Browse

Study on the photo-bias stability for the Zn-Sn-O field effect transistors

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
양봉섭
Advisor
김형준
Major
공과대학 재료공학부
Issue Date
2012-08
Publisher
서울대학교 대학원
Keywords
Zinc Tin Oxide (ZTO)field effect transistorphoto-bias stabilityNegative bias illumination stability (NBIS)
Description
학위논문 (박사)-- 서울대학교 대학원 : 재료공학부, 2012. 8. 김형준.
Abstract
Recently, novel flexible display and active matrix flat panel displays (FPDs) has received a lot of attention for high definition optical devices. Transparent oxide semiconductor (TOS) materials are especially promising for the channel layer of field-effect transistors (FETs), which are the unit pixel driver for displays, because of their high mobility, good transparency and low processing capability compared to conventional amorphous Si FETs. However, the device reliability against a gate bias stress or/and light stress still remains a critical issue for the implementation of oxide FETs to commercial electronic products.
In this research, the threshold voltage instability of Zinc-Tin oxide based TFTs investigated under the negative bias illumination stress (NBIS) condition and then changed several experimental variables to improve the negative bias illumination stress stability of TFTs.
In this dissertation, thin film transistors (TFTs) with multi-component Zn-Sn-Zr-O (ZTZO) channel layers were fabricated using the co-sputtering method. The incorporation of ZrO2 into the Zn-Sn-O (ZTO) films led to the degradation of the transport properties. In contrast, the threshold voltage shift under negative bias illumination stress was largely improved. From the XPS results, this improvement was partially attributed to the reduction of the oxygen vacancy defects in the ZTZO film, suggesting that the photo-induced transition from VO to VO2+ was responsible for the NBIS-induced instability. Diminishing the [VO] portion by ZrO2 incorporation is related to the fact that the Gibbs free energies of formation (Gf). ZrO2 has the most negative Gf value of ZrO2 and the chemical bonding with respect to oxygen atoms is the strongest among the Zn, Sn and Zr cation atoms. Thus, increasing the Zr content in the ZTO system will decrease the concentration of VO. In addition, the photo-desorption mechanism can also be considered as a reason for the Vth shift under instability stress conditions. The change in surface coverage with OH groups can affect the number of desorbed oxygen species on the ZTO surface during instability stress duration. This suggests that the surface region of ZTO films is an important factor determining the photo-bias stability of metal oxide TFTs.
The effect of O3 treatment on the instability of the ZTO TFTs under NBIS conditions was investigated. The O3 treated device exhibited the much superior stability under NBIS conditions with increasing O3 treatment time. To understand the effect of O3 treatment, the chemical state of the O3 treated ZTO thin film was analyzed systematically by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FTIR) spectroscopy in absorption mode and contact angle analyzer (CA). The VO concentration in the ZTO thin film decreased gradually with increasing O3 treatment time. This suggests that the Vth shift of ZTO films under NBIS conditions is due partly to the transition of VO to VO2+ by light excitation. Therefore, an O3 treatment can enhance the in-diffusion of oxygen radicals and reduce the [VO] defect density in the ZTO film, resulting in an improvement in photo-bias reliability. Simultaneously, the number of hydroxyl groups on the surface of the ZTO film increased with increasing O3 treatment time. This suggests another reason for the improved NBIS stability of ZTO FETs: the substitution of weakly bound O2- species at the surface VO defect sites with OH-. This suggests that the surface condition of ZTO films is an important factor determining the photo-bias stability of metal oxide FETs.
Finally, relative contribution of two degradation mechanisms to the overall NBIS-induced Vth instability is estimated. In estimation, two types of encapsulated devices with Al2O3 film and polymer were prepared to prevent the photo induced adsorption and desorption of O2- ions from the ZTO surface. Around 85% ~ 90% decrease in the Vth shift from the two types of encapsulated devices, compared to that of unpassivated sample, indicates that photo-desorption of oxygen atoms was the dominant factor to cause instability in ZTO based TFTs.
최근 고화질 제품의 구현을 위하여 유연성 디스플레이와 평판 디스플레이가 많은 관심을 받고 있다. 비정질 산화물은 기존에 사용되어온 비정질 Si 에 비해 높은 이동도와 높은 투과율, 낮은 생산비용을 갖고 있기 때문에 차세대 박막트랜지스터의 채널 물질로 적용될 것으로 예측된다. 하지만, 빛과 전압이 가해질 때 발생하는 소자의 열화문제가 산화물 반도체의 실제 제품 적용에 큰 걸림돌로 작용하고 있다.
이러한 문제의 해결을 위해, 이 논문에서는 Zinc Tin Oxide (ZTO) 박막트랜지스터를 제작하여 광▪전압 스트레스에 의해 변화되는 특성을 살펴보고, 여러 가지 실험적 변수의 조절을 통한 신뢰성 향상에 대한 연구를 진행하였다. 먼저 이 논문에서는 스퍼터링법으로 ZTO에 ZrO2 를 첨가한 ZTZO 박막트랜지스터를 제작하였다. 박막 내에 ZrO2 의 함량이 증가할수록 소자의 기본적인 특성은 열화 되었지만 박막트랜지스터의 광 신뢰성은 향상되었다. X-ray photoelectron spectroscopy (XPS) 분석을 통하여, ZTO 박막에 첨가한 ZrO2 의 함량이 증가할수록 ZTZO 내부에 존재하는 산소 공공의 양이 줄어드는 것을 확인하였으며, 이러한 결과로 ZTZO 소자의 신뢰성이 향상되었다. 즉 빛에 의해 박막내부에 존재하는 산소공공이 여기 되며 전자를 공급하여 신뢰성의 열화를 일으키는 것을 확인하였다. 또한 표면에의 photo-desorption mechanism 이 신뢰성 향상에 미치는 영향에 대해서도 연구하였다. 채널 표면에 존재하는 OH 결합의 정도에 따라 신뢰성 측정 중 빛에 의해 탈착 되는 산소의 양이 달라지게 된다. 따라서 초기 채널 표면에 존재하는 hydroxyl groups 의 양이 늘어날수록 신뢰성 특성이 향상되게 된다. 이를 통해 산화물 반도체의 광 전압 신뢰성에 채널의 표면 특성이 큰 영향을 미치는 것을 확인하였다. .
다음으로, ZTO 트랜지스터에 오존처리를 가할 경우 발생하는 광 신뢰성 특성 변화에 대해 연구하였다. 오존처리 시간이 길어질수록 소자의 광 신뢰성이 비약적으로 향상되었다. 표면과 내부의 화학상태에 대한 분석으로 XPS and Fourier transformed infrared (FTIR) contact angle analyzer (CA)을 진행하였다. 오존 처리 시간이 증가할수록 박막에 존재하는 산소 공공의 농도는 감소하였다. 이로 인해 신뢰성 측정 중 빛에 의해 여기 되는 산소 공공의 수가 감소함으로써 신뢰성이 향상된다. 또한 오존처리를 함으로써 표면에 존재하는 hydroxyl groups 의 양은 증가하고 상대적으로 표면에 흡착되어있는 산소의 양은 감소하게 되며 신뢰성 측정 중에 표면에서 탈착되는 산소분자의 수가 감소하고 신뢰성 특성이 향상된다.
마지막으로, 신뢰성 향상의 두 가지 메커니즘에 대한 상대적인 기여도를 확인하기 위해 Al2O3 와 polymer 를 사용, passivation 층을 적용한 소자를 제작하였다. 신뢰성 측정 결과 passivation 층을 적용한 소자에서 적용하지 않은 소자에 비해 약 85% ~ 90% 의 신뢰성 향상이 발생하였다. 이를 통해 표면에서의 산소 분자의 탈착이 신뢰성에 더 큰 영향을 미침을 확인하였다.
Language
English
URI
https://hdl.handle.net/10371/117886
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Materials Science and Engineering (재료공학부)Theses (Ph.D. / Sc.D._재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse