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Lesson 1: Introduction to matrix

terminologies

v

v

addition and scalar multiplication

v

product of matrices

v

transpose of a matrix




Matrix (&) & Vector (HIE])
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For A,B,C € R™*" and ¢,k € R,

A+B=B+ A
(A+B)+C=A+ (B+C)
A+0=A
A+ (—A) =0

and
¢(A+B)=cA+cB
(c+k)A=cA+EA
c(kA) = (ck)A
1IA=A
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For A,B,C € R™*™ and k € R,

JN'

(kA)B = k(AB) = A(kB)

A(BC) = (AB)C
(A+ B)C = AC + BC
C(A+B)=CA+CB

Transposition

(ANHT =4
(A+B)T=AT +BT
(cA)T =cAT

)
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Lesson 2: System of linear equations, Gauss elimination

» existence and uniqueness of solution
» elementary row operation
» Gauss elimination, pivoting

» echelon form

A

—

o2

AZHH AL (system of linear equations) & ol (solution)

a1121 + - 4 a1y, = by

a211 + -+ - + agnxy = bo

121 + -+ GpnTp = by,



Existence and uniqueness of solution (SH2| ZAHH1t FLUA)
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Gauss elimination

a11x1 + a1aw2 + a13r3 = by
a2121 + a2 + az3x3 = by

az1x1 + azars + az3rs = b

Gauss elimination (partial pivoting)

r1— To+ 3 =0
2r1— 2x9+ 203 =0
10xo+ 2523 =90
2021+ 10x2 =80



Gauss elimination (the case of infinitely many solutions)

3.0 20 20 =50 8.0
0.6 1.5 1.5 =54 2.7
1.2 -03 -03 24 21

4

3.0 20 20 -5.0 8.0
0 1.1 1.1 —44 1.1
0o -11 -11 44 -11

4

3.0 20 2.0 —5.0 8.0
0 11 11 —-44 11
0 0 O 0 0

Gauss elimination (the case of no solution)

321 3
2 110
6 2 4 6
4

3 2 1 3]
1 1

0 -+ 1 -9

0 -2 2 0]
4

3 2 1 3]
1 1

0 -+ 1 -2

0 0 0 12]




Echelon form (A& HER)

Gauss elimination:

48] = [r /]

T‘]_]_ /r‘12 PECEEY DY PR ’r‘ln fl
7"22 PEEY PR PR 7127’]1 f2
[R> f] = Trr Trn fr
fr+1
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Lesson 3: Rank of a matrix, Linear independence of vectors

» linear combination (of vectors)
» linear independence (of vectors)
» rank (of a matrix)

» practice using MATLAB




Linear combination (of vectors) & linear independence (of a set of vectors)

Example

a;=1[3 0 2 2]
a; = [—6 42 24 54
az=[21 —21 0 -15]



Rank of a matrix
row vector?| Z|Cl £

DEF: rank A =

=20|
T — R

3 0 2 2
42 24 54

21 =21 0O -—15

HAS2 22 rankg 712UCH

Properties of ‘rank’
nct> StCt.)

THM: elementary row operations oijA] = 2=
(Rank& elementary row operationOf| TS0 invaria

3 0 2 2
—6 42 24 54
21 =21 0 -—15



Properties of ‘rank’

THM: rank A= A°| MIAZZIQl column vector?| Z|CH £~2F= ZC}.
(CCh2tA] rank A = rank AT.)



Properties of ‘rank’

» For A € R™*", rank A < min{m,n}.
» For vy, - ,v, € R", if n < p, then they are linearly dependent.

> Let A= [vi,v2,...,vp| where v; € R™.
If rank A = p, then they are linearly independent.
If rank A < p, then they are linearly dependent.

Ex:

—6 42 24 54
21 =21 0 -—15

oli

MATLABS AtE2sH A&

http://www.mathworks.com



Lesson 4: Vector space

» vector space (in R™), subspace

» basis, dimension

» column space, null space of a matrix
» existence and uniqueness of solutions

» vector space (in general)

Vector space
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Ax =b with A € R™*™ and b ¢ R™

. existence: a solution x exists iff

» b € column space of A
» rank A = rank [A b

2. uniqueness: when a solution z exists, it is the unique solution iff
> dim(null space of 4) =0
» rank A =n

3. existence & uniqueness: the solution z uniquely exists iff
» rank A = rank [A b] = n

4. existence for any b € R™: a solution x exists for any b € R™ iff
» rank A =m

5. unique existence for any b € R™: the unique solution z exists for any b € R™ iff
» rank A = m and rank A = n (i.e., A € R"*" has ‘full rank’)

=

Ex: rtankA=r<n =

Homogeneous case

Az =0 AeR™"

» non-trivial solution exists iff rank A =

r<
> SHAO| £} O|X|po| £~EC A2 HL &4 non-trivial solutiong 7+RICH.

0

Q: Dimension of the ‘solution space’ =



Nonhomogenous case

Az =b#0 A e R™X"
» Any solution z can be written as
T =x9+ T

where x¢ is a solution to Ax = b and x, is a solution to Ax = 0.

Vector space

: set of vectors with “addition” and “scalar multiplication”

For A,B,C €V and ¢,k € R,

A+B=B+A
(A+B)+C=A+(B+0)
A+0=A
A+ (—A) =0

and

¢(A+B)=cA+cB
(c+k)A=cA+EA
c(kA) = (ck)A
1A=A



Examples of vector space

Normed space

: vector space with “norm”

ex: for v € R™, the norm is ||v|| = \/v? +v3 + ---v2



Inner product space

: vector space with “inner product”

L (CIA + C2B,C) = Cl(AaO) + CQ(Bac)
> (A.B) = (B.A)
3. (A, A) > 0and (A, A) = 0iff A= 0

Lesson 5: Determinant of a matrix

» determinant (of a matrix)

» Cramer’s rule




Determinant (of a matrix)

For A € R™*™,

ar
det A= |A| =

a12

Aln

Amn,



Elementary row operation & determinant
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Properties of ‘determinant’

QF m|o| R[] 1¥H-4H2 olf CiAl Fof| CHShM = S&0| dEetrt.
det A=det A"

zero rowl} zero columnO| QY2 H determinant= 0

& HO[L} & HO| H|2d|:2A|O[ determinant= 0

v

v

v

v

Properties of ‘determinant’

THM: A matrix A € R™*"™ has rank r(> 1) iff
» A has a r x r submatrix whose determinant is non-zero, and
» determinants of submatrices of A, whose size is larger than r x r, are zero (if
exists).



Cramer's rule

Ax:[al as - an]x:b, AeR™™, detA=:D#0
Cramer’s rule:
Dy Doy D,
T = —, T9=— Ty = —
'Y T Do "7 D
where
Dp=lar - a1 b appr - ay)
Ex:
20 —y =1
3z +y=2

Lesson 6: Inverse of a matrix

inverse (of a matrix)

v

v

Gauss-Jordan elimination (computing inverse)

v

formula for the inverse

v

properties of inverse and nonsingular matrices




Inverse of a matrix
» For A € R™" ™ the inverse of A is a matrix B such that
AB=1 and BA=1

and we denote B by A~
» A1 exists iff rank A = n iff det A # 0 iff A is ‘non-singular’

Computing the inverse: Gauss-Jordan elimination



-1 0{1 0 O
2 -1{0 1 0
-1 2|0 0 1

2
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[AlT] = [
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A formula for the inverse

[aij] € R™™,

For A



Properties about nonsingular matrix, inverse, and determinant

> Inverse of ‘diagonal matrix’ is easy.

(AB)"! = B~tA-!

(A H=t=4

For A, B,C € R™*™ if A is nonsingular (i.e., rank A = n),

» AB = AC implies B = C.
» AB =0 implies B = 0.

