Browse

Probabilistic 3D Human Pose Recovery and Its Application to Action Recognition
확률적인 3차원 자세 복원과 행동인식

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
Jungchan Cho
Advisor
오성회
Major
공과대학 전기·컴퓨터공학부
Issue Date
2016-02
Publisher
서울대학교 대학원
Keywords
3D Shape RecoveryNon-Rigid Structure from Motion3D Human Pose EstimationAction Recognition
Description
학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 오성회.
Abstract
These days, computer vision technology becomes popular and plays an important role in intelligent systems, such as augment reality, video and image analysis, and to name a few. Although cost effective depth cameras, like a Microsoft Kinect, have recently developed, most computer vision algorithms assume that observations are obtained from RGB cameras, which make 2D observations. If, somehow, we can estimate 3D information from 2D observations, it might give better solutions for many computer vision problems.

In this dissertation, we focus on estimating 3D information from 2D observations, which is well known as non-rigid structure from motion (NRSfM).
More formally, NRSfM finds the three dimensional structure of an object by analyzing image streams with the assumption that an object lies in a low-dimensional space. However, a human body for long periods of time can have complex shape variations and it makes a challenging problem for NRSfM due to its increased degree of freedom. In order to handle complex shape variations, we propose a Procrustean normal distribution mixture model (PNDMM) by extending a recently proposed Procrustean normal distribution (PND), which captures the distribution of non-rigid variations of an object by excluding the effects of rigid motion.
Unlike existing methods which use a single model to solve an NRSfM problem, the proposed PNDMM decomposes complex shape variations into a collection of simpler ones, thereby model learning can be more tractable and accurate. We perform experiments showing that the proposed method outperforms existing methods on highly complex and long human motion sequences.

In addition, we extend the PNDMM to a single view 3D human pose estimation problem. While recovering a 3D structure of a human body from an image is important, it is a highly ambiguous problem due to the deformation of an articulated human body. Moreover, before estimating a 3D human pose from a 2D human pose, it is important to obtain an accurate 2D human pose. In order to address inaccuracy of 2D pose estimation on a single image and 3D human pose ambiguities, we estimate multiple 2D and 3D human pose candidates and select the best one which can be explained by a 2D human pose detector and a 3D shape model. We also introduce a model transformation which is incorporated into the 3D shape prior model, such that the proposed method can be applied to a novel test image.
Experimental results show that the proposed method can provide good 3D reconstruction results when tested on a novel test image, despite inaccuracies of 2D part detections and 3D shape ambiguities.

Finally, we handle an action recognition problem from a video clip. Current studies show that high-level features obtained from estimated 2D human poses enable action recognition performance beyond current state-of-the-art methods using low- and mid-level features based on appearance and motion, despite inaccuracy of human pose estimation. Based on these findings, we propose an action recognition method using estimated 3D human pose information since the proposed PNDMM is able to reconstruct 3D shapes from 2D shapes. Experimental results show that 3D pose based descriptors are better than 2D pose based descriptors for action recognition, regardless of classification methods. Considering the fact that we use simple 3D pose descriptors based on a 3D shape model which is learned from 2D shapes, results reported in this dissertation are promising and obtaining accurate 3D information from 2D observations is still an important research issue for reliable computer vision systems.
Language
English
URI
http://hdl.handle.net/10371/119157
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Theses (Ph.D. / Sc.D._전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse