Publications

Detailed Information

Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells

DC Field Value Language
dc.contributor.authorMin, Ahrum-
dc.contributor.authorIm, Seock-Ah-
dc.contributor.authorKim, Debora Keunyoung-
dc.contributor.authorSong, Sang-Hyun-
dc.contributor.authorKim, Hee-Jun-
dc.contributor.authorLee, Kyung-Hun-
dc.contributor.authorKim, Tae-Yong-
dc.contributor.authorHan, Sae-Won-
dc.contributor.authorOh, Do-Youn-
dc.contributor.authorKim, Tae-You-
dc.contributor.authorO'Connor, Mark J.-
dc.contributor.authorBang, Yung-Jue-
dc.date.accessioned2017-03-21T01:18:07Z-
dc.date.available2017-03-21T11:02:49Z-
dc.date.created2018-10-10-
dc.date.created2018-10-10-
dc.date.issued2015-03-
dc.identifier.citationBreast Cancer Research, Vol.17, p. 33-
dc.identifier.issn1465-5411-
dc.identifier.other59086-
dc.identifier.urihttps://hdl.handle.net/10371/109894-
dc.description.abstractIntroduction: Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, has been found to have therapeutic potential for treating cancers associated with impaired DNA repair capabilities, particularly those with deficiencies in the homologous recombination repair (HRR) pathway. Histone deacetylases (HDACs) are important for enabling functional HRR of DNA by regulating the expression of HRR-related genes and promoting the accurate assembly of HRR-directed sub-nuclear foci. Thus, HDAC inhibitors have recently emerged as a therapeutic agent for treating cancer by inhibiting DNA repair. Based on this, HDAC inhibition could be predicted to enhance the anti-tumor effect of PARP inhibitors in cancer cells by blocking the HRR pathway. Methods: We determined whether suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, could enhance the anti-tumor effects of olaparib on breast cancer cell lines using a cytotoxic assay, cell cycle analysis, and Western blotting. We evaluated how exposure to SAHA affects the expression of HRR-associated genes. The accumulation of DNA double strand breaks (DSBs) induced by combination treatment was assessed. Induction of autophagy was monitored by imaging green fluorescent protein-tagged microtubule-associated protein 1A/1B-light chain 3 (LC3) expression following co-treatment with olaparib and SAHA. These in vitro data were validated in vivo using a human breast cancer xenograft model. Results: Triple-negative breast cancer cell (TNBC) lines showed heterogeneous responses to the PARP and HDAC inhibitors. Co-administration of olaparib and SAHA synergistically inhibited the growth of TNBC cells that expressed functional Phosphatase and tensin homolog (PTEN). This effect was associated with down-regulation of the proliferative signaling pathway, increased apoptotic and autophagic cell death, and accumulation of DNA damage. The combined anti-tumor effect of olaparib and SAHA was also observed in a xenograft model. These data suggest that PTEN expression in TNBC cells can sensitize the cell response to simultaneous inhibition of PARP and HDAC both in vitro and in vivo. Conclusion: Our findings suggest that expression of functional PTEN may serve as a biomarker for selecting TNBC patients that would favorably respond to a combination of olaparib with SAHA. This provides a strong rationale for treating TNBC patients with PTEN expression with a combination therapy consisting of olaparib and SAHA.-
dc.language영어-
dc.language.isoenko_KR
dc.publisherBioMed Central-
dc.titleHistone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells-
dc.typeArticle-
dc.contributor.AlternativeAuthor임석아-
dc.identifier.doi10.1186/s13058-015-0534-y-
dc.citation.journaltitleBreast Cancer Research-
dc.identifier.wosid000369853400001-
dc.identifier.scopusid2-s2.0-84928989870-
dc.language.rfc3066en-
dc.rights.holderMin et al.; licensee BioMed Central.-
dc.date.updated2017-01-06T10:46:20Z-
dc.citation.startpage33-
dc.citation.volume17-
dc.identifier.sci000369853400001-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorIm, Seock-Ah-
dc.contributor.affiliatedAuthorOh, Do-Youn-
dc.contributor.affiliatedAuthorKim, Tae-You-
dc.contributor.affiliatedAuthorBang, Yung-Jue-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusDNA-DAMAGE-
dc.subject.keywordPlusPOLY(ADP-RIBOSE) POLYMERASE-
dc.subject.keywordPlusHOMOLOGOUS RECOMBINATION-
dc.subject.keywordPlusMUTANT-CELLS-
dc.subject.keywordPlusAUTOPHAGY-
dc.subject.keywordPlusREPAIR-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusCHEMOTHERAPY-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusAPOPTOSIS-
Appears in Collections:
Files in This Item:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Clinical Medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share