For A, B € R™*" if A is singular, then AB and BA are singular.
det(AB) = det(BA) = det Adet B

v

v

v

v

v

Lesson 7: Eigenvalues and eigenvectors

» eigenvalues and eigenvectors

» symmetric, skew-symmetric, and orthogonal matrices




Eigenvalue and eigenvector of a matrix






Find eigenvalues and eigenvectors of

-2 2 =3
A= 2 1 -6
-1 -2 0

A N2 4210 4+45=0

M=5 Jdo=\=-3

-7 2 -3 -7 2 -3
A-5I=|2 -4 -6/ = |0 % -2
-1 -2 -5 0 0 0
1 2 -3 1 2 -3
A+3I=12 4 -6/ = |00 0
-1 -2 3 00 0



Symmetric, skew-symmetric, and orthogonal matrices

Lesson 8: Similarity transformation, diagonalization, and quadratic form

» similarity transformation
» diagonalization

» quadratic form




Similarity transformation

S A e RV"7F nZQ] MAH =201 e vectors=S 712! ...
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A= -1
Ay = —3
s )\1 = >\2 = -2
)\1 = /\2 = -2



Diagonalization

DiagonalizationO| Qtz|= HS



Quadratic form

Q = 1722 — 302129 + 1723 = 128



out of the scope:
positive definite matrix, positive

(induced) norm of a matrix,
semi-definite matrix

(generalized eigenvectors, )
Jordan form

further study:

http://snuon.snu.ac.kr [Z|AA|0]7]H]
http://snui.snu.ac.kr [Z|AIA|0{7|§]
http://lecture.cdsl.kr [T L MAHAA|AE 7| Z]

Lesson 9: Introduction to differential equation

» function, limit, and differentiation

» differential equation, general and particular solutions
» direction field, solving DE by computer




Function, limit, and differentiation

Basic concepts and ideas



* ODE (ordinary differential equation) / PDE (partial differential equation)
* Solving DE:

* Explicit/implicit solution
p p

Why do we have to study DE?



General solution and particular solution

Direction fields (a geometric interpretation of ¢ = f(z,y))

An idea of solving DE by computer



Lesson 10: Solving first order differential equations

» separable differential equations

» exact differential equations




Separable DE

f, g: continuous functions



replacing ay + bx + k with v

(22 —4y+5)y' + (x —2y+3) =0



Exact differential equation: introduction
(observation:) For u(z,y),

ou ou
du = = (z,y)dz + gy(ﬂc, y)dy

So, if u(x,y) = ¢ (constant), then du =

Exact differential equation

Given DE: M(z,y) + N(z,y)% =0

If 3 a function u(zx,y) s.t.

ou ou
then
u(z,y) =c

is a general sol. to the DE.

The DE is called “exact DE".

differential of w.

= N(z,y)



How to check if the given DE is exact?

How to solve the exact DE?



Lesson 11: More on first order differential equations

> integrating factor

v

linear differential equation

v

Bernoulli equation

v

obtaining orthogonal trajectories of curves

v

existence and uniqueness of solutions to initial value problem




Integrating factor

P(z,y)dz + Q(z,y)dy = 0

(e®tY + ye¥)dx + (ze¥ — 1)dy = 0



Linear DE

Y +p(x)y = r(z)



Bernoulli DE

y +p(x)y=g(x)y®, a#0orl

Verhulst logistic model (population model):

y = Ay — By, A B>0



Orthogonal trajectories of curves

Existence of solutions to initial value problem

v =flzy),  y(xo)=1yo

THM 1: IF f(z,y) is continuous, and bounded such that
|f(z,y)| < K, in the region

R:{(if,y) : ’.’E-(L’d <a7|y_y0| <b}

THEN the IVP has at least one sol. y(x) on the interval
|z — 29| < a where @ = min(a,b/K).



Uniqueness of solutions to initial value problem

y, = f(x,y), y(.’IJo> =1%o

THM 2: IF f(z,y) and %(w,y) are continuous, and

bounded such that |f(x,y)| < K and |5 (z,)| < M in R,
THEN the IVP has a unique sol. y(z) on the interval
|z — 29| < a where @ = min(a,b/K).

