefit incurred from the layered

wrapping approach to server ∞nstruction is that

the work required from users to extend their

computing environment is great1y simplified.

The actu려 extensions can be 0넓erved at two

버fferent levels: (1) the system leveL and (2) the

m버.vidua1 ∞mponent leveL At the lev리 of the

system as a whole, the capabi1ity of cαnputing

environments will be dynamically extended by

the integration of external software pa않ages. At

the individua1 ∞mponent level, the interface of

external software will be dynamically extended by

mαlifying trap 1ayers associa않d with them.

A p않ticular cαnputing environment is a sum

tota1 of various component software packages. A

notable feature of our approach to system

integration is i성 seamless and dynamic nature. By

seamless integration, we mean that external

packages are import려 as server kemels without

any modifications of their internal codes, and

thereby its autonomy is preserved. By dynamic

integration, we mean that SERVER ob~ts 떠n

be αeated dyn하ni떠11y even whi1e the system is

running without any re-∞mpi1ation or re-파나ting

of modules. External packages are indeed

treated very much 파ce dynamically loadable run­

time libraries.

We 려so 떠n observe seamless and dynamic

extensibi1ity at the level of each individual

SERVER object. The wrapping mechanism is

‘'virtua1’ in the sense that each wrapping does

not require physica1 duplication of kernels. The

kemels, of ∞mse， may be accessed and 뻐edas

S않nd -a1one as usua1. Virtua1 wrapping of s아lware

packages, in effect, simply provides different

- 7 -

A Study on C떠rse-grain어 seπice Object M여el for GIS Interoperation

access paths to them. A 밟19le copy of software

may be wrapped into any number of server

ob~ts at run time. Each different wrapping will

result in different interfaα~toa 잉ng1e under1ying

software, 야:!Céluse an interface is encapsulated in a

trap 1ayer.

<F필ure 2> illustrates a 않se where a sing1e

keme1 is wrapped into three different versions of

SERVER ob~ts， each of which provides se:따ate

accesses and interfaces. Mu1tip1e Versions of

seπer As such. users mere1y have to m여ifya

few trap routines in m띠ifying external interface

of 5Oftware: the internal αxies of that ∞ftware

remain intact as keme1.

Server-a Server-c

(Figure 2) Multiple Version of Server

2) Distributed computing through the

SERVER ob~ts

Transparent support for distributed ∞mputing is

non -issue, becau않 the ‘POrt’ 1ayer of a server

object encapsu1ates 1ocationa1 transparency.

Interactions with server objects occur across

communication networks through the remote

procedure calling facility.

The heterogeneity of hardware p1atforms 려50

k∞mes a non -issue. Any idiosyncra외es associated

with p1atforms, for which a particular piece of

software is compiled, w i1l be 10calized since

requested procedures will be executed in the

native p1atforms regardl않s of where the requests

originate.

N.OMEGA Seπer Pool Management

The idea of the server poo1 and its management

is motivated by the benefits of org.때깅ng and

aα:essing servers hierarchi갱lly according to their

functionalities, 10cations, and requirements of

spe떠l 밟rdwares and/or anc:피ary softwares. By

the server pooL we mean the set of servers that

are runr따19 (or at least able to start on demand)

and ∞nfigured to be accessib1e by clients. An

않rly 10.밍stic d않ign decision we made was to

deve10p a system abstraction of ‘meta -servers’ ,

which manage the virtua1 bωndaries and sub­

boundaries of the server p001.

1. Server Pool and Meta-Server

another significant benefit of our approach to Meta-server p1ays the ro1e of a centra1 re힐strar

αea파19 SERVER ob~ts through wrapping. The for a given poo1 of servers active in the OMEGA

esse배려 requirements for supporting 버stributions environment. That is, even after a server is

are 1ocation transparency and alα:omm띠ation of wrapPE화 and put into a network. there should be

heterogeneity. The phy:와.ca1 1ocation in which a sαne mechanism to advertise 성 avai1ability to

particu1ar piece of software resides becomes a potential client proc않ses. Meta -server is en찌외on려

n o

as a centralized directory service of “ Who’ s

Who": in the net-land.

Meta-server also is responsible for logical

organizations and managements of a set of

servers within the ∞ntext of the server p001. We

define the server pool as the set of servers

aα:essible by clients in the OMEG A environment.

The server-pool boundary is then effectively­

defin어 in terms of the content of registration

maintained by a particu1ar meta-server.

The idea of meta -server has been used in

many systems. In the UNIX/SUN environment,

inetd and y러low-page daemon are such ex하npl，않.

In the context of database systems, however, we

are not aware of any system that implements the

notion of a meta-server, a1though 않 architecture

(Figure 3) Server P∞I Management by Meta-Server

StaJistical Analysis Suver Pool

Pusistent Object Servu Pool

(Figure 4) Hierachical Organization Server Pool

地理學論護 第30號(1997.8) ， 1-18.

may employ a client-server model between a

query engine front-end and a storage manager

back-end.

The role of meta -server is not limited to f1at

server pool management. We can impose

hierarchies and organize servers and the server

p∞ in arbitrary ways. <Figure 4) depicts one

such example where servers are organized in

sub-pools based on their functionality , i.e.,

whether they are for image proces외ng， sta디stica1

ana1ysis, etc. We make two ob않rvations here that

all 않rvers are the client of at 1않st one of the

meta -servers, and that all 뚱rvers may be the

client of any number of servers in the p001.

2. Meta-Server Methods and Configuration

Some of the maþr meth，여s assc:생ated with a

meta -server include list and find The li하 method

will retum the set of all 않:rver n와nes re휠stered

at the time of the method invocation. The find

meth여 will retum the pαt address of the server

given as an argument.

Via meta-server, clients can locate any server

current1y available. One of the remaining problems

is that how the clients 1α::ate the meta -server

i않표?A ∞mmon solution to this problem involves

the notion of “ well-known-port": port: every

client process has a hard-coded address of

communication port, on which the meta-server

will listen for the duration of 않 existenæ. We

find this approach only partially satisfactory

because it would unduly burden system

m리nten없æ and ∞nfiguration. cases may 하뀔e

when the meta-server should be re<띠n폐gur외 m
have different addr않않s (e.g., a particu1ar host

crashes).

- 9 -

A Study on C∞rse-grain어 Service Object M여.el for GIS Intero야ration

Just 파<:e ob~ts are abstrac뼈 and referred to

by its Oid, the implementation details of the

meta-server (e.g., its host and port address)

should be abstracted and be made transparent

to clients. The OMEGA meta-server w퍼 have i않

configuration information encapsulated in a

procedure, which is shared among the meta­

server and other servers and clients_ At the time

of initialization, meta-server will invoke this

pr，α때ure to position itself in the network host/

port address 하:>ace dictated by the ∞n五guration

prlα빼ure. Client prlα~ then, invoke the 잃me

procedure to figure out the addre효 of the meta­

s않erπve하r. The proce어du따rra외1 c∞on따f벌u따rration a떠때llows the

system administrator to freely change the location

of the meta -server by simply changing the

∞nfiguration pr，α뼈.ures α성e. This idea is 밟nilar

to the procedural encapsulation of ‘method’

interface for ob~ts and their behaviors.

V. Protoco1s and User Language
Constructs for Seπer Management

In this 똥ction， we present user-level 없nguage

∞nstructs for crea파19 and interacting with server

objects. The overall protocols for client-seπer

interactions are summarized in (Figure 5), which

will be e없벼rated in the following sec디ons.

1. Becoming a Server

Any p~α:ess can m밟:e i뼈f av;려lable as a server

by invo없nga 외mple ∞mmand becαne_serveca날

followed by the name by which the current

proc않s wants to be known to clients. Re.밍st얹ng

itself to a meta -server w퍼 be taken care of

Server Side ClientSide

become client of meta-server >

become server as beta >

Listen on Advertis벼 RPC Port
Receive R맥빠t From Clients
T rap and Parse Request
다spat야lR여uest Handler
Package Results inω RPCPacket
Send Result to Client

bmme clim of beta

InitiaJizc RPC handler
Locate beta > throu밍h Meta-Server
Establìsh RPC-ch삐n허 to beta>
Create LOCaJ SER VER 。이ectbeta >

beta > request

Package Request into RPC Packet
Send Requesl to beta >
Wait for Results from beta >

beta > & request

Package Request inω RPCPacket
SendA의nchronous R여uest to beta >
Activate a CaJlback Process for
“’ Results Packet from beta >
Retum Immediately

(Figure 5) OMEGA Client-Server Protocol

internally. The underscores are optional, e.g.,

‘become server as' w피 be parsed exactly the

잃me. If this ∞mmand is invoked interactively,

the session prompt will be changed from the

default ‘OMEGA)'’ to the user-spe다fied server

name. When the current process (as a server

adverti싫 as ‘외야111>’ is acces뼈 from remote

clients, only the routines de址ed in terms of trap

will be made available to the public as the

services of 허빼a)

OMEGA> 야∞me 똥rver as 허pha)
허pha)

The ∞mmand may have optiona1 arguments for

spec표ying the d짧ed port number(by defa띠t， the

system will 똥lect one from available ports). This

∞mmand triggers the OMEGA parser to execute

the fol1때ingl맹떠1 s않ps:

- 10-

CD spawn a subprocess to handle requests from

the clients

<ID initialize a RPC-based port and trap routines

@ locate the meta-server, ‘'meta)’ , and register

to it a name and a network port

@ have the subpr'α:ess listen on the advertised

port for any requests from the clients

@ trap and dispatch any subsequent c1ient

request

2. Writing Trap Routines

The trap routines interæpt client requests and

translate them into procedures native to the

server. SOUL provides a directive 갱n어 ‘'trap’ ,

and writing trap routines is very 외milar to writing

orl바n따y method pr∞edures using the program­

ming ∞nstructs of SOUL. We will 1∞k at an

example of a trap routine for the GRASS package.

GRASS provides 'm.1l2u' for converting a map

of the Lat/Long αlOrdinate system to a new map

of the UTM system. In OMEGA, we may use

t비s facility of GRASS as ‘'geog2utm' methods

av려lable as a serviæ from the server ‘'grass>’ .In

t비s case, the neæs잃ry trans1ation is very 외mple

as is 삶lown below

trap geog2utm args {

m.ll2u 없rgs

3. Becoming a Client

In the following 똥quenc호 of examples, we show

how a user may (1) 펴ld out which servers are

current1y available, (2) pick a partic띠ar server

and become 않 client, and (3) subrnit requests

that the server is known to handle.

地理學論훌훌 第30號(1997. 8) , 1-18.

OMEGA> meta'응erver> list
== > grass> mathematica> ∞raI> ..
OMEGA> 야gαne client of grass>
==> SERVER ob원::t “'grass>" is created.
OMEGA> grass> d대st soilmap

Any process 않nm밟e itself a client to servers

by invoking a 외mple ∞mmand ‘야∞me client of

followed by the name by which the server

process is registered to a given server p001. N ote

that thescoping of ‘orass>' is loca1 to the 떠피ng

proc않s (client). More speci죄떠lly， this s않sion 떠S

created 않 local link to the server ‘grass’ it

becomes grass' s client.

