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We analyze an n-person bargaining game where players alter-
natingly demand their shares of a pie, and show that the set of
perfect equilibria is a singleton if the common discount factor
is below a certain cirtical level, and a continuum otherwise.

I. Introduction

Previously, we (1988) set up an n-person bargaining game in
which the bargaining process is recursive. A player’s acceptance of
a proposal in an n-person subgame leads to an (n — 1)-person sub-
game excluding the player. His rejection leads to another n-person
subgame with a permutation of players. There we showed that the
game has a unique perfect equilibrium for the case where the play-
ers have the same discount factors applied to their shares of the
pie. Subsequently, we (1989) have extended this result to a more
general case where different players may have different utility func-
tions and discount factors.

In the present paper, we will consider an alternative bargaining
process where a player demands his share rather than proposes the
responder’s share. We will show that the set of perfect equilibria is
a singleton if the common discount factor is below a certain critical
level, and a continuum otherwise.

For the case where the equilibrium is unique, the players parti-
tion a pie in the ratio (1, &, 82..., 8™!), where ¢ is the discount
factor, in the demand game of the present paper as compared to (1,
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8, 8 sy &) in the proposal game of the previous paper.! One lesson
we learn by comparing the outcomes of the two alternative bargain-
ing processes is that there is a premium for an initiator. In the
perfect equilibrium of the proposal game, player 1 remains the only
initiator until the end of the game, proposing the other players’
shares successively. In the perfect equilibrium of the demand game,
an accepting responder becomes the initial demander in the reduced
bargaining round. Thus, the order of the players other than the
initial player does not influence the outcome in the proposal game,
while it does in the demand game.

It is obvious that the two-person case of either game is a Rubin-
stein game (1982). In a two-person game, demanding one’s own share
is equivalent to proposing the responder’s share.

II. The Model and Result

An n-person bargaining game G, (7, t; Py,.., P,) with total pie
m (> 0), starting period v (=0, 1,..,, ), and players P;,..., P, (n >
1) is defined recursively as follows: o

Players bargain over the partition (sy,..., s,,) of the pie, where s;,...,
sy >0, 514+ ..4+s, < m. When all players reach consensus, play-
er i receives s;. If the consensus is reached in period t (= 7,7 +1
ey 00), player 's utility is ; = 8's; where 0 < & < 1.

In period 7, P; demands his share s;. If P, accepts the demand,
then the remaining game becomes G, (7 — sy, 7; Py,..., P,). If P,
rejects the demand, then the remaining game becomes G, (7, r 4+ 1;
P,, Ps,..., P,, P1).2 In a one~person game Gy (7, 7 ; P;), P; can choose
any share reaching the self-agreement in any t = 7, 7 + 1,..., .
If # = 0, then the game G, (7, 7; Py,..., P,) is defined as the tri-
vial game where players receive (0,...,0) in period 7.

For n > 2, let ¢ ,(x) =x(1 4 .. +x""%) for x > 0, and let Sn be
the unique solution of the equation ¢ ,x) = 1. Then1= §, > .. >
On> 8nt1 > .. > 1/2.One has ¢,(5)< lif andonly if & < ¢,,.

1Jun (1987) obtains (1, §, &) as the unique subgame perfect equilibrium of a
three-person bargaining game.

?In the present model, if an offer is accepted. then no time is needed before the
next round of bargaining, whereas if an offer is rejected, one period is lost. This
particular formulation was chosen to reflect the cost of changing the proposer. In
general, however, whether there is any loss of time after an acceptance is not an
essential characteristic of a bargaining game. Any delay after an acceptance has only
the effect of shrinking the Pareto frontier.
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For notational convenience, let also §; = 1.
Our result is

Theorem
1) If &6 < 8, the game G,(m,0; Py,.., P,}) has a unique perfect
equilibrium with the outcome (uy,..., #,) = 7o,(1, &,..., 8"') where

o, =1+ ¢ + ... SN 2 If 8 > 8w the game G (7, 0; Py,...,

P,), where m > 0, has a continuum of perfect equilibrium outcomes.

Proof: 1) Assume § < §,. The theorem is trivially true if # = 0.
In proving the theorem for the case where « > 0, we may normal-
ize the pie so that # = 1. We use mathematical induction. First,
the theorem is true for a one-person game, for the lone player P,
will choose the whole pie in period 0. Second, if the theorem is true
for an (n — 1)-person game, then the theorem is also true for an
n-person game as shown below.