Lesson 12: Solving the second order linear DE

> overview
» homogeneous linear DE

reduction of order

v

v

homogeneous linear DE with constant coefficients




Overview: Linear ODEs of second order

y' +p@)y +g(@y=r(x),  ylzo) =Ko, y(z0) =K
1. The homogeneous linear ODE:
y' +p@)y +g(z)y =0 (1)
has two “linearly independent” solutions y;(x) and ya(z).
2. Let yp(x) = cryr () + coya(z) with two constant coefficients ¢; and ¢2, which is
again a solution to (1).
3. Solve
y' +p@)y +g(2)y =r() ()
without considering the initial condition. Let the solution be y,(z).
4. The general solution is

y(x) = yn(z) + yp(x) = cry1(z) + c2y2(x) + yp(x).

Determine c¢; and ¢y with the initial condition.

Homogeneous linear ODEs of second order

v+ p(x)y + g(x)y =0

Claim: Linear homogeneous ODE of the second order has two linearly independent
solutions.



How to obtain a basis if one sol. is known? (Reduction of order)
Obtaining another y2(z) with a known y; ()



Homogeneous linear ODEs with constant coefficients

y' +ay +by =0






Lesson 13: The second order linear DE

>

case study: free oscillation

v

Euler-Cauchy equation

v

existence and uniqueness of a solution to IVP

v

Wronskian and linear independence of solutions




Modeling: Free oscillation



Euler-Cauchy equation

22y + axy +by =0



Existence and uniqueness of a solution to IVP

Y +p@)y +q@)y=0,  y(xo) =Ko, ¢(z0) =K

THM: IF p(z) and ¢(x) are continuous (on an open interval I 5 z),
THEN 3 a unique sol. y(x) (on the interval I).

Wronskian and linear independence of solutions
With y1 () and ya(z) being the solutions of
y' +p@)y +q(x)y =0,
Wronski determinant (Wronskian) of y; and y; is defined by

yr Y2

/ /
1 2

W(y1,y2) = = Y1y5 — Y21

THM:
1. two sol. y1, 49 are linearly dep. on [ <
W(y1(z),y2(x)) = 0 at some z* € T

2. If W(yi(x),y2(z)) = 0 at some z* € I,
then W (y1(x),y2(z)) =0 on 1.

3. f W(yi(x),y2(z)) # 0 at some z* € I,
then g1 and g are linearly indep. on I.



y" 4+ p(x)y + q(x)y = 0 has two indep. sol. y; and s

so, it has a general sol. y(z) = ciy1(x) + c2y2(x)



Any sol. to ¢ + p(x)y" + q(x)y = 0 has the form of cyy1(z) + coya(2)

Lesson 14: Second order nonhomogeneous linear DE

» nonhomogeneous linear DE
» solution by undetermined coefficient method

» solution by variation-of-parameter formula




Nonhomogeneous linear DE

Y +p(x)y + q(x)y = r(z)



Candidate for y,(z) in y" + p(z)y + q(x)y = r(x)

Termin r(x) Candidate for y,(x)
ke_?‘x Cvey_{
kx",n= 0 integer Kx"+K, X"+ +Kx+K,

k cos ax .

i K cos wx + M sin wx
S X

ke™ cosmx - .

e i e" (K cos wx + M sin ax)
= S1IN

The above rules are applied for each term r(z).

If the candidate for y,(z) happens to be a sol. of the
homogeneous equation, then multiply y,(z) by = (or by 22 if
this sol. corresponds to a double root of the characteristic
eq. of the homogeneous equation).

y" + 4y = 82



y"—3y’—|—2y=e$

y' +2 +y=e" Y+ 2y + 5y = 1.25¢"7% 4+ 40 cos 4z — 55 sin 4x

Y + 2y + by = 1.25¢%5% 4 40 cos 2z

Y + 2y + 5y = 1.25e%5% + 40e 7 cos 2x



Solution by variation of parameters

Y +p(x)y + q(x)y = r(z)



Lesson 15: Higher order linear DE

» higher order homogeneous linear DE
» higher order homogeneous linear DE with constant coefficients

» higher order nonhomogeneous linear DE

Higher order homogeneous linear DE

y "+ pua(@)y "V - pa(2)y + po(a)y = 0 (H)

General sol.: y(x) = c1y1(x) + caya(x) + - - - + cpyn(x)
where y;(z)'s are linearly indep. sol. to (H).



