Publications

Detailed Information

Development of a Design Procedure for Stream Restoration Based on IWM : 유역통합관리에 근거한 하천복원 설계절차의 개발

DC Field Value Language
dc.contributor.advisor이길성-
dc.contributor.author박기두-
dc.date.accessioned2017-07-13T06:37:04Z-
dc.date.available2017-07-13T06:37:04Z-
dc.date.issued2013-02-
dc.identifier.other000000010347-
dc.identifier.urihttps://hdl.handle.net/10371/118680-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 건설환경공학부, 2013. 2. 이길성.-
dc.description.abstract국내의 대부분의 하천정비사업은 주로 치수, 이수, 수질적 측면 중 한가지 또는 두가지 목적에 초점을 맞춰 수행되고 있다. 물의 순환, 홍수조절, 용수공급, 생태적 환경적 기능과 같은 생태보전 및 초기 훼손 이전의 수자원시스템 보전에 대한 관심의 부족에 따른 하천정비는 하천수변공간 교란의 주 원인이 된다. 국내의 경우, 생태하천 및 환경하천에 대한 관심의 증가로 인해 교란된 하천이나 인공수로를 훼손 이전의 자연하천 복원만을 강조한 하천복원이 수행되었다. 국내 대부분의 하천복원사업의 목적은 하천 환경과 환경적 측면의 향상만을 고려하고 홍수조절 및 용수공급적 측면이 점차 무시되고 있는 것이 현실이다. 따라서 주민의 하천복원 선호도를 바탕으로 한 지형형태학, 수문, 수리, 생태, 그리고 환경적 시스템을 모두 만족하는 실제 적용가능한 통합적 하천복원 가이드라인의 제시와 대표 사례에 대한 필요성이 점차 증가되고 있다.
본 연구에서는 하천정비사업으로 인한 교란된 하천에 대해 유역통합관리에 근거한 적용가능한 하천복원에 대한 일반적이고 체계적인 11단계 하천복원 절차를 개발하였다. 개발된 적용가능한 11단계의 하천복원 방법으로서의 하천복원 절차는 하천복원설계 3개 과정과 하천복원 3개 계획으로 분류된다. 하천복원설계 3단계는 하천복원설계 전단계, 하천복원설계 단계, 그리고 상세하천복원설계 단계로 구성되며, 하천복원 3개 계획은 지형형태학-하상변동적 계획, 수문-수리적 계획, 그리고 생태-환경적 계획으로 분류된다. 본 연구에서 제안된 하천복원 설계절차는 국내의 안양천 유역의 목감천 4.5 km 지점에 적용하였다. 국내에서 수행된 하천복원사업과 하천정비사업과 비교할 수 있는 대표적인 사례로 평가받을 수 있다.
첫 번째로 하천복원설계 전과정는 자연도 평가와 주민 선호도 조사를 기반으로 한 경제성 평가에 의한 하천복원의 목표를 설정하고 또한 강턱유량, 특정재현기간유량, 그리고 유효유량을 이용하여 하천복원 설계유량인 지배유량을 산정하였다.
두 번째로 하천복원설계 과정에서는 지형형태학-하천변동적 측면에서 지형형태학에 근거한 하천형태의 분류에 의해 하천형태의 진화과정을 예측하여 하천복원의 최종방향을 결정하였다. 수리학적 설계를 수행하기 위해 HEC-RAS 모형에 탑재되어 있는 안정하도 분석모형(SAM)을 유용한 하도설계 도구로서 사용하였다. 수리지형학적 경험식과 SAM에 의한 수로 설계 결과 분석을 통해 효과적인 하천복원설계안을 결정하였다. 생태-환경적 계획측면의 생태설계 단계에서는 PHABSIM 모형을 이용하여 목표어종에 대한 갈수량과 생태유량을 비교하여 하천유지유량을 결정했다. 또한 수문-생태적 측면에서 미국의 지속 수질준거치(CCC)와 최대 수질준거치(CMC)에 근거한 수생태계를 고려함으로서 DFlow 모형을 이용한 수문학적 설계유량 방법과 생물학적 설계유량 방법에 의해 결정된 low-flow와 국내에서 널리 사용되고 있는 갈수량을 비교하여 적정성을 판단할 수 있다. 생태-환경적 계획의 환경적 설계 단계에서는 제안된 목감천 복원설계안이 환경수질기준을 만족하는지 평가하기 위해 HEC-RAS 모형을 이용한 수질모의를 수행하였다. 하천복원 마지막 단계에서는 최상의 효과적인 최종 하천복원안으로 지형형태학-하상변동적 측면, 수문-수리적 측면 그리고 생태-환경적 측면에 대한 산술평균과 주민선호도에 따른 가중평균을 이용한 평가를 통해 설계2안이 선택되었다. 바꾸어 말하면, 선택된 설계안은 유역통합관리에 근거한 안정하상 설계, 대표어종에 대한 생태서식처 설계 그리고 목표 수질기준에 부합한 환경적 측면의 설계을 모두 만족함을 의미한다.
세 번째로 상세하천복원설계 과정에서는 River2D 모형을 이용한 생태서식처 향상을 위한 하천유지공 설계의 평가와 선택을 수행하고 선택된 최종 하천복원안에 대한 하도 안정성 평가를 위해 HEC-RAS 모형을 이용한 장기 하상변동모의가 수행되었다. 그리고 토공량 계산에 의한 공사비 산정을 통해 경제적인 설계안임을 검토하였다.
마지막으로 목감천 복원사업에 대한 기본계획은 본 연구를 통해 개발된 하천복원 전과정부터 상세하천복원 과정을 통한 하천복원절차에 의해 수립할 수 있었으며, 목감천 하천복원사업 기본계획은 상세하천복원 과정 이후 결정되었다.
유역통합관리가 고려된 일반적이고 체계적인 11단계 하천복원 절차는 자연이 훼손된 하천에 즉시 적용가능할 뿐만 아니라 개발된 하천설계 절차에 따라 최상의 효과적인 하천복원 설계안을 결정할 수 있다. 본 연구에서 제안한 하천복원 설계절차는 하천복원 계획을 수립하는데 있어서 유용하다. 그리고 하천복원 절차는 타 하천의 복원사업에도 적용가능하며, 훼손된 도시하천의 복원의 사례로 평가된다. 본 연구에서는 이전 하천복원 계획과 가이드라인을 개발된 하천복원 절차에 따른 설계의 장점과 단점을 비교함으로서 담당 공무원과 하천설계 실무자에게 하천복원사업을 계획하고 수행함에 있어 가이드라인을 제공함으로서 매우 유용하게 사용될 것으로 평가된다.
-
dc.description.abstractMost of the channel adjustments and modification in Korea have mainly focused on one or two objectives and goals such as the control of water, utilization of water, and management of water quality. The disturbances for the stream corridors mainly result from channel adjustment and modification due to the lack of concern for conservation of the ecosystem and for preservation of the pristine water system: hydrologic cycle, flood control, water supply, ecological and environmental functions. In order to return disturbed streams and channels into the original natural streams with the previous status, the one-sided stream restoration procedures have been developed due to an increase of interest in ecological and environmental streams in Korea. The objective of most of the stream restoration projects only deals with the improvement of function of environment but the function of flood control and water utilization are gradually diminished in Korea. However, a balanced practical guidelines and examples for integrated stream restoration have continually needed to be satisfied with the geomorphic, hydrologic, hydraulic, ecological, and environmental system of stream based on a citizens preference.