By the induction hypothesis, since §, < §,-1, one may replace
the subgame G,.;(1 —s;, t; Piy1,ees Py, Pu,..., Pioy) after the first
acceptance (by P,,) of a demand (s; by P;) during any play of the
game by the outcome (U;; 1,..., Uy, Uysen, Uj-1) = &' (1 — 5;) 6,41(1, & ey
8" ). (We will use the convention that subscript i + 1 means sub-
script 1 if i = n, and subscript i — 1 means subscript n if i =1.)
The original game reduces to a simpler game where the acceptance
of any demand ends the play. We have only to show that this re-
duced game has a unique perfect equilibrium with the outcome (uy,...,
u,) = o1, &,.., §"M.

We will first show that there is a perfect equilibrium with the
above outcome. Consider a strategy profile, one strategy for each
player, such that any demander demands his share o,, and any
responder accepts any demand less than or equal to o, and rejects
any demand greater than o, This strategy -profile is a perfect
equilibrium with the above outcome. (Step 1 below) In this perfect
equilibrium, the game ends in period 0 with Py’s share o,,.

We will now show that the set of perfect equilibrium utilities of
Py in the game G,(1, 0; Py,..., P,), denoted by U, is a singleton, viz.,
U= |o,}. Pt u=inf Uandu=sup U. Then u > 1 — o;}y6a
(Step 2 below) and u<l-— 6.8 u (Step 3 below). (Notice here
that § o}y = $,(8) < 1 because § < §,.) From these two ine-
qualities, we obtain u > 0, and & < 0, Thus U= |o,}.

Furthermore, we can show that any perfect equilibrium play of
the game G,(1, 0; Py,..., P,) ends in period 0 with Py’s acceptance of
Py’s demand o,. Suppose it ends in the starting period ¢ of the
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subgame G,(1,t;P;,..., P,, Py,..., P1). P’s unique perfect equilib-
rium utility in this subgame is §'0,, and thus the game ends with
P, 1's acceptance of P/s demand o,. The utilities of the remaining
players are (U; 1, Uy, Upseon Uis) = 8'(1 — 0,)0,-1(1, & 1oy 8"2)
= 6'6,6 (1,.... §"?). Therefore Py’s utility is 8°*o, for some s =
t,..., t+n—1. Since P;’s unique perfect equilibrium utility is g,
it must be that r = 0.

Now we want to show that any perfect equilibrium is a strategy
profile described earlier, i.e., one in which any demander demands
o,, and any responder accepts any demand less than or equal to o,
and rejects any demand greater than o,. We already know that o,
is the only perfect equilibrium demand, and that it is accepted. This
implies that a responder’s rejection leads to his share o, with the
delay of one period. On the other hand, his acceptance of a demand
s; leads to his share (1 — s;)0,-; in the current period. Since (1 —
0,)6,-1 = &0, he accepts any demand less than o,, and rejects
any demand greater than o,.

Step 1:In a subgame where P; is the initial demander, his initial
demand o, is accepted according to such a strategy, and the shares
for the remaining players are (Sii1,-s Sy S1yeees Si1) = (1 — @)
opa(l, 8y "% = 0,61, 8, "%). The demander P; will not
gain by demanding less than o,, because any demand less than or
equal to o, will be accepted. The demander will not gain by deman-
ding more than o, either, because any demand greater than o, will
be rejected, and this rejection will lead to P/’s share 0,5"" even
lagged one period. If the responder P,y rejects P/s demand, P;y,
receives o, lagged one period. Thus P, will not gain by rejecting
a demand less than o, or accepting a demand greater than o,.
Since P;,; is indifferent between accepting and rejecting o,
accepting the demand is an optimal action.

Step 2:1f P, rejects Py’s initial demands s;, P; attains at most
utility & & in the subgame G,(1, 1; Py, Ps,..., P,, P;). If P, accepts sy,
PZ,S utility is (1 — Sl) Gp-1- Let §1 = 1— 0',—,}18L2 so that (1 —_ .5-1)
6,-1 = O U. Since Py would accept any demand less than s;, P; can
guiirantee himself any utility smaller than s;, and thus u >1—
6,0 U.

Step 3 : Since i = sup U, for any € > 0 there exists some sub-
game G,(1,t;P,..., P,, Pi,.., Pi.;) such that a prefect equilibrium
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play ends in the starting period ¢ of the subgame with P, ,’s accept-
ance of P’s demand s; yielding P;’s perfect equilibrium utility grea-
ter than or equal to u — €.

Suppose i # 1, i.e., P; is not the demander in period ¢. Since P/'s
demand accepted by P;; is at least as great as u, Py’s utility after
P,~+1’s acceptance is at most §'(1 — u)o,;. Since u>1—

o, 5u from Step 2, one has (1 — u)o, < ou, and thus
'l — U)o, < o'ou < ¢ u, which is impossible if ¢ < (1 — ¢)a.

