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The estimated glomerular filtration rate is a well-known

measure of renal function and is widely used to follow the

course of disease. Although there have been several

investigations establishing the genetic background

contributing to renal function, Asian populations have rarely

been used in these genome-wide studies. Here, we aimed to

find candidate genetic determinants of renal function in 1007

individuals from 73 extended families of Mongolian origin.

Linkage analysis found two suggestive regions near 9q21

(logarithm of odds (LOD) 2.82) and 15q15 (LOD 2.70). The

subsequent family-based association study found 2 and 10

significant single-nucleotide polymorphisms (SNPs) in each

region, respectively. The strongest SNPs on chromosome

9 and 15 were rs17400257 and rs1153831 with P-values of

7.21�10� 9 and 2.47�10� 11, respectively. Genes located

near these SNPs are considered candidates for determining

renal function and include FRMD3, GATM, and SPATA5L1.

Thus, we identified possible loci that determine renal

function in an isolated Asian population. Consistent with

previous reports, our study found genes linked and

associated with renal function in other populations.

Kidney International advance online publication, 19 December 2012;

doi:10.1038/ki.2012.389

KEYWORDS: family-based association test; genome-wide linkage study;

isolated Mongolian population; renal function

The decline in glomerular filtration rate (GFR), which is an
overall indicator of renal function, has been recognized as a
global health problem, leading to an increased risk of
cardiovascular events and mortality.1,2 Previous studies
have provided evidence for genetic factors affecting renal
function, showing heritability ranging from 0.41 to 0.75 in
populations with risk factors such as hypertension or
diabetes3,4 and from 0.21 to 0.33 in general populations.5–7

To date, there have been several linkage studies to identify
genetic loci determining renal function in individuals with
renal disease or in the normal population.8–11 Puppala et al.
suggested candidate regions including 2q36.3 and
9q21.31–q21.33 in the Mexican–American population, and
Schelling et al. reported the 1q43, 7q36.1, 8q13.3, and
18q23.3 regions using multiethnic diabetic populations.9,11

There are several additional regions that have been suggested
from other linkage studies, including 7p15.3–p13, 12p12.2,
and 16q12.2–16q23.1.8,10 In recent years, researchers have
tried to determine in more detail the genetic basis of the
estimated GFR (eGFR) through genome-wide association
studies (GWAS), and have begun suggesting some genes or
variants as determinants of eGFR or chronic kidney
disease.12–14 These studies, based on a large number of
samples, have identified several variants showing a high level
of significance and reproducibility near or within genes
including UMOD, SHROOM3, GATM, and SPATA5L1.12–15

Although a number of genetic loci have been implicated
from the genome-wide linkage and association studies, few
studies have been carried out in Asian populations. In
addition, some studies were focused on samples from
patients having a specific disease, and the results might not
reflect the renal function of the general population.9,11,16–18

This study was conducted as a part of the GENDISCAN
project (GENe DIScovery for Complex traits in large isolated
families of Asians of the Northeast), which was designed to
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investigate genetic influences on complex traits in extended
families in Mongolia.19–22 This project has several unique
features compared with other studies: (1) the study
population is isolated in a rural area and has relatively little
ethnic admixture; (2) the subjects mostly consist of large
extended families; and (3) the sample selection was unbiased
by health status, and thus the samples represent the
community-based population. These points strengthen the
power of the genetic studies, and enable the identification of
causal genetic loci for each phenotype.23

Family studies have a long history in human genetics. In
particular, linkage analysis using families was successful in
mapping for human oligogenic traits. In the past few years,
along with the advances in genotyping technology, a
population-based GWAS has become a popular tool for gene
mapping of common complex diseases. However, the
inability of the common variants identified by GWAS to
explain the heritability of diseases has again led to interest in
family-based studies, such as association studies based on
linkage information.24

In this study, we aimed to investigate the genetic
background of eGFR in isolated Mongolian families. Sub-
sequently, the candidate loci were compared with those
identified in previous studies on different populations, and
the reproducibility of the results determined.