4. Asynchronous Server Interface Protocols

By defa띠t， a11 the requests to, and replies from

the server are synchronous. There are, however,

ca똥s where the synchronous communication is

undesirable. For example, when an execution of a

request takes a long 마ne， clients may not want

to wait unti1 the entire processing finish on the

server side. A more drastic situation may be

when the seπer proc않용 crashes, clients wou1d

unknowingly wait for replies that will never be

delivered

OMEGA supports the asynchronous mode of

interface for SERVER. Users may choose the

mode of interface at each time of method

inVIα:ations. If the next 없밟 of a client is not

dependent on the reply from the server, the client

may subrnit request and imm어iate1y resume its

loca1 tasks. The server 하de， after finishing the

request, will notify the client and deliver the result

asynchronously. This mode is simi1ar to the

handling of background þbs in the UNIX environ­

ment. SOUL is augmented by the ∞nstructs for

- 11 -

A Study on C∞rse-grained seπice Object M며.el flα GIS Interoperation

the asynchronous SERVER interface. If the server

ob~t name is suf五xed by the symbol ‘&’ , then

the method request is sent to the server in the

asynchronous mode. The following example

shows that the client may resume other tasks

right after it submits an asynchronous r여uest.

OMEGA> græs)& d.떠st soil
OMEGA>

‘&’ is chosen for the asynchronous request

원g퍼cation 외nce it is ∞mmonly understood as a

‘background’ j:>b request in the UNIX environment.
When the server side finishes processing the

request, it notifies the client by bc:풍ping on the

client' s terminal, for example. It then writes the

results in a location (nam어 by a variable) so

that the client 떠n fetch the results 1ater. T비S

protocol is implemented by way of ‘cal1back’

facilities. Callback is a routine which a client

p땅gybacks along with a request. The server w피

invoke the callback routine with the results as a

parameter.

5. Indirect Access to Server

We now describe an indirect accesses to

SERVER ob~ts and the situations that call for

such interfaces. Consider, for example, an

application that requires services from two

hypothetical servers, 뾰떠> and gamma). Further

consider that gamma> is separated (for r않sons

such as network 퍼rewal1’) from the current

proc앓s. If be떠〉 ∞n acc않s gamma>, then we

rnight be able to ask beta) to 맺ss our request

to gamma) and also deliver the results from back

to us. In this case, 않떠> p1ays a role of a middle

us and gamma). T피s access m띠e to a server

through agents is 떠끄ed indirect access.

There will be another situation where indirect

aα:esses m밟e sense. Suppose we need to process

a 1arge da떠set (e.g., a Landsat Image) , which is

stored and manag려 by beta>, g하nma> is an

image proc않밟19 package that runs the particular

algorithm that we need. It would be very

inefficient, in this case, if we 회rst retrieve the

dataset from 홉떠， and then 맺sst비sda떠set as a

parameter to gamma) for proceæing: 떠rge da떠set

dataset has to be moved twice over the network.

Instead, we would 파‘.e to have be떠> send 성

da떠set directly to gamma>, and re1ay to us just

the results. T비s indirect alα:ess involves just a

외ngle transfer of the dataset.
The required steps to set up the indirect

access of our example will be as fol1ows. First,

the current process that runs our 않ssion of

OMEGA must be made a client of ‘beta

Second, a request is sent to beta, a앙파19be떠> to

‘뼈come a client of gamma)’ Now the servers

are cαrectly configured and we are ready to

access gamma> indirectly for i않 seπice ‘없mma’ s­

ex야ni앓 by as따ngbe떠> to make the request to

gamma).

become 미ient of beta> beta> become 디ient of gamma

햇굉φ탓꽉 戀I I戀췄φ월상
-’ - ’‘ ..

(Figure 6) Indirect A짧ss to gamma) via be빼〉

‘agent’ who re1ays requests and res띠.ts between VI. Implementation of OMEGA Prototype

- 12 -

The architecture of the OMEGA system is

guided primarily by the goa1s of extensibility

and 1∞se-coupling of interoperable subsystems

over the network. OMEGA can be dynamically

∞n五gured to respond to the varied req버rements

of new and different applications by integrating

either public domain or off-the-shelí ∞Immerc떠1

packages. The OMEG A infrastructure con외sts of

several layers of system components which

interact in the mode of client-server and can

always be replaced with new , experimental

∞Impαlents. A ft피y operationa1 version of the

OMEGA prototype has been completed and

relea않d through WWW. The OMEGA shell runs

on UNIX platforms, and porting to other platforms

platforms is currently underway. It consists of

sαne 15,000 lines of Tcl as well as 2,000 뼈es of

C programs on top of a number of libraries. The

important components inc1ude an extensible

OMEGA kemel of c1ass library, a SOUL parser, a

graphica1 user interface, a pe떠stent storage server,

computation server coupling module, and a

gateway server as shown in <Figure 7). We

desαibe some of the cαnpαlents in the following

않ctions.

1. Data Server

The data server ∞mponent ∞mprises a data벼se

back-end that manages the physica1 storage of

data items. OMEGA currently employs the

storage manager subsystems of POSTGRESS

(Stonebraker and Rowe, 1986) as a platform for

persistent data server. The OMEGA data server

provides persistency to valid object, be it an

ob~t， a c떠ss ob~t， or a meth띠 ob~t. The

persistent store is shared and accessed by m띠ti-

地理學論護 第30號 (1997. 8) , 1-18.

OMEGA> become client of be떠〉

OMEGA> be떠> become client of gamma)

OMEGA> be'떠> gamma> gamma' s_expertise

users. OMEGA relies on the Postgres transaction

mechanisms (b잃ed on 2PL -protocol) to ∞ntrol

concurrent accesses. In OMEGA, the Postgres

storage manager runs behind the scene. The user

interacts with Postgres indirectly through the

primitives, such as 뿜연ist， I。뼈， and perish.

A direct interface to Postgres is 려sopc짧.ble

within OMEGA in terms of the loca1 SERVER

ob~t n와ned 뼈띠res>. The non-OMEGA data

stored in Postgres can be a>α않똥d by r，때rec마19

POSTQUEL to the server.

2. Computation Server

OMEG A is a comprehensive application

development environment ∞nsisting of numerous

servers for high1y specialized. cαnputations. We

illustrate s:>me of the integral su벼yst，앉lS ∞upled

in OMEG A according to their functionalities.

1) Equationa1 Ob~t Server

OMEGA employs ‘m해홉matica’ asa 얄)ecialized

computation server for a wide range of

mathematical calculations. Equations and other

mathematical structures are represented in

symbolic expressions. Manipulation of algebraic

formulas is well supported as are differential

equations and other numerica1 ∞mputations such

as integrations and linear programming. In the

OMEGA environment users will call upon

mathematical computations through a server

ob~t ‘math' .

’ j 4
l
l

A Study on Coarse-grained seπice Ob~t M여el for GIS Interoperation

2) Axiomatic Rule Ob~t and Inferen∞ Server

OMEGA employs CORAL as an inference

engine to process axiomatic ru1e base. CORAL is

a logic-bæ뼈 database 떠ngt굉ge dev밍oped at the

University of Wisconsin -Madison (Ramakrishman

et al., 1993) . It seeks to ∞mbine ~않tures of a

database query 1anguage with those of a logic

programming 1anguage. It is distinguished from

conventiona1 database 1anguages by 성 inferenæ

capab피.ties ba않d on first -order logic. Although

its syntax is not entirely suitable for general

purpose programming, the ru1e-based inferences

are attractive because they represent and proc않S

ært려n knowledge suαinctly and declaratively. We

have 많ed CORAL in irnplementing an 않rly pilot

system of OMEGA. OMEGA entrusts CORAL

with such 떠하cs as rapid prototyping of algorithms,

algorithms, ∞nstraint programming, and problem-

(Figure 7) System Architecture of OMEGA

- 14 -

地理學論難 第30號(1997.8) ， 1-18.

sol띠ng 벼않d on transitive closure. In the OMEGA GRASS. (Table 1> 1ists examples of the GRASS

environment, users will cal1 upon CORAL' s programs that are ‘wrapped’ as OMEGA' s

inferenæ capabilities through a server ob~t ‘∞r외 primitive spa디al operators.

