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Lesson 1: Introduction to matrix

� terminologies
� addition and scalar multiplication
� product of matrices
� transpose of a matrix



Matrix (행렬) & Vector (벡터)



행렬(벡터)의 addition & scalar multiplication

[
1 2
3 4

]
,

[−1 0
2 0

]
,

[
1
2

]

합과 스칼라 곱의 연산법칙

For A,B,C ∈ R
m×n and c, k ∈ R,

A+B = B +A

(A+B) + C = A+ (B + C)

A+ 0 = A

A+ (−A) = 0

and

c(A+B) = cA+ cB

(c+ k)A = cA+ kA

c(kA) = (ck)A

1A = A



행렬의 곱

[
1 2 1
3 4 1

] ⎡
⎣−1 0 1

2 0 1
1 1 0

⎤
⎦ =



행렬 곱의 연산법칙
For A,B,C ∈ R

m×n and k ∈ R,

(kA)B = k(AB) = A(kB)

A(BC) = (AB)C

(A+B)C = AC +BC

C(A+B) = CA+ CB

Transposition

(A�)� = A

(A+B)� = A� +B�

(cA)� = cA�

(AB)� = B�A�



예 : 토지의 용도 변경

예 : 회전 변환



Lesson 2: System of linear equations, Gauss elimination

� existence and uniqueness of solution
� elementary row operation
� Gauss elimination, pivoting
� echelon form

선형연립방정식 (system of linear equations) & 해 (solution)

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm



Existence and uniqueness of solution (해의 존재성과 유일성)



해를 구하는 법

x1 − x2 + x3 = 0

10x2 + 25x3 = 90

−95x3 = −190

2x1 + 5x2 = 2

−4x1 + 3x2 = −30

[
2 5 2
−4 3 −30

]

1. 두 식의 위치 교환
2. 한 식을 다른 식에 더하기
3. 한 식에 0 아닌 상수 곱하기
4. 한 식을 상수배하여 다른 식에 더하기

1. 두 행의 위치 교환
2. 한 행을 다른 행에 더하기
3. 한 행에 0 아닌 상수 곱하기
4. 한 행을 상수배하여 다른 행에 더하기



Gauss elimination

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Gauss elimination (partial pivoting)

x1− x2+ x3 = 0

2x1− 2x2+ 2x3 = 0

10x2+ 25x3 = 90

20x1+ 10x2 = 80



Gauss elimination (the case of infinitely many solutions)

⎡
⎣3.0 2.0 2.0 −5.0 8.0
0.6 1.5 1.5 −5.4 2.7
1.2 −0.3 −0.3 2.4 2.1

⎤
⎦

⇓⎡
⎣3.0 2.0 2.0 −5.0 8.0

0 1.1 1.1 −4.4 1.1
0 −1.1 −1.1 4.4 −1.1

⎤
⎦

⇓⎡
⎣3.0 2.0 2.0 −5.0 8.0

0 1.1 1.1 −4.4 1.1
0 0 0 0 0

⎤
⎦

Gauss elimination (the case of no solution)

⎡
⎣3 2 1 3
2 1 1 0
6 2 4 6

⎤
⎦

⇓⎡
⎣3 2 1 3
0 −1

3
1
3 −2

0 −2 2 0

⎤
⎦

⇓⎡
⎣3 2 1 3
0 −1

3
1
3 −2

0 0 0 12

⎤
⎦



Echelon form (계단 형태)

Gauss elimination: [
A b

] ⇒ [
R f

]

[R, f ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · · · · · · · r1n f1
r22 · · · · · · · · · r2n f2

. . .
...

...
rrr · · · rrn fr

fr+1
...
fm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lesson 3: Rank of a matrix, Linear independence of vectors

� linear combination (of vectors)
� linear independence (of vectors)
� rank (of a matrix)
� practice using MATLAB



Linear combination (of vectors) & linear independence (of a set of vectors)

Example

a1 =
[
3 0 2 2

]
a2 =

[−6 42 24 54
]

a3 =
[
21 −21 0 −15

]



Rank of a matrix
DEF: rank A = 행렬 A에서 선형독립인 row vector의 최대 수

⎡
⎣ 3 0 2 2
−6 42 24 54
21 −21 0 −15

⎤
⎦

Properties of ‘rank’
THM: elementary row operation을 해서 얻는 모든 행렬들은 같은 rank를 가진다.
(Rank는 elementary row operation에 대하여 invariant 하다.)