RESULTS
Descriptive characteristics of study subjects

The descriptive characteristics of the study subjects are shown
in Table 1. This study consists of two steps of analysis: (1)
genome-wide linkage analysis followed by (2) a family-based
association study. The study population used for the linkage
analysis includes 73 families comprising 1007 individuals.
The number of individuals per family ranged from 4 to 54.
Of these, 722 individuals from 54 families were genotyped
with a single-nucleotide polymorphism (SNP) microarray
and chosen for the subsequent association study. The
minimum and maximum numbers of individuals per family
were 6 and 54, respectively. As shown in Table 1, the
distribution of each trait in samples for the association study
shows no difference to that in samples for the linkage study.
The eGFR, which represents the renal function of each
subject, was calculated according to the MDRD-6 (Modifica-
tion of Diet in Renal Disease) equation.25

Genetic evidence of eGFR from familial correlation and
heritability analyses

To identify the evidence of genetic factors for eGFR levels, we
calculated familial correlation coefficients in familial pairs
and estimated the heritability, which is a useful concept to
evaluate the amount of genetic contribution to total
phenotypic variation (Supplementary Table S1 online).
Overall, there were 760 parent–offspring pairs, 623 sibling
pairs, 725 avuncular pairs, 520 cousin pairs, and 94 spouse
pairs. In the age- and sex-adjusted model (Model 1), sibling
correlation was significant (r¼ 0.20, Po0.01), and among all

the subtype pairs the highest correlation was shown in
brother–brother pairs (r¼ 0.37, Po0.01). The narrow-sense
heritability for eGFR was 0.27 (Po0.01). In the multi-
variable-adjusted model (Model 2), parent–offspring and
sibling correlations were estimated to be 0.10 (P¼ 0.02) and
0.18 (Po0.01), respectively. Similar to the age- and sex-
adjusted model, the highest correlation was shown in
brother–brother pairs (r¼ 0.35, Po0.01). Among subtypes
of parent–offspring pairs, mother–daughter pairs had a
significant familial correlation (r¼ 0.14, P¼ 0.03). As shown
in Supplementary Table S1 online, the narrow-sense herit-
ability in the multivariable-adjusted model was slightly
higher than that of the age- and sex-adjusted model
(h2¼ 0.29, Po0.01). As a result, in both models of analyses,
the overall familial correlations for genetically related pairs
were significant. However, the correlations for spouse pairs,
which indicate shared environmental or assortative mating
effect, were not significant. This correlation pattern may
suggest the importance of genetic components for eGFR,
along with the significant heritability.

Genome-wide linkage scan for eGFR

Results for suggestive linkages with a logarithm of odds
(LOD) score greater than 1.9 are reported in Figure 1 and
Table 2.26 The two suggestive linkage peaks in this study were
detected on chromosomes 9 and 15 (Figure 1a). The linkage

Table 1 | Characteristics of study participants

Linkage study Association study

Characteristics
N (%) or mean

(s.d.)
N (%) or mean

(s.d.)

Subject information
No. of families 73 54
No. of participants 1007 722
Minimum no. of individuals per
family

4 6

Median no. of individuals per
family

18 20

Maximum no. of individuals per
family

54 54

Risk factor of renal function
Age (years) 33 (16.3) 32 (16.0)
Female (%) 537 (53.3) 392 (54.3)
BMI (kg/m2) 23.4 (4.2) 23.3 (4.1)
Smoking (yes) 180 (17.9) 117 (16.2)
Under antihypertensive
treatment (yes)

122 (12.1) 82 (11.4)

Fasting glucose (mg/dl) 95.4 (18.6) 95.3 (19.9)
SBP (mm Hg) 115 (16.1) 114.2 (15.7)

Renal function
eGFRa (ml/min per 1.73 m2)

Male 99.8 (26.5) 101.2 (26.6)
Female 96.4 (22.9) 96.5 (22.6)
Total 98.0 (24.7) 98.6 (24.6)

No. of CKD 23 (2.3) 13 (1.8)

Abbreviations: BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated
glomerular filtration rate; SBP, systolic blood pressure.
aeGFR was estimated by the MDRD-6 (Modification of Diet in Renal Disease).25
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peak with the highest LOD score was observed on chromo-
some 9q21 (LOD¼ 2.8, Model 2), with the nearest marker
being D9S307, and the linkage interval encompassing a
maximum 1-LOD ranged from 81 to 96 centimorgan (cM)
(Figure 1b). The empirical P-value after 10,000 simulation
replicates was 0.0003. The second highest peak was found on
chromosome 15q15 (LOD¼ 2.70, Model 1), with the nearest
marker being D15S214. The linkage interval of this peak
ranged from 38 to 50 cM (Figure 1c), and the empirical P-
value was 0.0003. We also explored the consistency of our
linkage results with those in other studies (Table 2).5,9,27