This study has developed a general and systematic eleven-step stream restoration procedure based on the Integrated Watershed Management (IWM) to practically and feasibly restore disturbed streams due to channel modifications. The novel stream restoration procedure as a practical stream restoration method is classified into three restoration design phases and three restoration plans according to eleven steps: The three restoration design phases include the pre-restoration design phase, restoration design phase, and detailed design phase. The three restoration plans include the geomorphic & sediment transport plan, hydrologic & hydraulic plan, and ecological & environmental plan. The proposed novel stream restoration design procedure was applied to a 4.5 km reach of the Mokgamcheon stream, in the Anyangcheon watershed of Korea. This study was a representative example for comparison with previous stream restoration and modification projects in Korea.
Firstly, in pre-restoration design phase, the aim or goal of stream restoration can be established by the assessment of stream naturalness and economic benefit for citiens preference, and the evolution of the channel shape can be expected by geomorphic channel classification with respect to geomorphic & sediment transport aspects. In addition, the dominant discharges were estimated and selected as a stream restoration design discharge by three methods of bankfull discharge, specified recurrence interval discharge, and effective discharge.
Secondly, in restoration design phase, to conduct hydraulic design, the Stable channel Analytical Model (SAM) of the HEC-RAS was employed as a useful channel design tool. The effective design plans were determined, based on the analysis of the empirical hydraulic geometry equations and the SAM. The ecological design step in ecological & environmental plan was applied to the determination of instream flow by comparison between drought flow (or low-flow) and fish flows for target fishes, calculated using the physical habitat simulation system (PHABSIM) software. In addition, low-flow using hydrologically-based design flow method and biologically-based design flow method, which is determined by DFlow, helps the correction of drought flow used in Korea by considering aquatic life criteria based on criterion continuous concentration (CCC) and criterion maximum concentration (CMC) in hydrological and ecological aspects. In environmental design steps in ecological & environmental plan, the numerical simulations of water quality in the Mokgamcheon stream were performed using HEC-RAS to conduct satisfaction evaluation for the water quality standard under the proposed designs for stream restoration. At the end of the restoration phase, a design 2 as the best effective final stream restoration design was selected by the assessments for geomorphic & sediment transport plan, hydrologic & hydraulic plan, and ecological & environmental plan with equal weighting and citizens preference weighting. In other words, an acceptable design plan was achieved for stable channel design based on IWM plan, the ecological habitat design for dominant aquatic fishes, and environmental design meeting the target water quality standards.
Thirdly, in the detailed restoration design phase, the evaluation and selection of habitat enhancement design with instream structures using River2D and the simulation of long-term bed change using HEC-RAS were performed to assess channel stability for the best effective restoration plan, and earthwork for the selected restoration plan was estimated to check the economic design plan.
Finally, master plan for the Mokgamcheon stream restoration project was established by new stream restoration procedure from pre-restoration design phase to detailed restoration design phase. The master plan for the Mokgamcheon stream restoration project was suggested after the completion of detailed restoration design phase.
A general, systematic, eleven-step stream restoration procedure based on IWM does not only be carried out immediately for a disturbed stream but also should determine the best effective stream restoration plan according to novel design procedure for stream restoration. This stream restoration procedure will be helpful in establishing a stream restoration plan. Therefore, the stream restoration procedure can be extended to other stream restoration projects, and the Mokgamcheon stream restoration project can be used as an example for the restoration of disturbed and urbanized streams. As this study compares the strength and weakness of previous stream restoration plan and guideline with restoration design plan based on this novel restoration procedure, it will be useful in providing government officials and hydraulic engineers a guideline for planning and implementing stream restoration projects.
-
dc.description.tableofcontentsLIST OF FIGURES x
LIST OF TABLES xix
LIST OF SYMBOLS xxiv