⎡
⎣ 3 0 2 2
−6 42 24 54
21 −21 0 −15

⎤
⎦



Properties of ‘rank’
THM: rank A는 A의 선형독립인 column vector의 최대 수와도 같다.
(따라서 rank A = rank A�.)



Properties of ‘rank’

� For A ∈ R
m×n, rankA ≤ min{m,n}.

� For v1, · · · , vp ∈ R
n, if n < p, then they are linearly dependent.

� Let A = [v1, v2, . . . , vp] where vi ∈ R
n.

If rankA = p, then they are linearly independent.
If rankA < p, then they are linearly dependent.

Ex: ⎡
⎣ 3 0 2 2
−6 42 24 54
21 −21 0 −15

⎤
⎦

MATLAB을 사용한 실습
http://www.mathworks.com



Lesson 4: Vector space

� vector space (in R
n), subspace

� basis, dimension
� column space, null space of a matrix
� existence and uniqueness of solutions
� vector space (in general)

Vector space





선형연립방정식의 해: 존재성과 유일성

Ax = b with A ∈ R
m×n and b ∈ R

m

1. existence: a solution x exists iff
� b ∈ column space of A
� rankA = rank [A b]

2. uniqueness: when a solution x exists, it is the unique solution iff
� dim(null space of A) = 0
� rankA = n

3. existence & uniqueness: the solution x uniquely exists iff
� rankA = rank [A b] = n

4. existence for any b ∈ R
m: a solution x exists for any b ∈ R

m iff
� rankA = m

5. unique existence for any b ∈ R
m: the unique solution x exists for any b ∈ R

m iff
� rankA = m and rankA = n (i.e., A ∈ R

n×n has ‘full rank’)

Ex: rankA = r < n ⇒

Homogeneous case

Ax = 0 A ∈ R
m×n

� non-trivial solution exists iff rankA = r < n

� 방정식의 수가 미지수의 수보다 적은 경우 항상 non-trivial solution을 가진다.

Q: Dimension of the ‘solution space’ =



Nonhomogenous case

Ax = b �= 0 A ∈ R
m×n

� Any solution x can be written as

x = x0 + xh

where x0 is a solution to Ax = b and xh is a solution to Ax = 0.

Vector space
: set of vectors with “addition” and “scalar multiplication”

For A,B,C ∈ V and c, k ∈ R,

A+B = B +A

(A+B) + C = A+ (B + C)

A+ 0 = A

A+ (−A) = 0

and

c(A+B) = cA+ cB

(c+ k)A = cA+ kA

c(kA) = (ck)A

1A = A



Examples of vector space

Normed space
: vector space with “norm”

ex: for v ∈ R
n, the norm is ‖v‖ =

√
v21 + v22 + · · · v2n



Inner product space
: vector space with “inner product”

1. (c1A+ c2B,C) = c1(A,C) + c2(B,C)

2. (A,B) = (B,A)

3. (A,A) ≥ 0 and (A,A) = 0 iff A = 0

Lesson 5: Determinant of a matrix

� determinant (of a matrix)
� Cramer’s rule



Determinant (of a matrix)
For A ∈ R

n×n,

detA = |A| =
∣∣∣∣∣∣
a11 a12 · · · a1n

amn

∣∣∣∣∣∣ =



Elementary row operation & determinant

1. 두 행을 바꾸면 determinant의 부호가 반대가 됨
2. 똑같은 행이 존재하는 행렬의 determinant는 0
3. 한 행의 상수 배를 다른 행에 더해도 determinant 불변
4. 한 행에 0 아닌 c를 곱하면 determinant는 c배가 됨

(c = 0인 경우도 성립하지만 쓸모는 없음)



Properties of ‘determinant’

� 앞 페이지의 1번–4번은 행 대신 열에 대해서도 똑같이 성립한다.
� detA = detA�

� zero row나 zero column이 있으면 determinant는 0
� 두 행이나 두 열이 비례관계이면 determinant는 0

Properties of ‘determinant’
THM: A matrix A ∈ R

m×n has rank r(≥ 1) iff
� A has a r × r submatrix whose determinant is non-zero, and
� determinants of submatrices of A, whose size is larger than r × r, are zero (if

exists).