Family-based association test for fine mapping of the
suggestive linkage peaks

We identified two potential linkage peaks on chromosomes 9
and 15. For the additional association study, we focused on
interval regions under these peaks to carry out the family-
based association test (FBAT) for eGFR. In Table 3, family-
based association results with P-values o1.0�10–5 corre-

sponding to a Bonferroni correction are reported, and the
nearby RefSeq genes are explored within 150 kb upstream or
downstream of each SNP. The list of additional significant
SNPs, which were in strong linkage disequilibrium (LD)
(r2

X0.8) with the SNPs in Table 3, is shown in
Supplementary Table S2 online. The two SNPs reaching the
stringent level of significance were identified at chromosome
9q21.32. The more strongly associated SNP was rs17400257
(P¼ 7.21�10–9, Model 2), which was in low LD with the
other, rs6559725 (P¼ 9.12�10� 7, Model 2) (r2¼ 0.00). The
closest gene to both SNPs was FRMD3, which is known as a
diabetic nephropathy susceptibility gene (Figure 2a).16–18 The
SNP rs6559725 is located in the intronic region of FRMD3,
whereas rs17400257 is 45 kb downstream of this gene. At
chromosome 15q, 10 independent SNPs reached the
threshold level of significance, as shown in Table 3. Of these,
the strongest association was found for rs1153831, an
intergenic SNP near SLC30A4, GATM, and SPATA5L1 with
a P-value of 2.47�10� 11 in Model 1. Two SNPs, rs1153829

4
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Figure 1 | Multipoint logarithm of odds (LOD) results of the genome-wide linkage scan for estimated glomerular filtration rate. (a) The
linkage results of autosomal regions. (b) The linkage peak on chromosome 9, which shows the highest LOD score in this study (LOD¼ 2.8).
(c) The linkage peak on chromosome 15, reaching the threshold level for suggestive linkage (LOD41.9).

Table 2 | Chromosomal regions from genome-wide linkage scan for eGFR (LOD41.9a)

LOD scorec (empirical P-valued)

Chromosome
(location, cM)

Nearest
marker

Cytogenetic
regionb

LOD-1 interval
(cM) Model 1 Model 2 Previous linkage evidence

9 (90) D9S307 9q21.33 81–96 2.32 (0.0005) 2.82 (0.0003) Puppala et al.9 and
Arar et al.5

15 (44) D15S214 15q15.1 38–50 2.70 (0.0003) 2.45 (0.0006) Pattaro et al.27

Abbreviations: cM, centimorgan; eGFR, estimated glomerular filtration rate; LOD, logarithm of odds.
aSuggestive linkage regions under Lander and Kruglyak’s guidelines.26

bNCBI Build 36, region where the nearest marker is located.
cLOD scores in Model 1 and Model 2 were estimated under age- and sex-adjusted model and multivariable-adjusted model, respectively; see the Materials and Methods
section for details.
dEmpirical P-value was estimated by 10,000 simulations.
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and rs8042811, were in strong LD with rs1153831
(Supplementary Table S2 online); rs1153829 is located in
the 30 untranslated region of SLC30A4, and rs8042811 is a
nonsynonymous SNP of C15orf21. Interestingly, GATM and
SPATA5L1, which have been identified in previous GWAS, are
within 200 kb of these three SNPs (Figure 2b).12–15 The
second most significant SNP, rs12908295, was located within

an intron of C15orf33, and we identified eight additional
significant SNPs associated with eGFR, which were
distributed over three different genetic loci (15q14,
15q15.1–3, and 15q21.1–2).

