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This paper is based on a theorem of Robert Anderson (1987)
which proves that in a general sequence of finite economies with
smooth preferences, the rate of convergence of the competitive gap
with respect to the gap-minimizing prices is the inverse of the
square of the number of agents. We argue that the assumptions of
the theorem are too restrictive and try to relax some of them. We
actually prove that the same rate of convergence can be obtained
with a much weaker assumption called the uniform linkedness of
allocations. (JEL C71, D50)

I. Introduction

In a recent paper, Anderson (1987) showed that the rate of conver-
gence of the average competitive gap to zero with respect to suitably
chosen prices is the inverse of the square of the number of agents, in a
general sequence of economies with smooth preferences. This improve-
ment upon the previous results which had established the rate O(1/n)
could be obtained essentially by combining the flattening effect of
increasing the number of agents with smooth preferences at the tan-
geént points, with the fundamental result of Anderson (1978).

Like others in the literature (see Debreu 1975; Grodal 1975}, Ander-
son makes two restrictive assumptions: (i) all agents have strictly posi-
tive endowments of all commodities, and (ii) the closure of each indif-
ference curve is contained in R¥, (boundary condition). With these
conditions, the consumption set can be confined to a subset of R,
without encountering any unpleasant boundary problems. For exam-
ple, the possibility that core allocations lie on the boundary of the con-
sumption set is excluded.
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Cheng (1981) was able to relax one of the two assumptions, the
boundary condition, to obtain the rate O(1/n) of convergence of the
maximum competitive gap to zero with respect to the supporting prices
at the core allocations in a sequence of type economies, by introducing
a rather mild assumption which he called the Indecomposability condi-
tion. The condition essentially says that we cannot partition the set of
agents into two groups such that each group consumes disjoint set of
commodities.

Anderson conjectured that Cheng’'s condition or some variant of it
could replace the two assumptions in his theorems as well. Indeed, this
turns out to be true in a general sequence of economies converging to a
well-defined continuum economy. The purpose of this paper is to show
how Cheng’s condition which we will call the linkedness condition fol-
lowing Mas-Colell (1985), can be used to replace the two assumptions
in Anderson (1987)'s theorem. As in Cheng (1981} and Mas Colell
(1985), we assume that all the Walrasian allocations of the limit econo-
my are linked. But they apply linkedness at the core allocations with
respect to the supporting prices. Since any core allocation is, in particu-
lar, a feasibie allocation, it follows that any convergent subsequence of
core allocations converges to a Walrasian allocation of the limit econo-
my. Therefore, uniform linkedness of Walrasian allocations in the limit
economy implies uniform linkedness of the core allocations. In our
case, linkedness is applied at the expenditure-minimizing points
(denoted h,(a)) with respect to the gap-minimizing prices, which typi-
cally do not form a feasible allocation. The limit of a convergent subse-
quence of the {h,} will be a selection from the demand correspondence
of the limit economy at an equilibrium price, but it need not be a feasi-
ble allocation, hence it need not be Walrasian, and hence need not be
linked. Strong convexity of preferences of the limit economy is suffi-
cient to ensure that the limit of a convergent subsequence of the {h,} is
Walrasian, and so it is assumed in our main result (Theorem 1). We
also give two other results: In the first (Theorem 2j, we show that the
convexity assumption can be dropped, provided we are willing to accept
an arbitrarily small slowing of the rate of convergence. In the second
(Theorem 3), we show that the quadratic convergence rate holds for an
open and dense set of limit economies, using a result of Mas-Colell and
Neuefeind (1977).

The basic references are Anderson (1987) and Mas-Colell (1985). We
follow their convention in definitions and notations and readers are
referred to them for the details. Their theorems and lemmas will be
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freely cited whenever needed, sometimes without proof.

II. Definitions and Notations

We begin with the concept of preference preorder > on R¥, which is
defined as a reflexive and transitive binary relation on R¥. Throughout
the paper, we assume that > is complete, continuous, strongly mono-
tone, and semismooth. The definition of semismoothness of > given by
Anderson {1987) is adjusted to cover the boundary points of R as fol-
lows: for all x € R*, 3y + x & RX such thatif || z-y|| < || x-y] for
z € RX, then z > x, Let 2 denote the set of all such preferences. 2 is
endowed with the topology of closed convergence. The set of all strongly
convex preferences in 2 is denoted by 2.

We will need a uniform version of semismoothness. P C P is said to
be equisemismooth, if for every compact Q C R* there exists p > 0
such that forall > 2, forall x& @, 3y € R, such that |[x-y| = p,
and if || z-y| <pfor z&€ R¥ then z > x.

An exchange economy is a map & 4 — ® x R, where 4 is a finite set
or [0, 1]. Hl@) = (>, e(a)) has a standard interpretation: an agent a € 24
in an exchange economy £ is characterized by a preference preorder >,
and an endowment vector e(l@ € RX. We assume that total endow-
ments are strictly positive, i.e., £,., efa) > 0 {for a continuum
economy, [, < du > O where u is Lebesgue measure on [0, 1]). For a
continuum economy with 4 = [0, 1], we require that £ be Borel measur-
able and suppZ be compact in 2 x R* with the product topology.

An allocation fis an integrable function f: 4 — RX. A feasible alloca-
tion is an allocation satisfying / fdu = f e du. The set of core alloca-
tions C(7), and the set of Walrasian allocations W{Z) are defined as
usual. The set of distributions of Walrasian allocations of ~ is denoted
by DWIE). Df denotes the distribution of an allocation f. A price p is an
element of the set A = {p € RX | | pll= 1}, where | p|l denotes the
Euclidean length of p. Define A° = {p € A | p>» O}. The set of equilibri-
um prices of £ is denoted by Il(z). The demand set is defined as ¢(Za),
p=xeRi|p-x<p-el@d andy >,x=p-y>p- 4

We consider a sequence of finite exchange economies {Z,} which con-
verges to a continuum economy . For simplicity we assume that the
number of agents #4,, of the economy £, is n. Let v denote the distribu-
tion of characteristics induced by £ Then we say £, — % if v, - v
weakly, and e,(a) is uniformly bounded. Because of the latter
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condition, we assume that there exists a compact Q € R¥ such that
Es A, — P x @and £ [0, 1] = P X Q. The sequence E, — £ is purely
competitive (Hildenbrand 1974, Definition 4, p. 138). Note that we do
not assume supp, — Suppet.

1t is well-known that for two economies £, and £, with the same dis-
tribution v of characteristics, the sets W(£,) and W{Z,) may be different.
But if £, and %, are continuum economies (i.e., 4 = [0, 1]} with the
same v, then DWI[E|) and DW[E,) have the same closure with respect to
the weak convergence, and there is an £ with the same v such that
DDWIE is closed (Hildenbrand 1974, Proposition 5 and 6, pp. 155-6).

An allocation fis linked, if there are no partitions of agents (1= 2, U
4,) and commodities (L = L; U L,) such that f/(a) = O whenever (a, j) €
A4, X L, or 4, x L,. This linkedness condition is also called the
Indecomposability condition in Cheng (1981} or the No Isolated
Community condition in Smale (1974). In their models, this guarantees
that the supporting price at a core allocation is unique.

A (k ~ 1) collection of pairs of commodities J = {J,..., Ji1} is linked if
Usz} Jn =L and for any partition 5, and % of J, {i € Jj, | Jdn € JiNii
Jhldn € %) + ¢ It is not hard to show that if f is linked, then
there is § > 0 and a linked collection 7such that #lac 4, | f/, (@ > &
for each j &€ J}/n > &for all J € 4. In this case we say fis élinked. For
a continuum economy, the fractions are replaced by Lebesgue measure
pon [0, 1].

We now define a uniform version of the linkedness condition. The col-
lection of pairs of a coalition S,(C 4, and an allocation f,, {(S, fJleca
is S-uniformly linked, if there exists 6 > 0 such that for any a € 4, #S,
> 5#4, and there exists a linked collection J, such that #{a e S, | f, (@
> §for each j € J}/#4, > 4, for all J € 7. When S, = 4, for all 4, we
use the notation {f,},c, for abbreviation. The idea of §-uniform linked-
ness is adapted from §-balancedness in Mas-Colell (1985). The follow-
ing fact is very useful and interesting in its own right.

Proposition 1
If every Walrasian allocation of £: [0, 1] — P X R'ﬁ is linked, then there
exists 6 > O such that W(Z} is -uniformly linked.