Cramer’s rule

Ax =
[
a1 a2 · · · an

]
x = b, A ∈ R

n×n, detA =: D �= 0

Cramer’s rule:
x1 =

D1

D
, x2 =

D2

D
, · · · xn =

Dn

D

where
Dk =

[
a1 · · · ak−1 b ak+1 · · · an

]

Ex:

2x− y = 1

3x+ y = 2

Lesson 6: Inverse of a matrix

� inverse (of a matrix)
� Gauss-Jordan elimination (computing inverse)
� formula for the inverse
� properties of inverse and nonsingular matrices



Inverse of a matrix

� For A ∈ R
n×n, the inverse of A is a matrix B such that

AB = I and BA = I

and we denote B by A−1.
� A−1 exists iff rankA = n iff detA �= 0 iff A is ‘non-singular’

Computing the inverse: Gauss-Jordan elimination



⎡
⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤
⎦

⇓

[A|I] =
⎡
⎣ 2 −1 0 1 0 0

−1 2 −1 0 1 0
0 −1 2 0 0 1

⎤
⎦

⇓

[I|B] =

⎡
⎢⎣

1 0 0 3
4

1
2

1
4

0 1 0 1
2 1 1

2

0 0 1 1
4

1
2

3
4

⎤
⎥⎦

A formula for the inverse
For A = [aij ] ∈ R

n×n,



Properties about nonsingular matrix, inverse, and determinant

� Inverse of ‘diagonal matrix’ is easy.

� (AB)−1 = B−1A−1

� (A−1)−1 = A

� For A,B,C ∈ R
n×n, if A is nonsingular (i.e., rankA = n),

� AB = AC implies B = C.
� AB = 0 implies B = 0.

� For A,B ∈ R
n×n, if A is singular, then AB and BA are singular.

� det(AB) = det(BA) = detA detB

Lesson 7: Eigenvalues and eigenvectors

� eigenvalues and eigenvectors
� symmetric, skew-symmetric, and orthogonal matrices



Eigenvalue and eigenvector of a matrix





Find eigenvalues and eigenvectors of

A =

⎡
⎣−2 2 −3

2 1 −6
−1 −2 0

⎤
⎦ .

−λ3 − λ2 + 21λ+ 45 = 0

λ1 = 5, λ2 = λ3 = −3

A− 5I =

⎡
⎣−7 2 −3

2 −4 −6
−1 −2 −5

⎤
⎦ ⇒

⎡
⎣−7 2 −3

0 −24
7 −48

7
0 0 0

⎤
⎦

A+ 3I =

⎡
⎣ 1 2 −3

2 4 −6
−1 −2 3

⎤
⎦ ⇒

⎡
⎣1 2 −3
0 0 0
0 0 0

⎤
⎦



Symmetric, skew-symmetric, and orthogonal matrices

Lesson 8: Similarity transformation, diagonalization, and quadratic form

� similarity transformation
� diagonalization
� quadratic form



Similarity transformation

행렬 A ∈ R
n×n가 n개의 선형독립인 e.vectors를 가질 때...



언제 행렬 A가 n개의 선형독립인 e.vectors를 갖나? (1)

언제 행렬 A가 n개의 선형독립인 e.vectors를 갖나? (2)

A1 =

[
0 1
−3 −4

]
,

λ1 = −1

λ2 = −3

A2 =

[
0 1
−4 −4

]
, λ1 = λ2 = −2

A3 =

[−2 0
0 −2

]
, λ1 = λ2 = −2



Diagonalization

Diagonalization이 안되는 경우



Quadratic form

Q = 17x21 − 30x1x2 + 17x22 = 128



못 다룬 것들

교재의 연습 문제:
trace,
positive definite matrix, positive
semi-definite matrix

out of the scope:

(induced) norm of a matrix,
(generalized eigenvectors,)
Jordan form

further study:

http://snuon.snu.ac.kr [최신제어기법]
http://snui.snu.ac.kr [최신제어기법]

http://lecture.cdsl.kr [선형대수 및 선형시스템 기초]

Lesson 9: Introduction to differential equation

� function, limit, and differentiation
� differential equation, general and particular solutions
� direction field, solving DE by computer



Function, limit, and differentiation

Basic concepts and ideas



y′(x) + 2y(x)− 3 = 0

y′(x) = −27x+ x2

y′(t) = 2t

y′′(x) + y′(x) + y(x) = 0

y′′(x)y′(x) + sin(y(x)) + 2 = 0{
y′1(x) + 2y2(x) + 3 = 0

y′2(x) + 2y′1(x) + y2(x) = 2

2
∂y

∂x
(x, z) + 3

∂y

∂z
(x, z)− 2x = 0

* ODE (ordinary differential equation) / PDE (partial differential equation)
* Solving DE:

* Explicit/implicit solution

Why do we have to study DE?



General solution and particular solution

Direction fields (a geometric interpretation of y′ = f(x, y))

An idea of solving DE by computer



Lesson 10: Solving first order differential equations

� separable differential equations
� exact differential equations



Separable DE
f, g: continuous functions

g(y)y′ = f(x) ⇒ g(y)dy = f(x)dx



y′ = g
(
y
x

)

replacing ay + bx+ k with v

(2x− 4y + 5)y′ + (x− 2y + 3) = 0



Exact differential equation: introduction
(observation:) For u(x, y),

du =
∂u

∂x
(x, y)dx+

∂u

∂y
(x, y)dy : differential of u.

So, if u(x, y) = c (constant), then du = .

Exact differential equation
Given DE: M(x, y) +N(x, y) dydx = 0

If ∃ a function u(x, y) s.t.

∂u

∂x
(x, y) = M(x, y) &

∂u

∂y
(x, y) = N(x, y)

then
u(x, y) = c

is a general sol. to the DE.

The DE is called “exact DE”.



How to check if the given DE is exact?

How to solve the exact DE?



Lesson 11: More on first order differential equations

� integrating factor
� linear differential equation
� Bernoulli equation
� obtaining orthogonal trajectories of curves
� existence and uniqueness of solutions to initial value problem



Integrating factor

P (x, y)dx+Q(x, y)dy = 0

(ex+y + yey)dx+ (xey − 1)dy = 0



Linear DE

y′ + p(x)y = r(x)



Bernoulli DE

y′ + p(x)y = g(x)ya, a �= 0 or 1

Verhulst logistic model (population model):

y′ = Ay −By2, A,B > 0



Orthogonal trajectories of curves

Existence of solutions to initial value problem

y′ = f(x, y), y(x0) = y0

THM 1: IF f(x, y) is continuous, and bounded such that
|f(x, y)| ≤ K, in the region

R = {(x, y) : |x− x0| < a, |y − y0| < b}

THEN the IVP has at least one sol. y(x) on the interval
|x− x0| < α where α = min(a, b/K).



Uniqueness of solutions to initial value problem

y′ = f(x, y), y(x0) = y0

THM 2: IF f(x, y) and ∂f
∂y (x, y) are continuous, and

bounded such that |f(x, y)| ≤ K and |∂f∂y (x, y)| ≤ M in R,
THEN the IVP has a unique sol. y(x) on the interval
|x− x0| < α where α = min(a, b/K).

