공학 수학 1

심형보 교수
서울대학교 공과대학 전기정보공학부

2015년 2월

Lesson 1: Introduction to matrix

- terminologies
- addition and scalar multiplication
- product of matrices
- transpose of a matrix

Matrix (행렬) \& Vector (벡터)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & 0 \\
2 & 0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

합과 스칼라 곱의 연산법칙

For $A, B, C \in \mathbb{R}^{m \times n}$ and $c, k \in \mathbb{R}$,

$$
\begin{aligned}
A+B & =B+A \\
(A+B)+C & =A+(B+C) \\
A+0 & =A \\
A+(-A) & =0
\end{aligned}
$$

and

$$
\begin{aligned}
c(A+B) & =c A+c B \\
(c+k) A & =c A+k A \\
c(k A) & =(c k) A \\
1 A & =A
\end{aligned}
$$

행렬의 곱

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=
$$

행렬 곱의 연산법칙

For $A, B, C \in \mathbb{R}^{m \times n}$ and $k \in \mathbb{R}$,

$$
\begin{aligned}
(k A) B & =k(A B)=A(k B) \\
A(B C) & =(A B) C \\
(A+B) C & =A C+B C \\
C(A+B) & =C A+C B
\end{aligned}
$$

$$
\begin{aligned}
\left(A^{\top}\right)^{\top} & =A \\
(A+B)^{\top} & =A^{\top}+B^{\top} \\
(c A)^{\top} & =c A^{\top} \\
(A B)^{\top} & =B^{\top} A^{\top}
\end{aligned}
$$

> 예 : 토지의 용도 변경

예 : 회전 변환

Lesson 2: System of linear equations, Gauss elimination

- existence and uniqueness of solution
- elementary row operation
- Gauss elimination, pivoting
- echelon form

선형연립방정식 (system of linear equations) \& 해 (solution)

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Existence and uniqueness of solution (해의 존재성과 유일성)

해를 구하는 법

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =0 \\
10 x_{2}+25 x_{3} & =90 \\
-95 x_{3} & =-190 \\
2 x_{1}+5 x_{2} & =2 \\
-4 x_{1}+3 x_{2} & =-30
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
2 & 5 & 2 \\
-4 & 3 & -30
\end{array}\right]
$$

1. 두 식의 위치 교환
2. 두 행의 위치 교환
3. 한 식을 다른 식에 더하기
4. 한 식에 0 아닌 상수 곱하기
5. 한 식을 상수배하여 다른 식에 더하기
6. 한 행을 다른 행에 더하기
7. 한 행에 0 아닌 상수 곱하기
8. 한 행을 상수배하여 다른 행에 더하기

Gauss elimination

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

Gauss elimination (partial pivoting)

$$
\begin{aligned}
x_{1}- & x_{2}+ & x_{3} & =0 \\
2 x_{1}- & 2 x_{2}+ & 2 x_{3} & =0 \\
& 10 x_{2}+ & 25 x_{3} & =90 \\
20 x_{1}+ & 10 x_{2} & & =80
\end{aligned}
$$

Gauss elimination (the case of infinitely many solutions)

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0.6 & 1.5 & 1.5 & -5.4 & 2.7 \\
1.2 & -0.3 & -0.3 & 2.4 & 2.1
\end{array}\right]} \\
\left.\Downarrow \begin{array}{ccccc}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & -1.1 & -1.1 & 4.4 & -1.1
\end{array}\right] \\
\\
\\
{\left[\begin{array}{ccccc}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Gauss elimination (the case of no solution)

$$
\begin{gathered}
{\left[\begin{array}{cccc}
3 & 2 & 1 & 3 \\
2 & 1 & 1 & 0 \\
6 & 2 & 4 & 6
\end{array}\right]} \\
\Downarrow \\
{\left[\begin{array}{cccc}
3 & 2 & 1 & 3 \\
0 & -\frac{1}{3} & \frac{1}{3} & -2 \\
0 & -2 & 2 & 0
\end{array}\right]} \\
\left.\Downarrow \begin{array}{cccc}
3 & 2 & 1 & 3 \\
0 & -\frac{1}{3} & \frac{1}{3} & -2 \\
0 & 0 & 0 & 12
\end{array}\right]
\end{gathered}
$$

Echelon form (계단 형태)

Gauss elimination:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lllll}
A & b
\end{array}\right]} & \Rightarrow
\end{array}\right]\left[\begin{array}{ll}
R & f
\end{array}\right] \quad\left[\begin{array}{ccccccc}
r_{11} & r_{12} & \cdots & \cdots & \cdots & r_{1 n} & f_{1} \\
& r_{22} & \cdots & \cdots & \cdots & r_{2 n} & f_{2} \\
& & \ddots & & & \vdots & \vdots \\
& & & r_{r r} & \cdots & r_{r n} & f_{r} \\
& & & & & & f_{r+1} \\
& & & & & & \vdots \\
& & & & & & f_{m}
\end{array}\right] .
$$

- linear combination (of vectors)
- linear independence (of vectors)
- rank (of a matrix)
- practice using MATLAB