To verify whether our top SNP in each chromosome was
within the same LD block with previously reported SNPs, we
checked the LD structures near top SNPs from HapMap

Table 3 | Family-based association results for eGFR under supportive linkage peaks (P-valueo1.0�10� 5)

Modelc

Chr SNP ID Locus Positiona Genotype (RA) MAFb P-value (Model 1) P-value (Model 2) Nearby gene(s)d

9 rs17400257 9q21.32 85,002,773 A/C (C) 0.04 4.37�10� 6 7.21�10� 9 FRMD3, RASEF
rs6559725 9q21.32 85,252,250 A/G (G) 0.04 2.60�10� 4 9.12�10� 7 FRMD3

15 rs1153831 15q21.1 43,559,740 A/G (G) 0.07 2.47�10� 11 4.11�10� 9 SLC30A4, GATM, SPATA5L1, C15orf48,
MIR147B, C15orf21, PLDN

rs12908295 15q21.1 47,576,537 A/G (G) 0.23 9.80�10� 7 7.93�10� 9 C15orf33, FGF7, DTWWD1
rs2305707 15q21.2 49,356,702 A/G (A) 0.16 1.87�10� 6 1.13�10� 7 CYP19A1, GLDN
rs8040312 15q14 37,067,395 A/G (A) 0.35 1.98�10� 4 2.90�10� 7 —
rs10163098 15q21.2 49,460,922 A/G (A) 0.06 5.05�10� 5 3.34�10� 6 GLDN, CYP19A1, DMXL2
rs8037395 15q15.3 42,367,146 A/C (C) 0.11 3.93�10� 5 4.63�10� 6 CASC4, FRMD5
rs8042458 15q21.2 47,951,441 A/G (A) 0.10 3.29�10� 5 5.60�10� 6 ATP8B4
rs11854805 15q21.1 46,463,166 C/T (T) 0.04 3.87�10� 1 6.88�10� 6 FBN1, DUT, SLC12A1
rs16968439 15q14 37,290,484 C/T (C) 0.23 1.69�10� 3 9.21�10� 6 C15orf54
rs17718330 15q15.1 37,910,641 C/T (T) 0.05 2.38�10� 6 9.38�10� 6 GRP176, FSIP1, EIF2AK4

Abbreviations: Chr, chromosome; eGFR, estimated glomerular filtration rate; MAF, minor allele frequency; RA, reference allele; SNP, single-nucleotide polymorphism.
aSNP positions are based on NCBI Build 36.
bMAF was estimated from parental alleles.
cModel 1 and Model 2 represents age- and sex-adjusted model and multivariable-adjusted model, respectively; see the Materials and Methods section for details.
dNearby gene(s) are based on RefSeq genes (NCBI Build 36) and within 150 kb upstream or downstream. The gene(s) closest to the SNP are listed first and are in boldface if
the gene(s) are identified by previous genome-wide association studies.13–18,28
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Figure 2 | Regional association plots and linkage disequilibrium (LD) structures in different ethnicities (YRI: African, CEU: European,
and JPTþCHB: Japanese and Chinese) based on HapMap data. The blue diamond indicates the most significant single-nucleotide
polymorphism (SNP) of each region, and nearby SNPs are color-coded to show their LD relationships with the top SNP (r2o0.2; white,
0.2pr2o0.4; yellow, 0.4pr2o0.8; orange, r2

X0.8; red). Asterisk indicates previously reported SNPs to be associated with estimated glomerular
filtration rate.12,13,16 Local LD is reflected by the recombination rates from HapMap data. (a) The association plot near 9q21.32. Green dot is
another candidate SNP in FRMD3 that has no LD with our top SNP on chromosome 9. (b) The association plot near 15q21.1.
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(YRI: African, CEU: European, and JPTþCHB: Japanese and
Chinese) (Figure 2). Whereas rs17400257 and rs6559725 in
9q21.32 were located in a different LD block to rs10868025,
which had been reported by Pezzolesi et al.,16 candidate SNPs
in 15q21.1 (rs1153831, rs1153829, and rs8042811) were
within the same LD block as rs2467853, a known
susceptibility SNP of renal function,12,13 in HapMap
JPTþCHB.

DISCUSSION

This study was conducted to explore the genetic basis of
eGFR in large extended families of Mongolian origin.19–22 We
estimated the renal function of each individual using the
MDRD-6 equation, and applied linkage analysis and a
subsequent FBAT to our study population. We identified
suggestive linkage regions on chromosomes 9 and 15, which
have been previously reported to be associated with renal
function or disease in other populations. A subsequent FBAT
under linkage regions revealed that 2 and 10 independent
SNPs on chromosomes 9 and 15 were significantly related to
the eGFR, and the strongest association signal in each
chromosome included the candidate genes identified by
previous GWAS (FRMD3, GATM, and SPATA5L1). In
addition, we discovered new susceptibility loci for renal
function at 15q21, 15q14, and 15q15 (SLC30A4, C15orf33,
FGF7, CYP19A1, GLDN, CASC4, ATP8B4, FBN1, C15orf54,
and GRP176).

There have been several previous linkage studies of renal
function in diverse populations.5,8–11,27 However, the renal
function of Asian populations, especially Northeast Asians,
has been rarely studied. Here, we conducted genome-wide
linkage analysis on an isolated Mongolian population and
found suggestive linkage peaks near 9q21 and 15q15. In
previous linkage studies with Mexican–American subjects, the
peak on chromosome 9q21 was reported as a candidate
region for renal function, and these studies also used a similar
method to measure the renal function of each individual.5,9

The region on chromosome 15 was also previously identified
in a linkage study of Caucasian populations.27 As both of the
suggestive linkage regions we identified were also identified
in studies in other populations, we decided to focus and
emphasize the targeting of these linkage regions in the
subsequent family-based association study.

Our association results revealed that genes near the
strongest association from each chromosome were consistent
with candidates identified in other population-based GWAS.
On chromosome 9, both the significant SNPs are located near
the FRMD3 gene. As there is very low LD between the two
SNPs (r2¼ 0.00), each SNP might separately affect the eGFR
value, making it more reliable that FRMD3 might be a key
gene in determining renal function in the general population.
This FRMD3 gene, which encodes the protein FERM domain
containing 3, is a well-known susceptibility gene for diabetic
nephropathy. It was first reported in European–American
subjects with type 1 diabetes, and replicated in Japanese and
African–American patients with type 2 diabetes.16–18 As

FRMD3 was identified in patients with both types of
diabetes having nephropathy or end-stage renal disease, we
can predict that this gene might have a role in renal function.
Freedman et al.18 reported that variants in FRMD3 were
associated with type 2 diabetic nephropathy, but not with
type 2 diabetes per se.

Several GWAS studies based on a large number of samples
have suggested some loci near GATM and SPATA5L1 genes as
determinants of renal function in Caucasian populations, and
another locus of GATM was also found to be significant in a
study of patients with African ancestry.13–15,28 In this study,
the strongest candidate locus on chromosome 15 is also
located near these genes (Table 3), and the LD block of this
region partly overlaps with that reported in the previous
study (Figure 2).13 As the previous GWAS studies used a
method similar to ours to estimate renal function, this
overlapping result might be more important.

For both suggestive linkage regions, we could replicate
candidate loci identified by previous GWAS on renal function
at the gene level. However, our candidate SNPs were not
consistent with well-known susceptibility SNPs for eGFR.
Apart from the SNPs reported by Freedman et al., the
candidate SNPs identified in other studies described above
were not included in our platform, and the SNPs reported by
Freedman et al. were not significant in our study. However, as
they conducted gene–gene interaction analysis and used
different statistical methods for analysis, direct comparison
would not be appropriate.

Other than GATM and SPATA5L1, the gene nearest to the
most significant SNP on chromosome 15 is SLC30A4. Unlike
the genes described above, there has been no evidence that
this is associated with renal function or renal disease. Several
studies have suggested that solute carrier gene families might
have some roles in renal function.14,28 In 2010, Köttgen
et al.14 reported new loci for renal function, located near
several solute carrier genes such as SLC22A2, SLC6A13,
SLC7A9, and SLC34A1. Recently, a replication study with
known renal loci was performed in African Americans, and
variants near SLC22A2 and SLC6A13 were shown to be
replicated.28 Although SLC30A4 is expressed weakly in the
kidney (four transcripts per million in the expressed sequence
tag profile of UniGene, NCBI), it might be another candidate
gene for renal function, taking the accumulative evidences on
solute carrier genes for renal function. In addition,
rs8042811, a nonsynonymous SNP of C15orf21, was shown
to have a perfect LD with the top SNP of chromosome 15.
Even if the function of this gene has rarely been explored so
far, it needs to be regarded as one of the candidates for renal
function, considering that none of the SNPs suggested in
Table 3 changes an amino acid of the corresponding protein.
The BLOSUM score for predicted change (C91R) is ‘� 3’,
which is the second lowest score among all possible amino-
acid exchanges.29