Lesson 12: Solving the second order linear DE

� overview
� homogeneous linear DE
� reduction of order
� homogeneous linear DE with constant coefficients



Overview: Linear ODEs of second order

y′′ + p(x)y′ + g(x)y = r(x), y(x0) = K0, y′(x0) = K1

1. The homogeneous linear ODE:

y′′ + p(x)y′ + g(x)y = 0 (1)

has two “linearly independent” solutions y1(x) and y2(x).
2. Let yh(x) = c1y1(x) + c2y2(x) with two constant coefficients c1 and c2, which is

again a solution to (1).
3. Solve

y′′ + p(x)y′ + g(x)y = r(x) (2)

without considering the initial condition. Let the solution be yp(x).
4. The general solution is

y(x) = yh(x) + yp(x) = c1y1(x) + c2y2(x) + yp(x).

Determine c1 and c2 with the initial condition.

Homogeneous linear ODEs of second order

y′′ + p(x)y′ + g(x)y = 0

Claim: Linear homogeneous ODE of the second order has two linearly independent
solutions.



How to obtain a basis if one sol. is known? (Reduction of order)
Obtaining another y2(x) with a known y1(x)



Homogeneous linear ODEs with constant coefficients

y′′ + ay′ + by = 0





Lesson 13: The second order linear DE

� case study: free oscillation
� Euler-Cauchy equation
� existence and uniqueness of a solution to IVP
� Wronskian and linear independence of solutions



Modeling: Free oscillation



Euler-Cauchy equation

x2y′′ + axy′ + by = 0



Existence and uniqueness of a solution to IVP

y′′ + p(x)y′ + q(x)y = 0, y(x0) = K0, y′(x0) = K1

THM: IF p(x) and q(x) are continuous (on an open interval I � x0),
THEN ∃ a unique sol. y(x) (on the interval I).

Wronskian and linear independence of solutions

With y1(x) and y2(x) being the solutions of

y′′ + p(x)y′ + q(x)y = 0,

Wronski determinant (Wronskian) of y1 and y2 is defined by

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

THM:
1. two sol. y1, y2 are linearly dep. on I ⇔

W (y1(x), y2(x)) = 0 at some x∗ ∈ I

2. If W (y1(x), y2(x)) = 0 at some x∗ ∈ I,
then W (y1(x), y2(x)) ≡ 0 on I.

3. If W (y1(x), y2(x)) �= 0 at some x∗ ∈ I,
then y1 and y2 are linearly indep. on I.



y′′ + p(x)y′ + q(x)y = 0 has two indep. sol. y1 and y2
so, it has a general sol. y(x) = c1y1(x) + c2y2(x)



Any sol. to y′′ + p(x)y′ + q(x)y = 0 has the form of c1y1(x) + c2y2(x)

Lesson 14: Second order nonhomogeneous linear DE

� nonhomogeneous linear DE
� solution by undetermined coefficient method
� solution by variation-of-parameter formula



Nonhomogeneous linear DE

y′′ + p(x)y′ + q(x)y = r(x)



Candidate for yp(x) in y′′ + p(x)y′ + q(x)y = r(x)

The above rules are applied for each term r(x).
If the candidate for yp(x) happens to be a sol. of the
homogeneous equation, then multiply yp(x) by x (or by x2 if
this sol. corresponds to a double root of the characteristic
eq. of the homogeneous equation).

y′′ + 4y = 8x2



y′′ − 3y′ + 2y = ex

y′′ + 2y′ + y = e−x y′′ + 2y′ + 5y = 1.25e0.5x + 40 cos 4x− 55 sin 4x

y′′ + 2y′ + 5y = 1.25e0.5x + 40 cos 2x

y′′ + 2y′ + 5y = 1.25e0.5x + 40e−x cos 2x



Solution by variation of parameters

y′′ + p(x)y′ + q(x)y = r(x)



Lesson 15: Higher order linear DE

� higher order homogeneous linear DE
� higher order homogeneous linear DE with constant coefficients
� higher order nonhomogeneous linear DE

Higher order homogeneous linear DE

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = 0 (H)

General sol.: y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)
where yi(x)’s are linearly indep. sol. to (H).



y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = 0, y(i)(x0) = Ki

THM: If all pi’s are conti. (on I), then IVP has a unique sol. (on I).