Proof: Define the extended economy £ [0, 1] x [0, 1] = P X R% such
that Za, #) = £(a). Then obviously, the distributions of characteristics of
Z and £ are the same. By Theorem 4 of Hildenbrand (1974, p. 140).
DW(z) = DW[H, where X denotes the closure of X. By adapting the
proof of Proposition 6 of Hildenbrand (1974, p. 156), we can show that
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DWLE) is closed. In fact, it is compact, because suppZ = suppZ is com-
pact. Therefore, DW(E) = DWIE).

We now show that f € WIH) is linked. Let (@) = U o, y.f(a. 8 for a =
[0, 1] and g(a@) = f} f {(a, 1) dt. Then g(a) € coy(a), where coy{a) denotes
the convex hull of y(a). But fg= fff: fe. Therefore, fe € fcoy=co fy.
This implies that there is f € W(%) such that fla) € y(a) and so suppDf
C supp’Df Since f & W[Z) is linked by assumption, fis linked.

Then, compactness of PW(£) implies that W[E) is é-uniformly linked
for some 8 > 0. But, DW(Z) = DW[H). There W(E) is S-uniformly linked.

Q.E.D.

Given an economy £, an allocation f, and a price p € A, the competi-
tive gap ¢ for an agent a € 2 1is defined as: ¢(p, f, a) = | p - (fla) - elad}) |
+ | inflp - (y - ela) | y>fla)} | . The average competitive gap is denoted
by

op, f) = (1/#2) Zyeq ¥p. £, a.

III. Results

Now we can state and prove the main theorem.

Theorem 1

Let £, A, — P x @ be a sequence of finite exchange economies con-
verging to a continuum economy £: [0, 1] — P, X @, where P is an
equisemismooth subset of P and @ is a compact subset of RX. If all the
Walrasian allocations of £ are linked, then there is a constant M > 0
such that for all n and core allocations f,, € C(%,), there exist price vec-
tors p, € A such that ¢(p,, f) < M/’

Theorem 1 says that under the almost same hypothesis as in
Proposition 7.4.12 in Mas-Colell (1985), the average competitive gap
with respect to the “gap-minimizing” prices, is the order of 1/n? Note
that we do not assume suppZ, — suppZ, nor strict positivity of endow-
ment vectors.

The proof will closely follow those of Anderson (1987) and Mas-Colell
(1985). We begin with the definitions: for an exchange economy £ and a
core allocation f, define a) = {x— e{a) | x > fla)} and V=Z ., H@U{0}.
P which maximizes inf p - V is called the “gap-minimizing” price. Define
a=p-V.For£ |0, 1), letI' = U #S > &AL s Ad). § maximizes inf
q - I'. Define B= inf q and gla) € argmin q - Aa). Define g(S) = 2,5 gla)
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and B(S) = q - g(S).
The next two lemmas have been proved by Anderson (1987).

Lemma 1
For any finite economy %,: ?— R* with || e(a) | < K and a core alloca-
tion f;, € (%), and for § & [0, 1), we have:

Taea, [@n (@)~ e (@)l{s2Vk(k+ DK / (1- &) (1)
Taea, |G, - gnl@) <2k e+ DK /(1 - &). )

Proof: This follows immediately from Theorem 3.2 and Lemma 3.3 of
Anderson {1987}, since e,(d) is uniformly bounded.
Q.E.D.

Lemma 2

For any finite economy £,: ? x R* with || e (@) | < K and a core alloca-
tion f, & C{£,). and for { € [0, 1), there exists a coalition S, with #S,, >
E# A, ~ (kk + 1) such that (S} < (1 - §a, and

-1
l9.(Sa)| < (k+ DK MHH/E '
miniq;.....q,}

Proof: See the proof of Theorem 3.4 of Anderson (1987).
The following is the central lemma in this paper.

Lemma 3

Let all the assumptions of Theorem 1 hold. Then there exist N > 0, >
0, and a constant M; > O such that if f, is a core allocation of %,, n >
N, then f(S,) = ~ M,/nfor £ =1 - § and S, defined as in Lemma 2.

Proof: Step 1. Define an allocation h, such that for all a € 4,, h, (@) =
g.ld + e,(a), which, by definition of g,(a), minimizes q, - xover {x| x >,
Sla)). Then it follows from the proof of Theorem 1 of Hildenbrand (1974
p- 179} that {h,} has a subsequence converging in distribution to an allo-
cation h of the limit economy £ and the corresponding subsequence of
{q .} converges to an equilibrium price g € II(E). Therefore, hiad) = ¢(E(d),
g for a.e. a € A. In Hildenbrand (1974), it is proved that any sequence
of core allocations {f,} has the same convergence property as above. But
{h,)} has all the properties of {f} used for the proof, except that f,’s are
feasible allocations: Lemma 1 above provides the refined version of
Lemma 1 of Hildenbrand (1974, p. 180) concerning the property of h,,
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h,, is uniformly bounded as will be shown later in Step 2(2). And the
feasibility of f; is not needed to prove that the limit of {f;} has the above
properties.

Since strong convexity implies the unique demand, the allocation h,
the elements of which is in the demand set at an equilibrium price, is
indeed a Walrasian allocation of . By Proposition 1, W{Z} is 46-uni-
formiy linked for some 8. Consequently, there exists N > 0 such that
{Ry)n>y is 26-uniformly linked. Since S, = én-(k+ 1), for £ =1 - 6. {(S,,
h )}, n is é~uniformly linked.

Step 2. We now show that for n > Nand £ =1 - §, we can find a con-
stant M; > O such that g(S,) - §, > -M;/n. Letn > Nand £= 1 - § for
the rest of the proof.

{1) First we show that G, is uniformly bounded away from zero, i.e.,
inf, min, {g},....g*}=d > 0. To do this, we adapt the proof of Lemma 4
of Anderson (1981). Since ? is compact in the topology of closed con-
vergence, strong monotonicity implies equimonotonicity, which could
replace the equiconvexity assumption. See Anderson (1987) for the defi-
nition of equimonotionicity. And £, — £ and f,e du > O imply that
there is £ > O such that {ae 1, ‘e;l(a) > ¢} / n > e. Moreover, as long as
(1-8n—1as n — o, by Lemma 1, q, has the property required for
the proof of Lemma 4 of Anderson (1981). Thus, all the hypotheses are
satistfied and we get the desired result.

(2) Since e, (a) € @, there is K > 0, such that | e(a) || < K Lemma 1
(2) implies that for all a € 4, and all n, | G {hy(a@) ~ (@} | < T,y |G -
glda) | < 2Vk(k+ 1)K /(1- ). Since g, is uniformly bounded away from
zero and [l e (d) || < K, there is compact H C RX such that h,(a) € H
for all n and a € 4, Therefore by equisemismoothness of P, there
exists p > O such that for all h(a) € P, there is y,la) € R* such that
| hef@ ~ yo(@ i = p and if || z - yola@} || < p for z € R, then 2>, hy(a).
We can choose p such that p < §. Strong monotonicity, together with
yla) € RX, implies V.(a) = yu(a) - h(@ > 0. Since G, is uniformly
bounded away from zero, there is x¥ > 0 such that for all nand a € 4,
Vn(a) - q_n 2 K

(3) We now prove the following claim.

Claim
Let 6= 8px/«k’. Then, X,cs, {x | x> ,hy(a)) contains the open ball B of ra-
dius ne and center Y, _g h.(a) + néq,.



224 SEOUL JOURNAL OF ECONOMICS

Remark

This Claim is the generalized version of the simple geometric fact that
the sum of the n sets each of which contains the ball of radius 6
includes the ball of radius n8. Cheng {1981) and Mas-Colell (1985} did
not prove this, but they could prove directly that the zero point is not
in the ball B.

Proof of the Claim: Since {(S,, h)} is é-uniformly linked, for a given
(S,. hJ, there is a linked collection 7 = {J;...., J,_;}. Let unit vectors v,
RE i=1,.., k ~ 1 be such that for all i, v, - §, = 0 and v/+ 0 if and only
if j € J. Then {v,...., U, G, constitutes a basis of R¥.

Now we can partition S, into k disjoint coalitions S, i= 1,..., k, such
that (i) for i = 1,..., k-1, hjla > é for eachj € Jyand a € S, and (ii)
for all i, #S,! > én/k. (i) implies that if a € S, then v, - V(@) = 0. Thus
if x = hpfa) + av, + By,(a) and o + (p ~ B)? < p?, then x >, hyla) for a €
S,. From a simple geometric fact, we can infer that for a € S, if x =
h{a) + av; + Bq, and & + (px - B < (pxd?, where x is a lower bound of
vV.a) - G, then x >, h(a).

Pick any z in B. Then there are ¢, i=1...., k- 1 such that, z= ¥,
h(a) + Zow, + (z - 4, Jq,. Since v, could be chosen such that for
all i, @, > 0, we can assume | o; | < || Zaw,|| for all i. Define h,(a) = h,
(@ + (1/#SMaw, + (z- G/ k-~ DG, ifaec St i=1,.. k- 1. And h,
(@) = hy(a), if a € S,*. Then z= Y4es, h,(a). Now consider

2

. 2

a Z 9, 2.2

t= + K- - K-,
#SL) [p (k—n#s,ﬁ] p

Since z&€ B, || Zay, |2+ (nb-z- d,)* < n?é, or

2 | dpxn _ T z‘)’prm2
Zawd = =m=-28 | <|7=| -

Thus, o*< || Tap < ~(z- q.) + 26pxn(z - qn]/k2
Therefore,

2
1 [ -2 28pm ] z-q, _ 2px(z-g,)
t< @S2 [ (2 g )"+ =7 (=-4,) +|i(k—1)#S},:| (- 1)#S.

— — 12
SZz-qn. dpxkn  px +Z2Gn 1 _1l<0,
#S! | K*#S, k-1 #S! | [(e~1)?

since z-g, 20 and #S} > én / k.




CONVERGENCE OF THE CORE 225

Therefore, ﬂn(a) > hfa@ forac S, i=1,..., k-1.Forac S}, I_ln(a) =
h.{a). This implies that the closure of 3.5 {x| x>sh,(a)} contains B,
since preferences are continuous. Therefore, 3, s, {x | x>sh,(a)} con-
tains B, and this proves the claim.

4) Zaesn ela) & Zaesn (x| x> h(a). If not, S, would be a blocking
coalition for f,. And this is a contradiction to the fact that f, is a core
allocation. Hence,

"Zaesn hn (a) + neqn - ZaeSn €n (a)“2 = "gn (Sn) + nean "2 > Tl292 ,

where 6 = Spx/Ic.
Thus, || guS,) || + 2n6g,(S)q, = 0 or,

_laatsal”

B(S,) =g,(S,)-q, 2 26,
Let M; = | g,(S,) | /26 > 0. Then by Lemma 2, M, = &iaﬂ{i,[gisﬂ’Ln
Vip-L, since & = 1 - § and minq,,..., .5} = d. This concludes the
Tt
proof of Lamma 3.
QED

Proof of Theorem 1: Lemma 2 and 3 establish that for n > Nand £ =
1-46, a=-M/(1-5Hn But it immediately follows from the proof of
Theorem 1 of Anderson (1978} that with the gap minimizing price p,
Yaca, 9(p. f.a)<-4a. The proof is completed by letting M = 4M,/(1 - &.
Q.E.D.

If we assume smooth preferences, equisemismoothness can be
dropped. Let % denote the space of C?, strongly convex preferences
endowed with the topology of uniform C? convergence on compacta
(Mas-Colell 1985, Definition 2.4.1}.

Corollary 1

Let £;: 4, > P%, x Q and £, — %, where Q is a compact subset of RX. If
every Walrasian allocation of £ is linked, then for any f, € C(%,), there
exists p, € A such that ¢(p,, f) = O(1/r?).

Proof: 7%, X RX is separable and metrible (Mas-Colell 1985, p. 70). By
definition of convergence £, — %, v, — v weakly and {v,, v} for each n is
tight because suppe is compact. Therefore, by a fact about tight mea-
sures (32) on page 49 in Hildenbrand (1974), {v, v;, v,,...} is tight. So
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there exists a compact set P' x @ < P2, x R¥ such that v (P' x @) >
1 ~ /2 for all n. Since preferences are smooth, the compact set P'is
equisemismooth (see Anderson 1987, p. 6). And P’ contains the prefer-
ences of the sufficient fraction of the agents: Forall n, #lae 4, | >, &
P} > 1 - 6/2. Therefore, we can work with P’ instead of P to get the
same result, in (2) and (3) of step 2 in the proof of Lemma 3, The rest of
the proof of the Theorem 1 applies without any modification.

Q.E.D.

Convexity of preferences of the limit economy was used in Theorem 1
to ensure that for large n, h, be close to a Walrasian allocation of the
limit economy. But, even without convexity, h,, could be converging to a
Walrasian allocation, if we choose & increasing to 1, as n goes to
infinity. This enables us to have an almost quadratic convergence rate
when we drop the convexity assumption.

Theorem 2

Let £, 4, — P X Q converge to a continuum economy : [0, 1] — P X
Q.Assume P C P is equisemismooth and @ C R is compact. If every
Walrasian allocation is linked, then for any t which is an increasing
function of n such thatt (t(n) — oo, and for any f, € C(%,), thereis p, € A
such that ¢(p,, f,) = 0(7'2‘—)).

Remark

An example of such (n) is log n. It is easy to see that for any > 0, log
n/n® — 0 as n— 0. Therefore, ¢{p,, f.) = O(1/n®*) for any small ¢ > 0.
Hence, the convergence rate is almost quadratic.

Proof: Define an increasing function r{n} such that {n) > 1 and r{n) —
oo, but {in)/n—>0as n— «. Let £=1 - §/4r(n). Define h\ (@) = h,(a) if
a € S,, and O otherwise. Then #la & 4, | h')(a # hla@l/n < 1-£+ (k
+ 1)/n=8/4rn) + (k + 1)/n— 0 as n — . The proof of the Theorem 1
can be used with the following modifications:

(1) Even if & is increasing, Lemma 1 still implies that (1/n) Xaca, |
Gn- @ - el | — 0, and (1/n) Zaca, | Gn- gol@ | — 0 as n — oo.
Thus the conclusion of Lemma 4 of Anderson (1981} still holds: q,, is
uniformly bounded away from zero.

{2} h,(a) may not be uniformly bounded. But it follows from (1/n) Yae a,

| Gn* gala) | = O as n — co that h,(a) is uniformly integrable (see
Hildenbrand 1974, p. 182 for the definition) and so for large enough n,
#la € 4, | hla) & H/n <&/8k for some compact H C RX. Obiously.



CONVERGENCE OF THE CORE 227

the same is true for h'(d).

(3) Therefore, we can use the Theorem 1 of Hildenbrand (1974) here
also for h),. In addition, the proof of Theorem 3.4 of Anderson (1987)
shows that there exist 0 < 1, < 1 for a € 4,\S, such that Zaes, 9nlad) +
Yaea\s, 2agn (@) <0.But A,g,(a) > - e,(a). Therefore, ¥, a, (Npla)-e (a)) =
T ac A\S, ela) € 0. Let h’ be the limit of a subsequence of {h’,)}. Then
fh'dy < [edu But [h' du < [ edy, since the limit of the correspon-
ding subsequence of {G,} is an equilibrium price and preferences are
strongly monotonic. Thus, we can conclude that h' is a Walrasian allo-
cation of Z. By the same argument as in the proof of Lemma 3, for large
enough n, {(S,, h7),»y is 6/4-uniformly linked.

(4) In Step 2 of the proof of Lemma 3, the only modification needed is
that each S,' now contains only én/8k agents with h,(a) € H. H
denotes a compact subset of R* obtained in (2) above. Then 6 =
8px/8I°. Therefore, considering 1 - & = §/4r{n), we get:

(P, )88 07k +1)2K2[1 +d ™! + VK +8Vk&'d ' r(n))?r(n) / n2.

3
Thus ¢(p,. ) = O ((2) By the definition of r{n), we get the desired
result. n
Q.E.D.

We may take another direction to relax the convexity assumption. Let
T be a compact subset of # x R* and E denote the set of all continuum
economies £: [0, 1] — T. Since a continuum economy 7 can be charac-
terized by the associated distribution of characteristics, which is a
measure on T, E can be viewed as the set of all such measures.
Endowed with the topology of weak convergence of measures (since T is
compact, v, — v weakly implies [e,du — [ e du), E is compact
(Hildenbrand 1974, D(30), p. 49).

Now define A, ={pe A| foralli p' > 1/njand A%, = (p = A | for all i,
p'> 1/nfforn=1,2... Let E,= (£ € E| I(E) C A%). Then E,, is open
in Eand E = U ,E,, since I1(£) is a compact subset of A° and TI{ - ) is
u.h.c. (Hildenbrand 1974, Proposition 4, p. 152). Now consider the set D,
={£€ E|diam [¢(Z(a), p)du < ¢ for all p = (8} for ¢ > 0. It can be
rewritten as the union of the sets, (£ € E, | diam | ¢lZ(a), p)du < & for
all p € I1(7)), each of which is an open and dense subset of E,, because
of the following observation by Mas-Colell and Neuefeind (1977, Re-
mark 3, p. 597): For any compact K C A° and ¢ > O, the set (£ € E |
diam | ¢(E(a), p)du < ¢ for all p € K} is open and dense in E. Therefore
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D, is an open and dense subset of E. Using this fact, we now can prove
that the rate of convergence is “generically” quadratic in non-convex
economies. First, we prove two lemmas.

Lemma 4
For any § > O, there is an open and dense set D; such that if £ € Dy,
then p{a = [0, 1] | diame(Z(d), p) < dforallp & TI(H)} > 1-6.

Proof: For simplicity, let y{a) denote ¢{Z(a). p). Obviously, for any q €
R*,suplq-z|z€ / y +supl~qg- zlz€ [y <sup_, [sup{q zlze
Jyi+supl~q-z|z& [y =diam/ y. But, foranyqeR supiq - z |
z€ fyl= fsuplg:- x| x & [yl ) (Hildenbrand 1974, Proposition 6,
p. 63). So, for some q € R, suplq-z|z€ fyi+supl~q-zlzE [y
= [supgsuplq- x| x € [y(-)} + supl-q- x| x € y(-)} = [diamy.
Therefore, [diamy{Ea), p)du < diam fy. If €€ D, and p € TI{F), then,
[ diame(Z(a), pldy < diam f ¢(E(@). p)Jdu < & Therefore for any 6 > O,
there exists £ > 0 such that for any £ € D,, ula € (0, 1] | diame¢(ZE(a},
p) < 8forall p € TI(A)} > 1 - 6. The proofis done by letting D;, € D,,
because D, is open and dense.

Q.E.D.

Lemma 5
Let E" denote the set {£ € E | W[g) is 1/n-uniformly linked} for n= 1, 2,
.. Then E" is open in E.

Proaf: Openness of E” follows from the following facts. Firstly, from the
definition of é-linkedness, it is obvious that the set {Df& M| fisa 1/n-
linked allocation} is open in M, where M denotes the set of all measures
on R¥ with the topology of weak convergence. Secondly, the proof of
Proposition 1 implies that E" is equal to the set of the economies £ for
which the set of allocations {f| Df € DWIE)} is 1/n-uniformly linked.
Finally, DW] - ) is u.h.c. (Hildenbrand 1974, Theorem 3, p. 159).

Q.E.D.

Theorem 3

Let £, A, — P x @, where P C P is equisemismooth and @ C R is
compact. Then, there is an open and dense set D C E such that if the
sequence {E,} converges to £ € D, and every Walrasian allocation of E is
linked, then for any f, & C(Z) there is p, € A such that ¢p,, f) = O
(1/m.

Proof: Let E™" be as defined in Lemma 5 and E° denote the interior of E\
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(U,E,). Then E = {U,E)UE®°. Define D = (U (E" N Dj )} UE°. Since E"
(n=0, 1, 2,..)is open and D, ,5,(n =1, 2,...) is open and dense in E, D
is open and dense in E. Now assume that £ € D and every Walrasian
allocation is linked. Then, W) is 1/n-uniformly linked for some n. To
avoid confusion, we let 1/n = 84. Since £ € D, £ & D); Therefore, for
any allocation h such that h(a) € ¢(#a), p) for some p € I1(Z) and for a.e.
a € [0, 1], there exists a Walrasian allocation fsuch that yla € [0, 1] |

|| h{a) ~ fla) | < 48 > 1 - 46. Thus there is a linked collection 7 such
that yla € [0, 1] | K (a) > 46 for each j& J} > 4éforall J € 4. But it
was proved in step 1 of the proof of Lemma 3, that {h,} defined there
has a subsequence converging to such an allocation h. Therefore, if %,
— £ &€ D, then we can find N > 0 such that {h,},.y is 26uniformly
linked. And this is the only modification needed of the proof of

Theorem 1.
Q.E.D.
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