Chapter 1. INTRODUCTION 1
1.1 Research background 1
1.2 Research objectives 3
1.3 Scope of the study 5

Chapter 2. STATE OF THE ART REVIEW 8
2.1 Integrated watershed management 8
2.2 Definition of stream restoration 15
2.2.1 Restoration 17
2.2.2 Rehabilitation 17
2.2.3 Remediation 18
2.3 Stream restoration procedures 18
2.3.1 U.S. 20
2.3.2 Australia 42
2.3.3 Netherlands 51
2.3.4 Korea 53
2.4 Previous stream restoration studies 62
2.5 Instream structures 70
2.6 Economic benefit estimation 72
2.6.1 Choice experiment (CE) 74
2.6.2 MultiNomial Logit (MNL) model 74
2.6.3 Citizens preference using choice experiment (CE) 76
2.6.4 Random utility analysis using multinomial logit model 79

Chapter 3. THEORETICAL BACKGROUND 82
3.1 Classification of aquatic areas for natural and modified rivers to select reference stream 82
3.2 Stream status assessment 85
3.2.1 Assessment of stream naturalness 85
3.2.2 Use index of stream space for citizen (UISC) 85
3.2.3 Potential Flood Damage (PFD) 89
3.2.4 Instream flow 91
3.3 Flow analysis based on integrated watershed management project 91
3.4 Low-flow 93
3.4.1 Low-flows and aquatic life criteria 94
3.4.2 Aquatic life criteria (EPA, 1986) 95
3.4.3 DFlow Ver. 3.0 96
3.5 Dominant discharge 99
3.5.1 Bankfull discharge 99
3.5.2 Specified recurrence interval discharge 99
3.5.3 Effective discharge 101
3.6 Geomorphological stream restoration technique 104
3.6.1 Stream classification 105
3.6.2 Evolutionary tendency of rivers 105
3.6.3 Restoration of incised streams 109
3.7 Hydraulic stream restoration design technique 112
3.7.1 Channel planform and meander geometry 112
3.7.2 Channel slope and longitudinal profile 113
3.7.3 Channel cross section shape 115
3.7.4 Stable channel design using SAM 117
3.7.5 Assessment of composite roughness 127
3.8 Stream restoration considering water quality simulation 134
3.9 Total maximum daily load management 136
3.10 Instream structure installation techniques 138
3.10.1 Installation objectives and effects of instream structures 138
3.10.2 Classification of instream structures 139
3.10.3 Pool-riffle structures 157
3.10.4 Design and location of pools and riffles 175
3.10.5 Determination and application of stream structures 181