Assume € < (1 — &), sothati=1. Let §,=1 — o,,lau S0
that (1 — 51)06,-1 = Ju. Since P; would have rejected P;’s initial
demand if the demanded share s; had been greater than §,, P;'s
utility §‘s; after Py’s acceptance must be at most §'3;. Since §'sy
>u— €, one has 6s1> 851>u— €, and thus 1 — 6.5 u
> 8'd — a,,lau) >a— ¢. Since 1 — a,,lau > u— €, for

arbltrarlly small €, one obtains 1 — 6,46 u>a.

Q.ED.

2) Assume § > g, In proving the theorem, we normalize the pie
so that, # = 1. We will show that (uy,..., 4,) is a perfect equilibrium
outcome if u; =x and (ug,...,u,) = (1 — x)0,.4(1, &, 672 for
some x € [x, x] where

x=06"{¢8)— U/ 1$(8)— &7
and ¥ = [0"{$,(8)— U + 1 — 6"/ {$(0)°— 8".
Note that 0 <x < x<1and x=1— $ (8 .

In the proof of 1), we replaced a subgame by its unique perfect
equilibrium outcome. The condition § < ¢, would not have been
necessary if we had wanted to replace the subgame by the same per-
fect equilibrium outcome without requiring uniqueness. In other
words, the outcome (uy,..., ;) = 0,(1, &,..., 8"}) is a perfect equili
brium outcome for the case where ¢ > §, as well. Thus replace
the subgame G,(1 —s; t; Piyy,ee, Py, Pr,....Pi) after the first
acceptance (by P;;,) of a demand (s; by P;) during any play of the
game by the perfect equilibrium outcome (4 1,..., U, Ui,..., Uiq)
= 6'0 —5)0,:1(1, &y 8"9). For the reduced game, consider the
following strategy profile: In period t =0, 1,..., the demander de-
mands d,, where dg=x and d,=(1 —d,.1)/ ¢ ,(5) for t > 1, and
the responder accepts a demand if it is less than or equal to d, and
rejects otherwise. Note that x < d, <x for any ¢ This strategy
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profile is a perfect equilibrium as shown below.

In period ¢, the demand d, is accepted according to such a
strategy, and the shares of the responder P;, and the demander in
the previous period t — 1, P;.;, are o,1(1 —d,) and 0,.,8" %1 —
d)). The demander P; will not gain by demanding less than d,, be-
cause any demand less than or equal to d, will be accepted. The
demander will not gain by demanding more than d, either, because
any demand greater than d, will be rejected, and this rejection will
lead to P/s share ¢,.,8" %1 — d,;;) lagged one period. Here we
have d, > 80,18 %1 — d,,;) since

di— 0 6"_1811-2(1 - d1+1) = [dt”sn(a)z - 6"}
- 8"{¢n(8)— lf]/¢n(6)220

Thus demanding d, is an optimal action. If the responder P;; re-
jects P;'s demand d,, P;,, receives d,,, lagged one period. One has
6,-i1—d)=Q1—4d)s/¢,(6)= 6d,y1. Thus P,y will not gain
by rejecting a demand less than d, or accepting a demand greater
than d,. Since P;;; is indifferent between accepting and rejecting d,,
accepting the demand is an optimal action.

Q.E.D.

[II. Discussions

Shaked (see Sutton 1986) gives an example of a three-person
bargaining game of which the perfect equilibrium is not unique.
Herrero (1985) analyzes an n-person generalization of Shaked’s ex-
ample. In this game, a player proposes the shares of the other
players, who respond sequentially, and if any one player rejects the
proposal, the game starts all over with a permutation of players.
She claims that (using our notation} if § > 1/(n — 1) any partition
is a perfect equilibrium outcome, and that if § < 1/(n — 1) there
exists a unique perfect equilibrium with the outcome (u,..., u,) =
na,(1, &,..., 8"1). Haller (1986) expresses reservations about the
validity of Herrero’s proof of the latter claim, and shows that for a
variation of the model where players respond simultaneously, any
partition is a perfect equilibrium outcome for any § < 1.

For our model, we have established a result similar to Herrero's
claim for her model: if § > §, there exist a continuum of perfect
equilibrium outcomes, and if § < &, there exists a unique perfect
equilibrium with the outcome (uy,..., u,) = 7o, (1, &y 8™ ). The
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similarity is not complete, for in our model it is not true that any
partition is a perfect equilibrium outcome when & > &, This is
because in our model the game reduces to a two-person Rubinstein
game after the acceptance of n — 2 players, and thus there exist at
least two players whose payoffs are in the ratio 1: ¢§.
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