Y™ 4 pp1(@)y" Y 4 (@)Y +po(2)y =0,  yD(xo) = K;

THM: If all p;'s are conti. (on I), then IVP has a unique sol. (on I).

THM: With all p;'s being conti.,

sol. {y1,--+ ,yn} are lin. dep. on I

n Un
i Un
e Wy, ,un) = : ) : =0 atsomexg€l
y%n—l) y7(ln—1)

y//// o 5y// + 4y — 0



THM: With all p;'s being conti., the (H) has n lin. indep. sol. (i.e., there is a general
solution).

THM: With all p;'s being conti., the general sol. includes all solutions.

Higher order homogeneous linear DE with constant coefficients

y(n) + anfly(n_l) + e + aly, —|— apy = 0

* distinct roots

* multiple roots



Higher order nonhomogeneous linear DE

Y™ 4 (@) y Y i)y + po(x)y = r(x)

* undetermined coefficient method:

* variation-of-parameter formula:

Yp(®) =11 %dm+y2 W{;Z/?adx+"'+yn/w$rdx
0

where W = W (y1,--- ,yn) and Wj: j-th column in W replaced by

Lesson 16: Case studies

» mass-spring-damper system: forced oscillation
» RLC circuit

» elastic beam




Case study: forced oscillation (my” + ¢y + ky =)

Pl

m(wg — w?)

yp(t) = Fo cos wt+Fy
m

m?(wd — w?)? + w?



m(wg — w?) cw

coswt + Fp sin wt
(wE — w?)? + 2w? m?(w3 — w?)? + c2w?

y(t) = yn(t) + Fo—

Modeling: RLC circuit



RLC circuit: forced response

Elastic beam



Lesson 17: Systems of ODEs

introduction

v

v

existence and uniqueness of solutions to IVP

v

linear homogeneous case

v

linear homogeneous constant coefficient case

Systems of ODE



Existence and uniqueness of solutions to VP

k1
y =fty), ylto)=|:
ko,
THM: If all f;(t,y) and ggj (t,y) are conti. on some region of (¢,y1,y2, - ,yn)-Space
containing (to, k1, -+ , ky), then a sol. y(t) exists and is unique in some local interval of
t around tp.
k1

v =AWty +gt),  ylto)=|:
kn
THM: If A(t) and g(t) are conti. on an interval I, then a sol. y(t) exists and is unique
on the interval I.

Linear homogeneous case

y' = A(t)y

General sol.: y(t) = ey (t) + coy@ () + - - - + cay™ (¢)
where y(9) (t)'s are lin. indep. sol.



Linear homogeneous constant coefficient case

y' = Ay






Handling complex e.v/e.vectors



Lesson 18: Qualitative properties of systems of ODE

» phase plane and phase portrait
» critical points

» types and stability of critical points

Phase plane and phase portrait



Critical point (= equilibrium)

Example: undamped pendulum

q
)

§)




Types of critical points: node

Types of critical points: saddle / center



Types of critical points: spiral / degenerate node

Stability
DEF: stability of a critical point Py(= y*):

» all trajectories of ¥ = f(y) whose initial condition y(to) is sufficiently close to Py
remain close to Py for all future time

» for each € > 0, there is 0 > 0 such that,
ly(to) —y*[ <o = ly(t) —y*| <€, Vt>tg

DEF: asymptotic stability of Py = stability + attractivity (lim;—o y(t) = y*)



Example: second order system

Lesson 19: Linearization and nonhomogeneous linear systems of ODE

» linearization

» nonhomogeneous case




Linearization

y' = f(y)

Let y = 0 be a critical point (without loss of generality; WLOG), and be isolated.