3) Image Proæs획ng Subsystem Table 1. GRASS Program Conversion

OMEGA employs ‘Khoros'’ and ‘IPW’ for their

image processing capabilities. IPW (image

proc않밟19 workbench) is a development en찌ron­

ment for image manipulation algorithms and

applications with particular emphasis on satellite

imagery(Frew , 1990). IPW offers a single,

portable irnage data format that aαommodates

both integer and floa마19-point data representations,

as wel1 as an unlimited amount of ancillary

information. Image data may have an arbitrary

number of channels or bands. In the OMEGA

environment, users will 때1 upon irnage proc않돼19

operations of IPW through a server ob~t ‘ipw)' .

Users can 려.so u않 SOUL sαipting for program­

rning the 않quen∞ of desired actions.

4) GIS Subsystem

The OMEGA environment provides the core

functionality of a GIS as i않 sub-system. GRASS

(CERL, 1993) is irnported into OMEGA as a

spatial operator library, which is made available

either through the server object ‘grass)' , or

through the set of OMEGA primitives trap맺d

into GRASS procedures. The OMEGA shell

provides a powerful front-end to GRASS, in

which the subroutines native to GRASS may

interrnix with other programs to produce arbitrarily

complex applications. The data files on which

G RASS programs operate are encaps띠ated as

OMEGA ob~ts， and the GRASS programs are

encaps띠ated as methods. The OMEGA persistent

store provides a reliable database back-end to

OMEGA GRASS program
class method

Map g∞，g2utm m.ll2u
Map u삼n2geog m.u211

Vector vect2rast v.to.rast
Raster info r.info
Raster theme r.cats
Raster over1ay r.cross
Raster cαnbine r.cαnbine

Raster filter r.infer
DEM ba밟1 r.b잃ins.페1

DEM dr려n r.dr밍n

VII. OMEGA Gateway Server

Information acæss through a wide-area network

is expll띠ing at a remarkable rate. The existing

hardware and software to tap on the Intemet

through World Wide Web(WWW) has matured.

WWW is an embodiment of the universe of

network-acæssible information. With the advent

of WWW technologies, the p∞sibility has 때sen

to provide information holdings of OMEGA to

m uch wider clien ts. The main thrust of the

OMEGA gateway server is that we cannot expect

every remote site to have an OMEG A system

install어， but we can still expect them to acæss

resources maintained by a loca1 OMEGA through

WWW, and viæ versa. The WWW-bru뼈 aα:;ess

to data in OMEGA is ‘self-sufficienÎ sinæ the of

the data are 려so made avai1able. The subsystem

of OMEGA for exchanging information across

「3 4
l ’

A Study on Coarse-grained Service Object M여el for GIS Intero야:ration

networks is founded on the so-ca11ed ‘'gateway’

technology. We have ∞nfigured and implemented

ano야:rational gateway server of OMEGA. This

section describes the motivation, and sketches

architecture and some of the engineering de떠ils of

our implementation describes the OMEGA

gateway servers in greater de없il.

1. Why Gateway?

The success of ∞Uaborative scien디fic re않arches

relies on effective and efficient information

exch따19es among 며stribu않d 외tes. The information

exchanges involve datasets, programs, models,

and analysis results. The datasets fetched

(through ftp) would be of litt1e use without the

processing modules to manipulate them. The

current practice of data exchange involves

importing raw data from remote sites, and

developing programs locally to prα:ess them. If

the remote sites also maintain processing

programs, they will be fetched and compiled

loca1ly. In any case, there will be traffic of either

moving data to algorithms, or moving algorithms

to data. The self-sufficient ml여.e of information

exchange, however, will only involve migrations of

‘V려ue-added’ data being prlα:essed at the site of

the information provider. The ‘Archie’ and

‘Gopher’ servers have some capabilities of queries

processing to filter desired datasets. But these

proc않밟핑s are lirnited to 잉mple search ∞n이.tions.