THM: With all pi’s being conti.,

sol. {y1, · · · , yn} are lin. dep. on I

⇔ W (y1, · · · , yn) =

∣∣∣∣∣∣∣∣∣

y1 · · · yn
y′1 · · · y′n
...

. . .
...

y
(n−1)
1 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
= 0 at some x0 ∈ I

⇔ W (y1, · · · , yn) ≡ 0 on I

y′′′′ − 5y′′ + 4y = 0



THM: With all pi’s being conti., the (H) has n lin. indep. sol. (i.e., there is a general
solution).

THM: With all pi’s being conti., the general sol. includes all solutions.

Higher order homogeneous linear DE with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0

* distinct roots

* multiple roots



Higher order nonhomogeneous linear DE

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = r(x)

* undetermined coefficient method:

* variation-of-parameter formula:

yp(x) = y1

∫
W1r

W
dx+ y2

∫
W2r

W
dx+ · · ·+ yn

∫
Wnr

W
dx

where W = W (y1, · · · , yn) and Wj : j-th column in W replaced by

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦.

Lesson 16: Case studies

� mass-spring-damper system: forced oscillation
� RLC circuit
� elastic beam



Case study: forced oscillation (my′′ + cy′ + ky = r)

yp(t) = F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + c2ω2

cosωt+F0
cω

m2(ω2
0 − ω2)2 + c2ω2

sinωt, y(t) = yh(t)+yp(t)



y(t) = yh(t) + F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + c2ω2

cosωt+ F0
cω

m2(ω2
0 − ω2)2 + c2ω2

sinωt

Modeling: RLC circuit



RLC circuit: forced response

Elastic beam



Lesson 17: Systems of ODEs

� introduction
� existence and uniqueness of solutions to IVP
� linear homogeneous case
� linear homogeneous constant coefficient case

Systems of ODE



Existence and uniqueness of solutions to IVP

y′ = f(t, y), y(t0) =

⎡
⎢⎣
k1
...
kn

⎤
⎥⎦

THM: If all fi(t, y) and ∂fi
∂yj

(t, y) are conti. on some region of (t, y1, y2, · · · , yn)-space
containing (t0, k1, · · · , kn), then a sol. y(t) exists and is unique in some local interval of
t around t0.

y′ = A(t)y + g(t), y(t0) =

⎡
⎢⎣
k1
...
kn

⎤
⎥⎦

THM: If A(t) and g(t) are conti. on an interval I, then a sol. y(t) exists and is unique
on the interval I.

Linear homogeneous case

y′ = A(t)y

General sol.: y(t) = c1y
(1)(t) + c2y

(2)(t) + · · ·+ cny
(n)(t)

where y(i)(t)’s are lin. indep. sol.



Linear homogeneous constant coefficient case

y′ = Ay





Handling complex e.v/e.vectors



Lesson 18: Qualitative properties of systems of ODE

� phase plane and phase portrait
� critical points
� types and stability of critical points

Phase plane and phase portrait



Critical point (= equilibrium)

Example: undamped pendulum



Types of critical points: node

Types of critical points: saddle / center



Types of critical points: spiral / degenerate node

Stability
DEF: stability of a critical point P0(= y∗):

� all trajectories of y′ = f(y) whose initial condition y(t0) is sufficiently close to P0

remain close to P0 for all future time
� for each ε > 0, there is δ > 0 such that,

|y(t0)− y∗| < δ ⇒ |y(t)− y∗| < ε, ∀t ≥ t0

DEF: asymptotic stability of P0 = stability + attractivity (limt→∞ y(t) = y∗)



Example: second order system

Lesson 19: Linearization and nonhomogeneous linear systems of ODE

� linearization
� nonhomogeneous case



Linearization

y′ = f(y)

Let y = 0 be a critical point (without loss of generality; WLOG), and be isolated.

y′1 = f1(y1, y2) = f1(0, 0) +
∂f1
∂y1

(0, 0)y1 +
∂f1
∂y2

(0, 0)y2 + h1(y1, y2)

y′2 = f2(y1, y2) = f2(0, 0) +
∂f2
∂y1

(0, 0)y1 +
∂f2
∂y2

(0, 0)y2 + h2(y1, y2)

y′ = f(y) ⇒ y′ = Ay =
∂f

∂y

∣∣∣
y=0

y

� If no e.v. of A lies in the imaginary axis, then stability of the critical point of the
nonlinear system is determined by A.