0 0
v = Fily ) = £10.0) + 220,001 + 200,00y + b (51, )
o1 0y
0 0
v = Falynay2) = £2(0.0) + 20,0y + 22(0, 0y + ha(yn, 32)
o1 0y
of

/ /
= = Ay = =
y =1 y=Ay=g5] Y

» If no e.v. of A lies in the imaginary axis, then stability of the critical point of the
nonlinear system is determined by A.
» If Re(\) < 0 for all A, it is asymptotically stable.
> If Re(\) > 0 for at least one A, it is unstable.
» If all e.v.'s are distinct and no e.v. of A lies in the imaginary axis, then the type of
the critical point of the nonlinear system is determined by A.
» The node, saddle, and spiral are preserved, but center may not be preserved.



Nonhomogeneous linear case

Method of undetermined coefficients (for time-invariant case)



Method of variation of parameters (for time-varying case)

Method of diagonalization (for time-invariant case)



Lesson 20: Series solutions of ODE

» power series method

» Legendre equation

Power series

o0
Z (1 — 20)™ = ag + a1 (x — wo) + ag(x — w0)* + - -+
m=0



(e 9]
Z am (2 — 0)™ = ag + a1(z — z0) + az(x — 20)* + -+ - + an(z — z0)"
m=0

+anpi(z — )" -

For a given x1,

if limy, 00 Sp(21) exists (or, limy, o0 Ry (z1) =0,
or for any € > 0, AN (¢) s.t. |R,(z1)| < € for all n > N(e)),

then the series is called “convergent at x = 1" and we write S(z1) = lim,, o0 Sn(21).



Radius of convergence

If ) )
or R

Am+1
am

R = =
limy, 00 %y ‘am" lim,,, o0

is well-defined, then the series is convergent for x s.t. |z — xg| < R.




Power series method

y' (@) + p(@)y () + q(x)y(x) = r(z)

If p, q, and r are analytic at = = xg,

then there exists a power series solution around zg (i.e., R > 0):

y(z) = Z am(x — 20)™.
m=0



Legendre equation

(1—22)y" —2zy +n(n+ 1)y =0, n : real number



Legendre polynomial (of degree n)

s

-0.5

Pefx) —— -]
plt*’ T
Pifx) ——
Pifx) ——
Pufx) —— |
Psfx) ——

1

"Legendrepolynomials6" by Geek3



Lesson 21: Frobenius method

» Frobenius method

» Euler-Cauchy equation revisited

Frobenius method

The DE

b

c\x
oo )
T x

where b and ¢ are analytic at z = 0, has at least one sol. around x = 0 of the form

o)
y(z) =a" Z amx™ = x"(ap + a1z + a2$2 + 1)

m=0



» Case 1: distinct roots, not differing by an integer

» Case 2: double roots

» Case 3: distinct roots differing by an integer

General sol.: y(x) = c1y1(x) 4 cay2(x) where

» Case 1:

yi(z) =2 (ag + a1z +--+)
ya(x) = 2™ (Ao + A1z + - +)

» Case 2: 7 = (1 —bg)/2

» Case 3: 11 > 19

yi(z) = a"(ao + arz + -+ )
yo(z) =y1(z) Inz + 2" (Ajz + Agz? 4 -+
y1(z) (ao + a1z +--+)

fr— xrl
yo(z) = ky1(x) Inx + 2" (Ag + Ay + - -









Example: Euler-Cauchy equation revisited



Lesson 22: Bessel DE and Bessel functions

» example for Frobenius method

» Bessel DE and its solutions

Example: a simple hypergeometric equation

iz -1y + Bz -1y +y=0






Example: another simple hypergeometric equation

oz —1)y" —ay +y=0



Gamma function

has the properties:
1. T(v+1)=vI(v)

2. T(1) =1
3. I'(n+1) =n!

"Gamma plot" by Alessio Damato

Bessel's DE

22y + xy + (2? — 1)y =0, v>0



Computing 41 ()



Bessel function of the first kind of order n

> (_1)mx2m

n
Jn(z) =2 E
m=0
1.0 1,0
J(x) ————
0.8 \ JQW —_————
0.6 —
i
o
AR
0.4 B
/ vl
VAR NS AV N
0.2 =7 Tt AR i
17 v I AN LAY
i/ \ / PR Ii ,-\\ A
: (A ;X M / N /
0.0 Y ; 7 - 0y g \\ 7
\ [ AN g
] ; \ . /
- \-/ N

-0.2 :
YA
_-" -

—0.4

20

Finding yo(z)

22mtnml(n + m)!

"Bessel Functions" by Inductiveload






Bessel function of the second kind of order v

1
Y, (z) = [J,(x) cosvm — J_p,(z)]
Sin v
Y, (z) = limY,(x) =
v—n
0.5 ——
0o | / \> o LG s ]
1 / / z" . \_‘)4’__,'f N ] Y|
-0.5 Ly
/
/ ¥ ]
-1.0 '_‘
/! 1
—15 {1
] i
-2.0 :_'
L 1
—2.5 E: Y00
i Y,(x) ===
=3.0 — ¥, (x) _._‘..
0 5 10 5 20
X "Bessel Functions" by Inductiveload

Lesson 23: Laplace transform |

» introduction to Laplace transform

v

linearity, shifting property
existence and uniqueness of Laplace transform

v

» computing inverse Laplace transform

partial fraction expansion & Heaviside formula

v




Laplace transform

£ify = [ st tat= Pl

(Property) Linearity: L{af(t) +bg(t)} = aL{f(t)} + bL{g(t)}



(Property) s-shifting property: L{e® f(t)} = F(s — a)

Transform table: f(t) <> F(s)

tn

ta

at

1 cos wt
s
i sin wt
52
2! coshat
53
n! . sinh at

W, n = Integer
T'(a+1 e cos wt
g’ a > O

sa+1

1 e sin wt

Ss—a

82+w2
52 4+ w?
2 _ g2

s2 — g2

s—a

(s —a)? +w?

(s —a)? +w?



Existence and uniqueness of Laplace transform

IF f(t) is piecewise continuous on every finite interval in {¢ : ¢ > 0}, and
[f@) < MM, t>0

with some M and k,
THEN L{f(t)} exists for all Re(s) > k.



Computing inverse Laplace transform

LTHF(s5)} = f(t) =7

* Partial fraction expansion:

Finding coefficients in partial fraction expansion: Heaviside formula

s+l _ A Ao As
Y<3) T s34s2—6s s + 5+3 + 5—2

_ 345244 A A B (&
Y=ot n=F T 5 Teatsa



_ _ A A A B B
Y()==hpt et taa T o Tas

_ 20 -3
Y(s) = (27242 T st

Lesson 24: Laplace transform ||

» transform of derivative and integral
» solving linear ODE
» unit step function and t-shifting property

» Dirac’s delta function (impulse)




(Property) Transform of differentiation: L{f'(t)} = sL{f(t)} — f(0)

(Property) Transform of integration: E{fot f(r)dr} =1F(s)



Solving IVP of linear ODEs with constant coefficients

' +ay +by =r(t), y(0) = Ko, ¢'(0) = K,



Unit step function (Heaviside function)

(Property) t-shifting property: L{f(t — a)u(t —a)} = e *F(s)



(Dirac’s) delta function

d(t) is a (generalized) function such that

oo, t:O —a

6(t) = {O’ t#0 and d(t)dt =1 foranya>0

sifting property: / g(t)o(t — a)dt = g(a), g: conti., a >0
0

Lesson 25: Laplace transform Il

» convolution

» impulse response

v

differentiation and integration of transforms

v

solving system of ODEs




(Property) Convolution: L™H{F(s)G(s)} = f(t) * g(t)

Properties of convolution:

frg=g=f
fr(gr+g2)=fxg+ f*g
(fxg)*xv=fx*(g*v)
fx0=0xf=0, fx1#f



Impulse response



(Property) Differentiation of transform: L{tf(t)} = —F’'(s)



(Property) Integration of transform: E{@} = [ F(s)ds



Solving system of ODEs