Linear combination (of vectors) \& linear independence (of a set of vectors)

Example

$$
\begin{aligned}
\underline{a}_{1} & =\left[\begin{array}{llll}
3 & 0 & 2 & 2
\end{array}\right] \\
\underline{a}_{2} & =\left[\begin{array}{llll}
-6 & 42 & 24 & 54
\end{array}\right] \\
\underline{a}_{3} & =\left[\begin{array}{llll}
21 & -21 & 0 & -15
\end{array}\right]
\end{aligned}
$$

Rank of a matrix
DEF: $\operatorname{rank} A=$ 행렬 A 에서 선형독립인 row vector의 최대 수
$\left[\begin{array}{cccc}3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15\end{array}\right]$

Properties of 'rank'
THM: elementary row operation을 해서 얻는 모든 행렬들은 같은 rank를 가진다.
(Rank는 elementary row operation에 대하여 invariant 하다.)

$$
\left[\begin{array}{cccc}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{array}\right]
$$

Properties of 'rank'
THM: rank A 는 A 의 선형독립인 column vector의 최대 수와도 같다.
(따라서 $\operatorname{rank} A=\operatorname{rank} A^{\top}$.)

Properties of 'rank'

- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank} A \leq \min \{m, n\}$.
- For $v_{1}, \cdots, v_{p} \in \mathbb{R}^{n}$, if $n<p$, then they are linearly dependent.
- Let $A=\left[v_{1}, v_{2}, \ldots, v_{p}\right]$ where $v_{i} \in \mathbb{R}^{n}$.

If rank $A=p$, then they are linearly independent. If $\operatorname{rank} A<p$, then they are linearly dependent.

Ex:
$\left[\begin{array}{cccc}3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15\end{array}\right]$

MATLAB을 사용한 실습
http://www.mathworks.com

Lesson 4: Vector space

- vector space (in \mathbb{R}^{n}), subspace
- basis, dimension
- column space, null space of a matrix
- existence and uniqueness of solutions
- vector space (in general)

선형연립방정식의 해: 존재성과 유일성

$$
A x=b \quad \text { with } A \in \mathbb{R}^{m \times n} \text { and } b \in \mathbb{R}^{m}
$$

1. existence: a solution x exists iff

- $b \in$ column space of A
- $\operatorname{rank} A=\operatorname{rank}[A b]$

2. uniqueness: when a solution x exists, it is the unique solution iff

- $\operatorname{dim}($ null space of $A)=0$
- $\operatorname{rank} A=n$

3. existence \& uniqueness: the solution x uniquely exists iff

- $\operatorname{rank} A=\operatorname{rank}[A b]=n$

4. existence for any $b \in \mathbb{R}^{m}$: a solution x exists for any $b \in \mathbb{R}^{m}$ iff

- $\operatorname{rank} A=m$

5. unique existence for any $b \in \mathbb{R}^{m}$: the unique solution x exists for any $b \in \mathbb{R}^{m}$ iff

- $\operatorname{rank} A=m$ and $\operatorname{rank} A=n$ (i.e., $A \in \mathbb{R}^{n \times n}$ has 'full rank')

Ex: $\operatorname{rank} A=r<n \quad \Rightarrow$

Homogeneous case

$$
A x=0 \quad A \in \mathbb{R}^{m \times n}
$$

- non-trivial solution exists iff $\operatorname{rank} A=r<n$
- 방정식의 수가 미지수의 수보다 적은 경우 항상 non-trivial solution을 가진다.

Q: Dimension of the 'solution space' $=$

Nonhomogenous case

$$
A x=b \neq 0 \quad A \in \mathbb{R}^{m \times n}
$$

- Any solution x can be written as

$$
x=x_{0}+x_{h}
$$

where x_{0} is a solution to $A x=b$ and x_{h} is a solution to $A x=0$.

Vector space

: set of vectors with "addition" and "scalar multiplication"
For $A, B, C \in V$ and $c, k \in \mathbb{R}$,

$$
\begin{aligned}
A+B & =B+A \\
(A+B)+C & =A+(B+C) \\
A+0 & =A \\
A+(-A) & =0
\end{aligned}
$$

and

$$
\begin{aligned}
c(A+B) & =c A+c B \\
(c+k) A & =c A+k A \\
c(k A) & =(c k) A \\
1 A & =A
\end{aligned}
$$

Examples of vector space

Normed space
: vector space with "norm"
ex: for $v \in \mathbb{R}^{n}$, the norm is $\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots v_{n}^{2}}$

Inner product space
: vector space with "inner product"

1. $\left(c_{1} A+c_{2} B, C\right)=c_{1}(A, C)+c_{2}(B, C)$
2. $(A, B)=(B, A)$
3. $(A, A) \geq 0$ and $(A, A)=0$ iff $A=0$

Lesson 5: Determinant of a matrix

- determinant (of a matrix)
- Cramer's rule

Determinant (of a matrix)
For $A \in \mathbb{R}^{n \times n}$,

$$
\operatorname{det} A=|A|=\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
& & & a_{m n}
\end{array}\right|=
$$