Chapter 4. DEVELOPMENT OF STREAM RESTORATION PROCEDURE AND DESIGN TECHNIQUE 188
4.1 Stream restoration design procedure based on the integrated watershed management plan 188
4.2 Development of stream restoration design procedure considering hydrologic & hydraulic plan, geomorphic & sediment transport plan, and ecological & environmental plan 199
4.2.1 Hydrologic & hydraulic plan 199
4.2.2 Geomorphic & sediment transport plan 205
4.2.3 Ecological & environmental plan 206
4.2.4 Numerical models to conduct stream restoration project 208
4.3 Determination of stream restoration goal and objective using choice experiment based on citizens preference 214

Chapter 5. APPLICATION OF STREAM RESTORATION DESIGN PROCEDURE 216
5.1 Study area 216
5.2 Pre-restoration design phase 219
5.2.1 Stream status assessment 219
5.2.2 Hydrologic and hydraulic boundary conditions considering IWM plan 222
5.2.3 Citizens preference using CE and random utility analysis using multinomial logit model 232
5.2.4 Determination of dominant discharges 233
5.2.5 Soil properties 235
5.2.6 Evolution scenario using channel classification based on geomorphic processes 237
5.3 Restoration design phase 238
5.3.1 Determination of low-flow 238
5.3.2 Sensitivity analysis, calibration and verification for HEC-RAS 243
5.3.3 Hydraulic design steps for hydrologic & hydraulic plan 250
5.3.4 Ecological design steps for ecological & environmental plan 268
5.3.5 Environmental stream restoration for water quality 279
5.3.6 Determination of the stream restoration design plan 295
5.4 Detailed restoration design phase 298
5.4.1 Sensitivity analysis, calibration and verification for River2D 298
5.4.2 Detailed instream structure design 301
5.4.3 Stability assessment using the long-term bed change 354
5.4.4 Costs of earthwork 358
5.5 Comparison of three Korean stream restorations 360
5.6 Master plan for the Mokgamcheon stream restoration project 363
5.6.1 Planform design 366
5.6.2 Cross section design 378

Chapter 6. CONCLUSIONS AND FUTURE STUDY 395
6.1 Conclusions 395
6.2 Future study 400

REFERENCES 402

APPENDIX 422
APPENDIX A. NUMERICAL MODELS 422
A.1 HEC-RAS model 422
A.2 PHABSIM 427
A.3 River2D 428

APPENDIX B. INSTREAM STRUCTURES 432
B.1 Monitored instream structures and instream structures
for physical modeling study 432
B.2 Design specifications for cross-vanes, W-weir vanes and J-hook vanes 432

APPENDIX C. STREAM RESTORATION GUIDELINE (Draft) 444
C.1 하천복원 설계 전과정(Step 1 ~ Step 3) 444
C.2 하천복원 설계 과정(Step 4 ~ Step 7) 448
C.3 상세 하천복원 설계 과정(Step 8 ~ Step 11) 450

APPENDIX D. MASTER PLAN FOR THE MOKGAMCHEON STREAM RESTORATION PROJECT 453
D.1 Revetment design 453
D.2 Riffle design 458
D.3 Revegetation design for retaining wall 459
D.4 Vegetation design 460
D.5 Wetland design 461
D.6 Spur dike design 465
-
dc.formatapplication/pdf-
dc.format.extent19179063 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectstream restoration-
dc.subjectdesign procedure-
dc.subjectgeomorphic & sediment transport plan-
dc.subjecthydrologic & hydraulic plan-
dc.subjectecological & environmental plan-
dc.subjectintegrated watershed management (IWM)-
dc.subjectpre-restoration design phase-
dc.subjectrestoration design phase-
dc.subjectdetailed design phase-
dc.subjectmaster plan-
dc.subjectMokgamcheon stream-
dc.subject.ddc624-
dc.titleDevelopment of a Design Procedure for Stream Restoration Based on IWM-
dc.title.alternative유역통합관리에 근거한 하천복원 설계절차의 개발-
dc.typeThesis-
dc.contributor.AlternativeAuthorKidoo Park-
dc.description.degreeDoctor-
dc.citation.pages469-
dc.contributor.affiliation공과대학 건설환경공학부-
dc.date.awarded2013-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share