� If Re(λ) < 0 for all λ, it is asymptotically stable.
� If Re(λ) > 0 for at least one λ, it is unstable.

� If all e.v.’s are distinct and no e.v. of A lies in the imaginary axis, then the type of
the critical point of the nonlinear system is determined by A.

� The node, saddle, and spiral are preserved, but center may not be preserved.



Nonhomogeneous linear case

Method of undetermined coefficients (for time-invariant case)



Method of variation of parameters (for time-varying case)

Method of diagonalization (for time-invariant case)



Lesson 20: Series solutions of ODE

� power series method
� Legendre equation

Power series

∞∑
m=0

am(x− x0)
m = a0 + a1(x− x0) + a2(x− x0)

2 + · · ·



∞∑
m=0

am(x− x0)
m = a0 + a1(x− x0) + a2(x− x0)

2 + · · ·+ an(x− x0)
n

+ an+1(x− x0)
n+1 + · · ·

For a given x1,

if limn→∞ Sn(x1) exists (or, limn→∞Rn(x1) = 0,
or for any ε > 0, ∃N(ε) s.t. |Rn(x1)| < ε for all n > N(ε)),

then the series is called “convergent at x = x1” and we write S(x1) = limn→∞ Sn(x1).



Radius of convergence
If

R =
1

limm→∞ m
√|am| , or R =

1

limm→∞
∣∣∣am+1

am

∣∣∣
is well-defined, then the series is convergent for x s.t. |x− x0| < R.



Power series method

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x)

If p, q, and r are analytic at x = x0,

then there exists a power series solution around x0 (i.e., R > 0):

y(x) =

∞∑
m=0

am(x− x0)
m.



Legendre equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n : real number



Legendre polynomial (of degree n)

"Legendrepolynomials6" by Geek3



Lesson 21: Frobenius method

� Frobenius method
� Euler-Cauchy equation revisited

Frobenius method
The DE

y′′ +
b(x)

x
y′ +

c(x)

x2
y = 0

where b and c are analytic at x = 0, has at least one sol. around x = 0 of the form

y(x) = xr
∞∑

m=0

amxm = xr(a0 + a1x+ a2x
2 + · · · ).



� Case 1: distinct roots, not differing by an integer

� Case 2: double roots
� Case 3: distinct roots differing by an integer

General sol.: y(x) = c1y1(x) + c2y2(x) where
� Case 1:

y1(x) = xr1(a0 + a1x+ · · · )
y2(x) = xr2(A0 +A1x+ · · · )

� Case 2: r = (1− b0)/2

y1(x) = xr(a0 + a1x+ · · · )
y2(x) = y1(x) lnx+ xr(A1x+A2x

2 + · · · )
� Case 3: r1 > r2

y1(x) = xr1(a0 + a1x+ · · · )
y2(x) = ky1(x) lnx+ xr2(A0 +A1x+ · · · )







Example: Euler-Cauchy equation revisited



Lesson 22: Bessel DE and Bessel functions

� example for Frobenius method
� Bessel DE and its solutions

Example: a simple hypergeometric equation

x(x− 1)y′′ + (3x− 1)y′ + y = 0





Example: another simple hypergeometric equation

x(x− 1)y′′ − xy′ + y = 0



Gamma function

Γ(ν) :=

∫ ∞

0
e−ttν−1dt

has the properties:
1. Γ(ν + 1) = νΓ(ν)

2. Γ(1) = 1

3. Γ(n+ 1) = n!