Elementary row operation \& determinant

1. 두 행을 바꾸면 determinant의 부호가 반대가 됨
2. 똑같은 행이 존재하는 행렬의 determinant는 0
3. 한 행의 상수 배를 다른 행에 더해도 determinant 불변
4. 한 행에 0 아닌 c 를 곱하면 determinant는 c 배가 됨 ($c=0$ 인 경우도 성립하지만 쓸모는 없음)

Properties of 'determinant'

- 앞 페이지의 1 번-4번은 행 대신 열에 대해서도 똑같이 성립한다.
- $\operatorname{det} A=\operatorname{det} A^{\top}$
- zero row나 zero column이 있으면 determinant는 0
- 두 행이나 두 열이 비례관계이면 determinant는 0

Properties of 'determinant'

THM: A matrix $A \in \mathbb{R}^{m \times n}$ has rank $r(\geq 1)$ iff

- A has a $r \times r$ submatrix whose determinant is non-zero, and
- determinants of submatrices of A, whose size is larger than $r \times r$, are zero (if exists).

Cramer's rule

$$
A x=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right] x=b, \quad A \in \mathbb{R}^{n \times n}, \quad \operatorname{det} A=: D \neq 0
$$

Cramer's rule:

$$
x_{1}=\frac{D_{1}}{D}, \quad x_{2}=\frac{D_{2}}{D}, \quad \cdots \quad x_{n}=\frac{D_{n}}{D}
$$

where

$$
D_{k}=\left[\begin{array}{lllllll}
a_{1} & \cdots & a_{k-1} & b & a_{k+1} & \cdots & a_{n}
\end{array}\right]
$$

Ex:

$$
\begin{aligned}
& 2 x-y=1 \\
& 3 x+y=2
\end{aligned}
$$

Lesson 6: Inverse of a matrix

- inverse (of a matrix)
- Gauss-Jordan elimination (computing inverse)
- formula for the inverse
- properties of inverse and nonsingular matrices

Inverse of a matrix

- For $A \in \mathbb{R}^{n \times n}$, the inverse of A is a matrix B such that

$$
A B=I \quad \text { and } \quad B A=I
$$

and we denote B by A^{-1}.

- A^{-1} exists iff $\operatorname{rank} A=n$ iff $\operatorname{det} A \neq 0$ iff A is 'non-singular'

Computing the inverse: Gauss-Jordan elimination

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]} \\
{[A \mid I]=\left[\begin{array}{rrr|rrr}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right]} \\
{[I \mid B]=\left[\begin{array}{rrr|lll}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right]}
\end{gathered}
$$

A formula for the inverse
For $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$,

Properties about nonsingular matrix, inverse, and determinant

- Inverse of 'diagonal matrix' is easy.
- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{-1}\right)^{-1}=A$
- For $A, B, C \in \mathbb{R}^{n \times n}$, if A is nonsingular (i.e., rank $A=n$),
- $A B=A C$ implies $B=C$.
- $A B=0$ implies $B=0$.
- For $A, B \in \mathbb{R}^{n \times n}$, if A is singular, then $A B$ and $B A$ are singular.
- $\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det} A \operatorname{det} B$

Lesson 7: Eigenvalues and eigenvectors

- eigenvalues and eigenvectors
- symmetric, skew-symmetric, and orthogonal matrices

Eigenvalue and eigenvector of a matrix

Find eigenvalues and eigenvectors of

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right] \\
-\lambda^{3}-\lambda^{2}+21 \lambda+45=0 \\
\lambda_{1}=5, \quad \lambda_{2}=\lambda_{3}=-3 \\
A-5 I=\left[\begin{array}{ccc}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
-7 & 2 & -3 \\
0 & -\frac{24}{7} & -\frac{48}{7} \\
0 & 0 & 0
\end{array}\right] \\
A+3 I=\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 4 & -6 \\
-1 & -2 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Symmetric, skew-symmetric, and orthogonal matrices

Lesson 8: Similarity transformation, diagonalization, and quadratic form

- similarity transformation
- diagonalization
- quadratic form

Similarity transformation

행렬 $A \in \mathbb{R}^{n \times n}$ 가 n 개의 선형독립인 e.vectors를 가질 때...

언제 행렬 A 가 n 개의 선형독립인 e.vectors를 갖나? (1)

언제 행렬 A 가 n 개의 선형독립인 e.vectors를 갖나? (2)

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right], & \begin{array}{l}
\lambda_{1}=-1 \\
\lambda_{2}=-3
\end{array} \\
A_{2}=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right], & \lambda_{1}=\lambda_{2}=-2 \\
A_{3}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], & \lambda_{1}=\lambda_{2}=-2
\end{array}
$$

Diagonalization

Diagonalization이 안되는 경우

Quadratic form

$$
Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128
$$

못 다룬 것들

교재의 연습 문제:
trace,
positive definite matrix, positive semi-definite matrix
out of the scope:
(induced) norm of a matrix, (generalized eigenvectors,) Jordan form
further study:

> http://snuon.snu.ac.kr [최신제어기법]
> http://snui.snu.ac.kr [최신제어기법] http://lecture.cdsl.kr [선형대수 및 선형시스템 기초]

Lesson 9: Introduction to differential equation

- function, limit, and differentiation
- differential equation, general and particular solutions
- direction field, solving DE by computer

Function, limit, and differentiation

Basic concepts and ideas

$$
\begin{aligned}
& y^{\prime}(x)+2 y(x)-3=0 \\
& y^{\prime}(x)=-27 x+x^{2} \\
& y^{\prime}(t)=2 t \\
& y^{\prime \prime}(x)+y^{\prime}(x)+y(x)=0 \\
& y^{\prime \prime}(x) y^{\prime}(x)+\sin (y(x))+2=0 \\
& \left\{\begin{array}{l}
y_{1}^{\prime}(x)+2 y_{2}(x)+3=0 \\
y_{2}^{\prime}(x)+2 y_{1}^{\prime}(x)+y_{2}(x)=2 \\
2 \frac{\partial y}{\partial x}(x, z)+3 \frac{\partial y}{\partial z}(x, z)-2 x=0
\end{array}\right.
\end{aligned}
$$

* ODE (ordinary differential equation) / PDE (partial differential equation)
* Solving DE:
* Explicit/implicit solution

Why do we have to study DE?

General solution and particular solution

Direction fields (a geometric interpretation of $y^{\prime}=f(x, y)$)

An idea of solving DE by computer

Lesson 10: Solving first order differential equations

- separable differential equations
- exact differential equations

Separable DE
f, g : continuous functions

$$
g(y) y^{\prime}=f(x) \quad \Rightarrow \quad g(y) d y=f(x) d x
$$

$$
y^{\prime}=g\left(\frac{y}{x}\right)
$$

replacing $a y+b x+k$ with v

$$
(2 x-4 y+5) y^{\prime}+(x-2 y+3)=0
$$

Exact differential equation: introduction
(observation:) For $u(x, y)$,

$$
d u=\frac{\partial u}{\partial x}(x, y) d x+\frac{\partial u}{\partial y}(x, y) d y \quad: \quad \text { differential of } u .
$$

So, if $u(x, y)=c$ (constant), then $d u=$

Exact differential equation

Given DE: $M(x, y)+N(x, y) \frac{d y}{d x}=0$
If \exists a function $u(x, y)$ s.t.

$$
\frac{\partial u}{\partial x}(x, y)=M(x, y) \quad \& \quad \frac{\partial u}{\partial y}(x, y)=N(x, y)
$$

then

$$
u(x, y)=c
$$

is a general sol. to the DE.
The DE is called "exact DE".

How to check if the given DE is exact?

How to solve the exact DE?

Lesson 11: More on first order differential equations

- integrating factor
- linear differential equation
- Bernoulli equation
- obtaining orthogonal trajectories of curves
- existence and uniqueness of solutions to initial value problem

Integrating factor

$$
P(x, y) d x+Q(x, y) d y=0
$$

$$
\left(e^{x+y}+y e^{y}\right) d x+\left(x e^{y}-1\right) d y=0
$$

Linear DE

$$
y^{\prime}+p(x) y=r(x)
$$

Bernoulli DE

$$
y^{\prime}+p(x) y=g(x) y^{a}, \quad a \neq 0 \text { or } 1
$$

Verhulst logistic model (population model):

$$
y^{\prime}=A y-B y^{2}, \quad A, B>0
$$

Orthogonal trajectories of curves

Existence of solutions to initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

THM 1: IF $f(x, y)$ is continuous, and bounded such that $|f(x, y)| \leq K$, in the region

$$
R=\left\{(x, y):\left|x-x_{0}\right|<a,\left|y-y_{0}\right|<b\right\}
$$

THEN the IVP has at least one sol. $y(x)$ on the interval $\left|x-x_{0}\right|<\alpha$ where $\alpha=\min (a, b / K)$.

Uniqueness of solutions to initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

THM 2: IF $f(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ are continuous, and
bounded such that $|f(x, y)| \leq K$ and $\left|\frac{\partial f}{\partial y}(x, y)\right| \leq M$ in R, THEN the IVP has a unique sol. $y(x)$ on the interval $\left|x-x_{0}\right|<\alpha$ where $\alpha=\min (a, b / K)$.

Lesson 12: Solving the second order linear DE

- overview
- homogeneous linear DE
- reduction of order
- homogeneous linear DE with constant coefficients

Overview: Linear ODEs of second order

$$
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=r(x), \quad y\left(x_{0}\right)=K_{0}, \quad y^{\prime}\left(x_{0}\right)=K_{1}
$$

1. The homogeneous linear ODE:

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=0 \tag{1}
\end{equation*}
$$

has two "linearly independent" solutions $y_{1}(x)$ and $y_{2}(x)$.
2. Let $y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ with two constant coefficients c_{1} and c_{2}, which is again a solution to (1).
3. Solve

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=r(x) \tag{2}
\end{equation*}
$$

without considering the initial condition. Let the solution be $y_{p}(x)$.
4. The general solution is

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x) .
$$

Determine c_{1} and c_{2} with the initial condition.

Homogeneous linear ODEs of second order

$$
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=0
$$

Claim: Linear homogeneous ODE of the second order has two linearly independent solutions.

How to obtain a basis if one sol. is known? (Reduction of order) Obtaining another $y_{2}(x)$ with a known $y_{1}(x)$

Homogeneous linear ODEs with constant coefficients

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

Lesson 13: The second order linear DE

- case study: free oscillation
- Euler-Cauchy equation
- existence and uniqueness of a solution to IVP
- Wronskian and linear independence of solutions

Modeling: Free oscillation

Euler-Cauchy equation

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

Existence and uniqueness of a solution to IVP

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y\left(x_{0}\right)=K_{0}, \quad y^{\prime}\left(x_{0}\right)=K_{1}
$$

THM: IF $p(x)$ and $q(x)$ are continuous (on an open interval $I \ni x_{0}$), THEN \exists a unique sol. $y(x)$ (on the interval I).

Wronskian and linear independence of solutions

With $y_{1}(x)$ and $y_{2}(x)$ being the solutions of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

Wronski determinant (Wronskian) of y_{1} and y_{2} is defined by

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

THM:

1. two sol. y_{1}, y_{2} are linearly dep. on $I \Leftrightarrow$ $W\left(y_{1}(x), y_{2}(x)\right)=0$ at some $x^{*} \in I$
2. If $W\left(y_{1}(x), y_{2}(x)\right)=0$ at some $x^{*} \in I$, then $W\left(y_{1}(x), y_{2}(x)\right) \equiv 0$ on I.
3. If $W\left(y_{1}(x), y_{2}(x)\right) \neq 0$ at some $x^{*} \in I$, then y_{1} and y_{2} are linearly indep. on I.
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ has two indep. sol. y_{1} and y_{2} so, it has a general sol. $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$

Any sol. to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ has the form of $c_{1} y_{1}(x)+c_{2} y_{2}(x)$

Lesson 14: Second order nonhomogeneous linear DE

- nonhomogeneous linear DE
- solution by undetermined coefficient method
- solution by variation-of-parameter formula

Nonhomogeneous linear DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

Candidate for $y_{p}(x)$ in $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$

Term in $r(x)$	Candidate for $y_{p}(x)$
$k e^{\gamma x}$	$C e^{\gamma x}$
$k x^{n}, n \geq 0$ integer	$K_{n} x^{n}+K_{n-1} x^{n-1}+\cdots+K_{1} x+K_{0}$
$k \cos \omega x$ $k \sin \omega x$	$K \cos \omega x+M \sin \omega x$
$k e^{\alpha x} \cos \omega x$ $k e^{\alpha x}$ $\sin \omega x$	$e^{a x}(K \cos \omega x+M \sin \omega x)$

The above rules are applied for each term $r(x)$.
If the candidate for $y_{p}(x)$ happens to be a sol. of the homogeneous equation, then multiply $y_{p}(x)$ by x (or by x^{2} if this sol. corresponds to a double root of the characteristic eq. of the homogeneous equation).

$$
y^{\prime \prime}+4 y=8 x^{2}
$$

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}
$$

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{-x} \quad y^{\prime \prime}+2 y^{\prime}+5 y=1.25 e^{0.5 x}+40 \cos 4 x-55 \sin 4 x
$$

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+5 y=1.25 e^{0.5 x}+40 \cos 2 x \\
y^{\prime \prime}+2 y^{\prime}+5 y=1.25 e^{0.5 x}+40 e^{-x} \cos 2 x
\end{gathered}
$$

Solution by variation of parameters

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

Lesson 15: Higher order linear DE

- higher order homogeneous linear DE
- higher order homogeneous linear DE with constant coefficients
- higher order nonhomogeneous linear DE

Higher order homogeneous linear DE

$$
\begin{equation*}
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{1}(x) y^{\prime}+p_{0}(x) y=0 \tag{H}
\end{equation*}
$$

General sol.: $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)$ where $y_{i}(x)$'s are linearly indep. sol. to (H).

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{1}(x) y^{\prime}+p_{0}(x) y=0, \quad y^{(i)}\left(x_{0}\right)=K_{i}
$$

THM: If all p_{i} 's are conti. (on I), then IVP has a unique sol. (on I).
THM: With all p_{i} 's being conti.,
sol. $\left\{y_{1}, \cdots, y_{n}\right\}$ are lin. dep. on I

$$
\begin{aligned}
& \Leftrightarrow \quad W\left(y_{1}, \cdots, y_{n}\right)=\left|\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right|=0 \quad \text { at some } x_{0} \in I \\
& \Leftrightarrow \quad W\left(y_{1}, \cdots, y_{n}\right) \equiv 0 \text { on } I
\end{aligned}
$$

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime}+4 y=0
$$

THM: With all p_{i} 's being conti., the (H) has n lin. indep. sol. (i.e., there is a general solution).

THM: With all p_{i} 's being conti., the general sol. includes all solutions.

Higher order homogeneous linear DE with constant coefficients

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

* distinct roots
* multiple roots

Higher order nonhomogeneous linear DE

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{1}(x) y^{\prime}+p_{0}(x) y=r(x)
$$

* undetermined coefficient method:
* variation-of-parameter formula:

$$
y_{p}(x)=y_{1} \int \frac{W_{1} r}{W} d x+y_{2} \int \frac{W_{2} r}{W} d x+\cdots+y_{n} \int \frac{W_{n} r}{W} d x
$$

where $W=W\left(y_{1}, \cdots, y_{n}\right)$ and $W_{j}: j$-th column in W replaced by

- mass-spring-damper system: forced oscillation
- RLC circuit
- elastic beam

Case study: forced oscillation $\left(m y^{\prime \prime}+c y^{\prime}+k y=r\right)$

$$
y_{p}(t)=F_{0} \frac{m\left(\omega_{0}^{2}-\omega^{2}\right)}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+c^{2} \omega^{2}} \cos \omega t+F_{0} \frac{c \omega}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+c^{2} \omega^{2}} \sin \omega t, \quad y(t)=y_{h}(t)+y_{p}(t)
$$

$$
y(t)=y_{h}(t)+F_{0} \frac{m\left(\omega_{0}^{2}-\omega^{2}\right)}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+c^{2} \omega^{2}} \cos \omega t+F_{0} \frac{c \omega}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+c^{2} \omega^{2}} \sin \omega t
$$

Modeling: RLC circuit

RLC circuit: forced response

[^0]
Lesson 17: Systems of ODEs

- introduction
- existence and uniqueness of solutions to IVP
- linear homogeneous case
- linear homogeneous constant coefficient case

Existence and uniqueness of solutions to IVP

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=\left[\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right]
$$

THM: If all $f_{i}(t, y)$ and $\frac{\partial f_{i}}{\partial y_{j}}(t, y)$ are conti. on some region of $\left(t, y_{1}, y_{2}, \cdots, y_{n}\right)$-space containing $\left(t_{0}, k_{1}, \cdots, k_{n}\right)$, then a sol. $y(t)$ exists and is unique in some local interval of t around t_{0}.

$$
y^{\prime}=A(t) y+g(t), \quad y\left(t_{0}\right)=\left[\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right]
$$

THM: If $A(t)$ and $g(t)$ are conti. on an interval I, then a sol. $y(t)$ exists and is unique on the interval I.

Linear homogeneous case

$$
y^{\prime}=A(t) y
$$

General sol.: $y(t)=c_{1} y^{(1)}(t)+c_{2} y^{(2)}(t)+\cdots+c_{n} y^{(n)}(t)$ where $y^{(i)}(t)$'s are lin. indep. sol.

Linear homogeneous constant coefficient case

$$
y^{\prime}=A y
$$

Handling complex e.v/e.vectors

Lesson 18: Qualitative properties of systems of ODE

- phase plane and phase portrait
- critical points
- types and stability of critical points

Phase plane and phase portrait

Critical point (= equilibrium)

Example: undamped pendulum

Types of critical points: node

Types of critical points: saddle / center

Stability
DEF: stability of a critical point $P_{0}\left(=y^{*}\right)$:

- all trajectories of $y^{\prime}=f(y)$ whose initial condition $y\left(t_{0}\right)$ is sufficiently close to P_{0} remain close to P_{0} for all future time
- for each $\epsilon>0$, there is $\delta>0$ such that,

$$
\left|y\left(t_{0}\right)-y^{*}\right|<\delta \quad \Rightarrow \quad\left|y(t)-y^{*}\right|<\epsilon, \quad \forall t \geq t_{0}
$$

DEF: asymptotic stability of $P_{0}=$ stability + attractivity $\left(\lim _{t \rightarrow \infty} y(t)=y^{*}\right)$

Example: second order system

Lesson 19: Linearization and nonhomogeneous linear systems of ODE

- linearization
- nonhomogeneous case

Linearization

$$
y^{\prime}=f(y)
$$

Let $y=0$ be a critical point (without loss of generality; WLOG), and be isolated.

$$
\begin{aligned}
& y_{1}^{\prime}=f_{1}\left(y_{1}, y_{2}\right)=f_{1}(0,0)+\frac{\partial f_{1}}{\partial y_{1}}(0,0) y_{1}+\frac{\partial f_{1}}{\partial y_{2}}(0,0) y_{2}+h_{1}\left(y_{1}, y_{2}\right) \\
& y_{2}^{\prime}=f_{2}\left(y_{1}, y_{2}\right)=f_{2}(0,0)+\frac{\partial f_{2}}{\partial y_{1}}(0,0) y_{1}+\frac{\partial f_{2}}{\partial y_{2}}(0,0) y_{2}+h_{2}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

$$
y^{\prime}=f(y) \quad \Rightarrow \quad y^{\prime}=A y=\left.\frac{\partial f}{\partial y}\right|_{y=0} y
$$

- If no e.v. of A lies in the imaginary axis, then stability of the critical point of the nonlinear system is determined by A.
- If $\operatorname{Re}(\lambda)<0$ for all λ, it is asymptotically stable.
- If $\operatorname{Re}(\lambda)>0$ for at least one λ, it is unstable.
- If all e.v.'s are distinct and no e.v. of A lies in the imaginary axis, then the type of the critical point of the nonlinear system is determined by A.
- The node, saddle, and spiral are preserved, but center may not be preserved.

Nonhomogeneous linear case

Method of undetermined coefficients (for time-invariant case)

Method of variation of parameters (for time-varying case)

Method of diagonalization (for time-invariant case)

Lesson 20: Series solutions of ODE

- power series method
- Legendre equation

Power series

$$
\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

$$
\begin{aligned}
\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots & +a_{n}\left(x-x_{0}\right)^{n} \\
& +a_{n+1}\left(x-x_{0}\right)^{n+1}+\cdots
\end{aligned}
$$

For a given x_{1},
if $\lim _{n \rightarrow \infty} S_{n}\left(x_{1}\right)$ exists (or, $\lim _{n \rightarrow \infty} R_{n}\left(x_{1}\right)=0$,
or for any $\epsilon>0, \exists N(\epsilon)$ s.t. $\left|R_{n}\left(x_{1}\right)\right|<\epsilon$ for all $\left.n>N(\epsilon)\right)$,
then the series is called "convergent at $x=x_{1}$ " and we write $S\left(x_{1}\right)=\lim _{n \rightarrow \infty} S_{n}\left(x_{1}\right)$.

Radius of convergence
If

$$
R=\frac{1}{\lim _{m \rightarrow \infty} \sqrt[m]{\left|a_{m}\right|}}, \quad \text { or } \quad R=\frac{1}{\lim _{m \rightarrow \infty}\left|\frac{a_{m+1}}{a_{m}}\right|}
$$

is well-defined, then the series is convergent for x s.t. $\left|x-x_{0}\right|<R$.

Power series method

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=r(x)
$$

If p, q, and r are analytic at $x=x_{0}$,
then there exists a power series solution around x_{0} (i.e., $R>0$):

$$
y(x)=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m} .
$$

Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad n \text { : real number }
$$

Legendre polynomial (of degree n)

Lesson 21: Frobenius method

- Frobenius method
- Euler-Cauchy equation revisited

Frobenius method

The DE

$$
y^{\prime \prime}+\frac{b(x)}{x} y^{\prime}+\frac{c(x)}{x^{2}} y=0
$$

where b and c are analytic at $x=0$, has at least one sol. around $x=0$ of the form

$$
y(x)=x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) .
$$

- Case 1: distinct roots, not differing by an integer
- Case 2: double roots
- Case 3: distinct roots differing by an integer

General sol.: $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ where

- Case 1 :

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(a_{0}+a_{1} x+\cdots\right) \\
& y_{2}(x)=x^{r_{2}}\left(A_{0}+A_{1} x+\cdots\right)
\end{aligned}
$$

- Case 2: $r=\left(1-b_{0}\right) / 2$

$$
\begin{aligned}
& y_{1}(x)=x^{r}\left(a_{0}+a_{1} x+\cdots\right) \\
& y_{2}(x)=y_{1}(x) \ln x+x^{r}\left(A_{1} x+A_{2} x^{2}+\cdots\right)
\end{aligned}
$$

- Case 3: $r_{1}>r_{2}$

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(a_{0}+a_{1} x+\cdots\right) \\
& y_{2}(x)=k y_{1}(x) \ln x+x^{r_{2}}\left(A_{0}+A_{1} x+\cdots\right)
\end{aligned}
$$

Example: Euler-Cauchy equation revisited

Lesson 22: Bessel DE and Bessel functions

- example for Frobenius method
- Bessel DE and its solutions

Example: a simple hypergeometric equation

$$
x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0
$$

Example: another simple hypergeometric equation

$$
x(x-1) y^{\prime \prime}-x y^{\prime}+y=0
$$

Gamma function

$$
\Gamma(\nu):=\int_{0}^{\infty} e^{-t} t^{\nu-1} d t
$$

has the properties:

1. $\Gamma(\nu+1)=\nu \Gamma(\nu)$
2. $\Gamma(1)=1$
3. $\Gamma(n+1)=n$!

"Gamma plot" by Alessio Damato

Bessel's DE

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0, \quad \nu \geq 0
$$

Computing $y_{1}(x)$

Bessel function of the first kind of order n

$$
J_{n}(x)=x^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m+n} m!(n+m)!}
$$

Finding $y_{2}(x)$

Bessel function of the second kind of order ν

$$
\begin{aligned}
& Y_{\nu}(x)=\frac{1}{\sin \nu \pi}\left[J_{\nu}(x) \cos \nu \pi-J_{-\nu}(x)\right] \\
& Y_{n}(x)=\lim _{\nu \rightarrow n} Y_{\nu}(x)=\cdots
\end{aligned}
$$

Lesson 23: Laplace transform I

- introduction to Laplace transform
- linearity, shifting property
- existence and uniqueness of Laplace transform
- computing inverse Laplace transform
- partial fraction expansion \& Heaviside formula

Laplace transform

$$
\mathcal{L}\{f\}=\int_{0}^{\infty} f(t) e^{-s t} d t=F(s)
$$

(Property) Linearity: $\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\}$
(Property) s-shifting property: $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$

Transform table: $f(t) \leftrightarrow F(s)$

$$
\begin{array}{rll}
1 & \leftrightarrow \frac{1}{s} \\
t & \leftrightarrow & \frac{1}{s^{2}} \\
t^{2} & \leftrightarrow \frac{2!}{s^{3}} \\
t^{n} & \leftrightarrow \frac{n!}{s^{n+1}}, \quad n=\text { integer } \\
t^{a} & \leftrightarrow & \frac{\Gamma(a+1)}{s^{a+1}}, \quad a>0 \\
e^{a t} & \leftrightarrow & \frac{1}{s-a}
\end{array}
$$

$$
\begin{aligned}
& \cos \omega t \leftrightarrow \frac{s}{s^{2}+\omega^{2}} \\
& \sin \omega t \leftrightarrow \frac{\omega}{s^{2}+\omega^{2}} \\
& \cosh a t \leftrightarrow \frac{s}{s^{2}-a^{2}} \\
& \sinh a t \leftrightarrow \frac{a}{s^{2}-a^{2}} \\
& e^{a t} \cos \omega t \leftrightarrow \frac{s-a}{(s-a)^{2}+\omega^{2}} \\
& e^{a t} \sin \omega t \leftrightarrow \\
&(s-a)^{2}+\omega^{2}
\end{aligned}
$$

Existence and uniqueness of Laplace transform
IF $f(t)$ is piecewise continuous on every finite interval in $\{t: t \geq 0\}$, and

$$
|f(t)| \leq M e^{k t}, \quad t \geq 0
$$

with some M and k,
THEN $\mathcal{L}\{f(t)\}$ exists for all $\operatorname{Re}(s)>k$.

Computing inverse Laplace transform

$$
\mathcal{L}^{-1}\{F(s)\}=f(t)=?
$$

* Partial fraction expansion:

Finding coefficients in partial fraction expansion: Heaviside formula

$$
Y(s)=\frac{s+1}{s^{3}+s^{2}-6 s}=\frac{A_{1}}{s}+\frac{A_{2}}{s+3}+\frac{A_{3}}{s-2}
$$

$$
Y(s)=\frac{s^{3}-4 s^{2}+4}{s^{2}(s-2)(s-1)}=\frac{A_{2}}{s^{2}}+\frac{A_{1}}{s}+\frac{B}{s-2}+\frac{C}{s-1}
$$

$$
Y(s)=\cdots=\frac{A_{3}}{(s-1)^{3}}+\frac{A_{2}}{(s-1)^{2}}+\frac{A_{1}}{s-1}+\frac{B_{2}}{(s-2)^{2}}+\frac{B_{1}}{s-2}
$$

$$
Y(s)=\frac{20}{\left(s^{2}+4\right)\left(s^{2}+2 s+2\right)}+\frac{s-3}{s^{2}+2 s+2}
$$

Lesson 24: Laplace transform II

- transform of derivative and integral
- solving linear ODE
- unit step function and t-shifting property
- Dirac's delta function (impulse)
(Property) Transform of differentiation: $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$
(Property) Transform of integration: $\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)$

Solving IVP of linear ODEs with constant coefficients

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=K_{0}, \quad y^{\prime}(0)=K_{1}
$$

Unit step function (Heaviside function)
(Property) t-shifting property: $\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s)$
(Dirac's) delta function $\delta(t)$ is a (generalized) function such that

$$
\delta(t)=\left\{\begin{array}{ll}
0, & t \neq 0 \\
\infty, & t=0
\end{array} \quad \text { and } \quad \int_{-a}^{a} \delta(t) d t=1 \quad \text { for any } a>0\right.
$$

sifting property: $\quad \int_{0}^{\infty} g(t) \delta(t-a) d t=g(a), \quad g$: conti., $a>0$

Lesson 25: Laplace transform III

- convolution
- impulse response
- differentiation and integration of transforms
- solving system of ODEs
(Property) Convolution: $\mathcal{L}^{-1}\{F(s) G(s)\}=f(t) * g(t)$

Properties of convolution:

$$
\begin{aligned}
f * g & =g * f \\
f *\left(g_{1}+g_{2}\right) & =f * g_{1}+f * g_{2} \\
(f * g) * v & =f *(g * v) \\
f * 0 & =0 * f=0, \quad f * 1 \neq f
\end{aligned}
$$

Impulse response
(Property) Differentiation of transform: $\mathcal{L}\{t f(t)\}=-F^{\prime}(s)$
(Property) Integration of transform: $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(\tilde{s}) d \tilde{s}$

[^0]: Elastic beam