We identified the additional candidate genes associated
with eGFR such as C15orf33, FGF7, CYP19A1, GLDN,
CASC4, ATP8B4, FBN1, C15orf54, and GRP176 on

Kidney International 5

H Park et al.: Gene-mapping study for renal function in Asians c l i n i c a l i n v e s t i g a t i o n



chromosome 15. Of these, an interesting gene with respect to
renal function is FGF7, which is a member of the fibroblast
growth factor family. It has been previously reported that
FGF-7 levels modulate the extent of urteric bud growth
during development, as well as the number of nephrons,
which might determine the GFR of each individual.30

Although the association of this gene with renal function
cannot be concluded, its functional impact on kidney
development needs to be considered in further studies on
renal function or disease.

The sample size of our study is rather smaller than those
of other previous association studies. However, several factors
in our study design may enable us to detect similar candidate
loci and replicate previous results at the gene level.23 First, we
used large extended families in an isolated population for
gene-mapping studies. An isolated population is highly
suitable for genetic research because of environmental and
phenotypic homogeneity, decreased genetic heterogeneity,
restricted geographical distribution, and good genealogical
records.31 In particular, extended multigeneration pedigrees
with a small number of founders are known to enhance the
genetic power.32 Second, we used a two-stage strategy
including genome-wide linkage and family-based
association analyses. This approach might be distinct from
previous reports, such as linkage analysis alone and GWAS in
a population-based design. Our strategy, which performs fine
mapping in the presence of linkage, facilitates the detection
of more refined loci than linkage analysis alone.33 Although
GWAS has considerably contributed to understanding the
genetic basis of complex traits, one of the issues in GWAS is
to reduce the false-positive rate in multiple testing.
Combining the linkage information may provide enhanced
power to detect true associations. In addition, FBAT is robust
against population stratification compared with population-
based GWAS.23,34

In conclusion, this study aimed at revealing the genetic
background determining renal function in the Northeast
Asian population of Mongolia, and has identified some loci
described in previous reports in other populations. The
candidate loci that were reproducibly found in our study
might have significant roles as determinants of renal function
regardless of ethnicity.

MATERIALS AND METHODS
Study subjects and genomic DNA extraction
The subjects used for this study were recruited from the
GENDISCAN project, which was initiated to discover the suscept-
ibility loci for common traits in Asian populations.19–22 In 2006, this
project recruited 2008 participants residing in Dashbalbar, in
Dornod Province of Mongolia, which is a geographically isolated
region in Northeast Asia. Of the total sample, we selected 1007
subjects (about 50.1%) from 73 families for a linkage analysis, who
have appropriate pedigree structures and phenotypic information.
The pedigree structure of this study population is highly complex,
with both multiple generations and a large number of siblings.
Family relationships identified from personal interviews were
further validated genetically by checking Mendelian inheritance

using PREST (Version 3.02).35 For the subsequent association
analysis in the presence of linkage, we chose 722 individuals from 54
families from linkage samples, which were not only available for
SNP genotyping but also comprised large pedigrees. Peripheral
venous blood samples from study subjects were collected for DNA
extraction, and the genomic DNA of each sample was extracted
according to standard protocols. We obtained informed consent
from all study subjects, and the study protocols were approved by
the institutional review board of Seoul National University
(approval number, H-0307-105-002).

Phenotype measurement
The serum creatinine level of each sample was measured with
HITACHI 7180 (Hitachi, Tokyo, Japan) by the Jaffe method.36 The
eGFR, which is a value representing renal function, was calculated
using the MDRD-6 equation: eGFR (ml/min per 1.73 m2)¼ 170�
SCr(mg/dl)� 0.999�age� 0.176�BUN(mg/dl)–0.170�Alb(g/dl)0.318�
(0.762 if female)�(1.18 if black), where SCr is the serum creatinine
concentration, BUN is the blood urea nitrogen concentration, and
Alb is the serum albumin level.25 To meet the normality
assumptions for variance component analyses, we tested the
distribution of our phenotype before analyses. Because of the
non-normal distribution of eGFR values, we normalized this trait
with inverse normal transformation, which can reduce deviations
from normality and the effect of outliers. Normalized eGFR was first
regressed on age and sex (age- and sex-adjusted model; Model 1),
and then body mass index, glucose, hypertension treatment, systolic
blood pressure, and smoking status were also included as covariates
for an additional model (multivariable-adjusted model; Model 2).
The phenotypic residual values (observed–expected probability)
were obtained from two different models, and they were used in all
the following analyses including linkage and association.

Estimation of familial correlation and heritability
To explore the genetic background of renal function, we estimated
heritability and familial correlations between family pairs. Familial
correlation was calculated using the FCOR option in the Statistical
Analysis for Genetic Epidemiology (S.A.G.E.) version 6.0 software.37

FCOR estimates the intrafamilial correlations between all familial
pairs including parent–offspring, sibling, avuncular, cousin, and
spousal pairs. In addition, narrow-sense heritability (i.e., the
proportion of phenotype variance attributable to additive genetic
variance) was estimated by the variance components approach using
Sequential Oligogenic Linkage Analysis Routines (SOLAR) version
4.2.7.38

Genome-wide linkage scan
We performed a genome-wide multipoint linkage scan to identify
genetic loci associated with renal function in isolated Mongolian
families. Seventy-three families comprising 1007 family members
were genotyped for 1039 short tandem repeat markers. The detailed
methods for genotyping error detection and correction are described
in previous studies.19–22 For multipoint linkage scan, multipoint
identity-by-descent was calculated at each 1 cM distance using the
LOKI package.39 SOLAR version 4.2.738 was used for the genome-
wide linkage scan. Empirical P-value of LOD scores was also
obtained by the ‘lodadj’ option implementing 10,000 permutations,
and we determined suggestive linkage as an LOD score 41.9.26

6 Kidney International

c l i n i c a l i n v e s t i g a t i o n H Park et al.: Gene-mapping study for renal function in Asians



FBAT under linkage peaks
We tested the family-based association under two regions identified
from the linkage analysis. Of the samples used for the linkage study,
54 families comprising 722 family members were genotyped by
Illumina 610K Quad Beadchip (San Diego, CA). Before the FBAT,
we checked the quality of the genotype data by several steps. The
details for genotyping error correction are described in previous
GENDISCAN studies.21,22 After the genotype error correction, call
rate and error rate of SNPs were assessed, and genotypes with a call
rate o99% or an error rate 41% were excluded from analysis. In
addition, we also removed genotypes with Hardy–Weinberg equili-
brium P-values o1.0�10–6 or minor allele frequency o1%, and,
finally, 2467 SNPs on chromosome 9 and 2592 SNPs on chromosome
15 were used for analysis. The FBAT was performed using the PBAT
tool in HelixTree software version 6.4 (GoldenHelix, Bozeman, MT).40

FBAT is an extension of the transmission disequilibrium test,
which is an absolutely nonparametric method without assumptions
about the model and distribution of disease. It incorporates
additional conditions such as general pedigree, missing founders,
and complex disease. The general FBAT statistic is as follows:

U ¼
X

TijðXij� EðXij j SiÞÞ

where i is pedigree index and j is jth non-founders in the pedigree;
Tij is a phenotypic residual; and E(Xij|Si) is the expected marker
score under the null hypothesis. For a large sample size, U can be
normalized as below to yield variable Z with a distribution
approximating the normal N(0,1):34

Z ¼U/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðUÞÞ

p

We used the ‘linkage and no association (sandwich variance)’
null hypothesis to test the association in the presence of linkage.
This hypothesis is valid when the same sample set was used in both
linkage and association studies. In addition, our extended families
are composed of many generations and multiple offspring. When
families with multiple offspring are used, an association test that
independently treats multiple offspring would not be appropriate
because of the pattern of identity-by-descent. In this case, the empirical
variance can be used and it requires correlation patterns between all
family members.34 To estimate a more robust variance in large exten-
ded pedigrees, we used the ‘sandwich variance’ method. This method
can test family-based association without inflation of false-positive
errors arising from ignoring correlations between family members.41

We used the generalized estimating equation for FBAT (FBAT-
GEE), and the association results were generated under an additive
genetic model. A significance level of 1.0�10� 5 was used
corresponding to a Bonferroni correction. For additional LD
information, r2 values were estimated among significant SNPs using
the Haploview software version 4.1 (Broad Institute of Harvard and
MIT, Cambridge, MA).
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