"Gamma plot" by Alessio Damato

Bessel’s DE

x2y′′ + xy′ + (x2 − ν2)y = 0, ν ≥ 0



Computing y1(x)



Bessel function of the first kind of order n

Jn(x) = xn
∞∑

m=0

(−1)mx2m

22m+nm!(n+m)!

"Bessel Functions" by Inductiveload

Finding y2(x)





Bessel function of the second kind of order ν

Yν(x) =
1

sin νπ
[Jν(x) cos νπ − J−ν(x)]

Yn(x) = lim
ν→n

Yν(x) = · · ·

"Bessel Functions" by Inductiveload

Lesson 23: Laplace transform I

� introduction to Laplace transform
� linearity, shifting property
� existence and uniqueness of Laplace transform
� computing inverse Laplace transform
� partial fraction expansion & Heaviside formula



Laplace transform

L{f} =

∫ ∞

0
f(t)e−stdt = F (s)

(Property) Linearity: L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}



(Property) s-shifting property: L{eatf(t)} = F (s− a)

Transform table: f(t) ↔ F (s)

1 ↔ 1

s

t ↔ 1

s2

t2 ↔ 2!

s3

tn ↔ n!

sn+1
, n = integer

ta ↔ Γ(a+ 1)

sa+1
, a > 0

eat ↔ 1

s− a

cosωt ↔ s

s2 + ω2

sinωt ↔ ω

s2 + ω2

cosh at ↔ s

s2 − a2

sinh at ↔ a

s2 − a2

eat cosωt ↔ s− a

(s− a)2 + ω2

eat sinωt ↔ ω

(s− a)2 + ω2



Existence and uniqueness of Laplace transform
IF f(t) is piecewise continuous on every finite interval in {t : t ≥ 0}, and

|f(t)| ≤ Mekt, t ≥ 0

with some M and k,

THEN L{f(t)} exists for all Re(s) > k.



Computing inverse Laplace transform

L−1{F (s)} = f(t) =?

* Partial fraction expansion:

Finding coefficients in partial fraction expansion: Heaviside formula
Y (s) = s+1

s3+s2−6s
= A1

s + A2
s+3 + A3

s−2

Y (s) = s3−4s2+4
s2(s−2)(s−1)

= A2
s2

+ A1
s + B

s−2 + C
s−1



Y (s) = · · · = A3
(s−1)3

+ A2
(s−1)2

+ A1
s−1 + B2

(s−2)2
+ B1

s−2

Y (s) = 20
(s2+4)(s2+2s+2)

+ s−3
s2+2s+2

Lesson 24: Laplace transform II

� transform of derivative and integral
� solving linear ODE
� unit step function and t-shifting property
� Dirac’s delta function (impulse)



(Property) Transform of differentiation: L{f ′(t)} = sL{f(t)} − f(0)

(Property) Transform of integration: L{∫ t

0 f(τ)dτ} = 1
sF (s)



Solving IVP of linear ODEs with constant coefficients

y′′ + ay′ + by = r(t), y(0) = K0, y′(0) = K1



Unit step function (Heaviside function)

(Property) t-shifting property: L{f(t− a)u(t− a)} = e−asF (s)



(Dirac’s) delta function
δ(t) is a (generalized) function such that

δ(t) =

{
0, t �= 0

∞, t = 0
and

∫ a

−a
δ(t)dt = 1 for any a > 0

sifting property:
∫ ∞

0
g(t)δ(t− a)dt = g(a), g: conti., a > 0

Lesson 25: Laplace transform III

� convolution
� impulse response
� differentiation and integration of transforms
� solving system of ODEs



(Property) Convolution: L−1{F (s)G(s)} = f(t) ∗ g(t)

Properties of convolution:

f ∗ g = g ∗ f
f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

(f ∗ g) ∗ v = f ∗ (g ∗ v)
f ∗ 0 = 0 ∗ f = 0, f ∗ 1 �= f



Impulse response



(Property) Differentiation of transform: L{tf(t)} = −F ′(s)



(Property) Integration of transform: L{f(t)
t } =

∫∞
s F (s̃)ds̃



Solving system of ODEs