The genera1 mech와Usms Ílα data transformation

andm때p띠ation are absent in these servers. The

‘gateway’ referes to a piece of software coupled

with a WWW server. Gateway servers are

executable programs that can run by themselves.

They have been rnade externa1 programs in order

to a1low them to run under various information

servers interch하19eably. A gateway server aα::epts

queries from remote clients through a locally

installed HTTP-server. The queries will be

processed in the local query engine, and the

results will be sent back to the clients. The

results are usua1ly packaged by HTML directives.

The똥 directives tell the client (such as Ne않ape)

how the data should be interpreted and pos와bly

visualized. The main motivation of incαporating

gateway technology into OMEGA is to serve and

exchange information resources maintained by

OMEG A with other information sourα~. Simply

put, the benefit of the OMEGA gateway is 삼lat

not only the data holdings but a1so the entire

functiona1ities of OMEGA are made available to

remote users. OMEG A gateways offer the

following benefit in distributed ob~t m하lagement:

CD 1t a1lows self-su떠.cient interface to clients

from remote, extema1, and heterogeneous

environments

@ It guides remote clients via query-forms

which are adaptive to data밟se states.

@ 1t servers as network-wide data exchange

port.
@ Remote systems (ie., their capabilities) are

‘connected to' through gateway rather than

‘ins떠lled' as a local copy.

2. Construction of OMEGA Gateway Server

A particu1ar standard of a gateway interface

protocol gaining wide acceptance among the

WWW is ‘Common Gateway Interface’ (CGI).

A WWW -server that is configured to accept

CGI protocol has been developed in National

- 16 -

Center for Super，∞mputing Applications (NCSA):

http (current version 1.1). The OMEGA gateway

server is implemented to meet the s:야ciñcations of

the CG 1 protocol and employs RPC as' the

backend which handles WWW clients and their

requests in CGI. The OMEGA gateway is a

stateless server in the sense that no state

information is cached internally by the server side

on behalf of the client. The necessary information

is piggy-backed to and from clients in the form

of a URL (U niversa1 Resource L∞ator). The

implementation and ∞n:figuration of the OMEGA

gateway server and a WWW front-end server

involves the following steps:

CD local installation of ‘httpd’ with an URL

@ externa1 view and ac∞ss ∞nfiguration of

the OMEGA system inc1uding a gateway

query form server

@ ∞mpi1ation of CGI-conforming query forms

@) installation of a gateway query form 맺rser

@ coupling of gateway servers with the meta-

server and the OMEGA kemel

The gateway query form is a mechanism for

soliciting the information from a remote user. It

consists of the dialog window. A variety of

graphical interface elements are em아최ded within

the query form to which users can point and

click to fill out the query request form. The

interface elements typically ranges over the

menubar, scrollable selection windows, buttons,

text input 이a10g boxes, etc. The idea of multiple

query forms and a query form server can be

describc:영 in the following interface scen하io. First,

on the client’ s request, the query server suggests

a set of query forms accepted by the server.

Then the client decides the format in which he

地理學論훌훌 第30號 (1997. 8) , 1-18.

W피 express his queries and fills out the query

form and submits it back to the query server.

The query server w피 pre-parse the submitted

query, translate it into SOUL, have the local

OMEGA server process the query, and 펴1ally，

deliver the packaged res버ts back to the client.

T비s protocol is depicted in (Figure 8).

Wor1dWide Web Galeway 10 OMEGA

(Figure 8) VNNV-Gateway Interface of OMEGA

VJ[. Conclusion

A distributed and heterogeneous computing

environment is the rule rather than the exception

in experirnenta1 g∞scientific r않않rch ∞nducted

on high-level testbeds consisting of unique

hardware and software architectures. The ensuing

problems in accommodating heterogeneity and

integrating various cαnponents have been widely

recognized. OMEGA is an environment where

η

A Study on Coarse-grained Service Object Model for GIS Intero야ration

heterogen∞us computer systems share a sma1l 뚱t

of key interface primitives. We emphasize that

the OMEGA environment is a loose form of

inter∞nnection at the seπi∞ leveL rather than

seeking to construct a transparent operating

system bridge between heterogeneous systems. In

other words, OMEGA accommodates multiple

S떠ndards and the autonomy of individua1 systems

(instead of legi허ating another standard) while the

integration is still accomplished among a large

nurnber of system types with a sma1l nurnber of

instances. We are convinced that 11α>se-∞upling is

the only viable design to meet the highly

dyn와nic nature of geoscientific m여eling for its

demand of various tools.

It is the SERVER c1ass that provides the

nec않잃ry software infrastructure to rninirnize the

'ha.cks' of adding new systems to an e.원S따19

environment. We develoPE녔 a system abstraction

of SERVER and associated user level primitves,

and implementation techniques that bridge

theαy and practice. We investigated the extent

to which abstraction techniques and language

primitives can hide low-level details about

data and computations involved in advanced

geoscientific applications. An initial evaluation of

our work based on a prototype implementation

of OMEGA is very po외tive and en∞luraging.

References

Asrar G. and D. Dokken, 1993, EOS Reference

Handb∞k， NASA Publication: NP-202, March

1993.

CERL, 1993, GRASS 4.1 User' s R，얹농ren∞ Man uaJ.

Construction Engineering Res없rch Lab.

Frew, J., 1990, The Image PI1α-:essing Workbench,

PhD the허s， University of California, S없lta Barbara,

Santa Bar벼ra， CA., July 1990.

Object Management Group, 1997, Common Object

Request Broker: Architecture and Specification,

Techr꾀C려 Repαt.

Park, K., 1994, SOUL of OMEGA: Design and

Implementation of an Object-based Modelling

Environment for Geoscientiñc Apph영tions.， PhD

thesis, University of Califomia, Santa Barbara,

Santa Bar벼ra， CA., June 1994.

R따n와crishman， R., Sesha따i， P., Srivastava, D. and

Sudarshan, S., 1993, The CORAL Manual,

Computer Science Dept., Univ. of Wisconsin­

Madison. Madisα1. WI

Schek, H. and A. Wolf, 1993, “From Extensible

Databases To Interoperability Between Multiple

Data벼ses and GIS Applications" , in Proc. of 3rd

In t. Symposium on Advances in Spat떠1 Data떠ses，

(Singapore) , pp. 207-잃8， Springer-V erlag.

Srnith, T., Su, 1., Abbadi. A.EL Agrawa1, D. and

Saran, A., 1995, “ Computational Modelling

Systems," Joumal of Information Systems, vo1.l9,

no.4.

Stonebraker, M. and L. Rowe, 1986, “The Design of

POSTGRESS:' in Proc. ACM SIGMOD Inf 1

Cont on Management of Data, (W;싫삐gton， D.CJ.
pp 340-355, May 1986.

- 18 -

	Abstract
	요약
	I. INTRODUCTION
	II. Overview of OMEGA
	III. Abstraction of Computational Packages in OMEGA
	1. Background and Motivation
	2. Conceptual Framework of SERVER
	3. Architecture 01 SERVER Object
	4. Characteristics 01 SERVER Object

	IV.OMEGA Seπer Pool Management
	1. Server Pool and Meta-Server
	2. Meta-Server Methods and Configuration

	V. Protoco1s and User Language Constructs for Seπer Management
	1. Becoming a Server
	2. Writing Trap Routines
	3. Becoming a Client
	4. Asynchronous Server Interface Protocols
	5. Indirect Access to Server

	VI. Implementation of OMEGA Prototype
	1. Data Server
	2. Computation Server

	VII. OMEGA Gateway Server
	1. Why Gateway?
	2. Construction of OMEGA Gateway Server

	VIII. Conclusion
	References

