Publications

Detailed Information

in-situ Transmittance Evaluation of Solutions for Cu Electroless Deposition and Its Applications : 구리 무전해 도금 용액의 실시간 투과율 평가 및 그 응용

DC Field Value Language
dc.contributor.advisor김재정-
dc.contributor.author박경주-
dc.date.accessioned2017-07-13T08:34:40Z-
dc.date.available2017-07-13T08:34:40Z-
dc.date.issued2013-08-
dc.identifier.other000000013049-
dc.identifier.urihttps://hdl.handle.net/10371/119670-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2013. 8. 김재정.-
dc.description.abstract구리 무전해 도금은 극대규모 집적 회로의 구리 배선을 비롯하여 다양한 분야에 응용될 수 있다. 이를 위해서 용액의 특성에 관한 이해와 측정이 필수적이며, 다양한 인시츄 또는 익스시츄 분석 방법이 보고되었다.
본 연구에서는 틴-팔라듐 콜로이드를 이용하여 용액의 안정성과 반응성을 측정하는 인시츄 투과율 측정방법을 제안하고 가용성에 대하여 고찰하였다. 이 방법은 간단하면서도 시간에 따른 특성 분석이 가능하다는 장점을 가지고 있다. 구리 입자와 박막의 물성 관계를 관찰하거나 관통 실리콘 비아에서 씨앗층 형성하는데 적용할 수 있는 용액을 개발하는 데에 본 측정방법을 응용하였다.
먼저, 구리 무전해 도금 용액의 기본적인 거동을 확인하기 위하여 틴-팔라듐 콜로이드 용액을 주입하여 투과율 변화 및 구리 입자의 크기 변화를 관찰하였다. 투과율과 구리 입자 성장의 관계를 기반으로 안정성과 반응성 등의 용액 성능을 결정하는 중요한 요소인 착화제, 산화제, 첨가제의 영향을 확인하였다.
착화제의 특성 평가에서는 인시츄 투과율 측정이 각 용액의 안정성과 반응성을 잘 나타내 준다는 것을 확인하였다. 또한, 틴-팔라듐 촉매를 사용했기 떄문에 실제 반응 환경을 반영할 수 있음을 보여주었다. 이러한 결과는 탄탈륨 기판에서 전착한 박막에서의 결과와 비교함으로ㅆ 본 측정 방법의 실용성을 증명하였다.
같은 방법으로 산화제를 평가하였다. 알데하이드를 기반으로 하는 산화제의 경우 비슷한 투과율 곡선과 구리 입자의 특성을 보였고, 이를 통해 반응성을 예측할 수 있었다. 반면에, 나머지 산화제는 특성 평가에 제한적이었는데, 이는 장비 개선을 통해 해결 될 수 있을 것으로 예상한다. 이러한 결과들은 더 다양한 용액에 적용이 가능하다는 것을 시사하였다.
구리 수퍼필링에 일반적으로 사용되는 유기 첨가제들이 반응성에 주는 영향을 확인하였다. 투과율 곡선의 변화는 가속 및 감속 효과를 모두 보여주었고, 작용하는 농도 범위 또한 실제 구리 박막 전착에서와 일치하였다. 또한, 구리 입자의 관찰을 통해서도 용액의 반응성 및 구리 박막의 표면 거칠기를 어느 정도 예상할 수 있었다. 본 측정법의 한 응용으로써, 인시츄 측정으로부터 얻은 구리 입자들과 구리 박막의 물성을 측정하고 비교하였다. 완벽하게 정량적인 비교는 어려웠지만 그레인 크기와 표면 거칠기 측면에서 상당한 관계를 가지고 있음을 확인하였다.
다른 응용을 위해, 본 투과율 측정법을 통해 우수한 안정성과 반응성을 확인 한 용액 들 중에 EDTA-HCHO를 기반으로 한 용액을 선택하였다. 이 용액을 이용하여 높은 종횡비를 갖는 비아에서 구리 씨앗층을 형성하고자 하였다. 안정성을 좀 더 향상 시키기 위하여 RE-610과 2,2-다이피리딜을 첨가해서 박막을 전착하였다. 구조적인 단점을 가지고 있는 비-보쉬 비아는 최적화된 공정을 요구하였다. 그의 일환으로 강제 대류 시스템을 도입하고 전처리 시간을 최적화 하였다. 이를 통해, 등각전착된 구리 씨앗층을 얻었고, 전해도금을 통해 결함 없는 채움을 얻을 수 있었다.
결론적으로, 본 연구에서 제안된 인시츄 투과율 측정법은 다양한 용액의 성능 측정뿐 만 아니라 물성 예측에도 적용 가능한 것을 확인하였다. 또한, 구리 배선에서 다양한 분야에 적용될 수 있음을 시사하였다.
-
dc.description.abstractCu electroless deposition (ELD) has extensive applications with representative practical use in ultra large scale integration (USLI) interconnection. It is important to figure out the characteristic of solutions related to the reliability. Thus, many analytical methods of solution estimation have been reported in ex-situ and in-situ.
In this study, in-situ transmittance measurement to verify the solution performances of the stability and the reactivity on SnPd colloidal surface was proposed as an alternative tool for chemical-sensitive electrochemical analysis, and its feasibility was contemplated. Its advantages lie in both the simplicity of the analysis and the in-situ allowance in time-dependent characterization. Applicatively, the relation of material properties with Cu particles and Cu film was demonstrated and qualified solution was applied to form Cu seed layer in through silicon via (TSV).
To understand the basic behaviors of Cu ELD solution, the change of transmittance with the size of Cu particles by the injection of SnPd colloids were observed. Based on the relationship between the transmittance and the Cu particle growth, in-situ monitoring was applied to determine the effect of complexing agents, reducing agents, and the organic additives, which are the important elements in determination of solution performance, on stability and reactivity.
In application of in-situ measurements to performance test with various complexing agents, it was confirmed that the stability and reactivity of each solution were well described by in-situ transmittance measurement. The merits of methods which reflect the real environmental impact by supporting SnPd catalyst helped to exhibit the characteristics of solutions. The validity of the in-situ transmittance monitoring was supported by comparison with the consequence from the actual film deposition on Ta substrate.
In the same way, reducing agents were evaluated. Aldehyde based reducing agents showed the similar trends in transmittance and Cu powder so that the reactivity could also be predicted. In contrast, other reducing agents exhibited different trends and some limitations. It is expected that those problems would be solved with suggested modification of equipment. These results implied the validity of widening in application to various kinds of solutions.
Measurement with organic additives, usually used for bottom-up filling was also implied for reactivity test. The change of reaction time from transmittance curve represented the acceleration and suppression effect, and the concentration range affected was same as that in Cu film deposition. Cu powder also allowed us to forecast the reactivity of solution and surface roughness of Cu film. Additionally, material properties of Cu powder with organic additives were measured to find out whether it can indicate those of Cu film. As a result, though precise prediction was difficult, they have considerable relationship in the aspect of the grain size and the surface roughness.
For another application, one of the optimal compositions in the aspect of the stability and the reactivity, EDTA-HCHO based-solution, was selected by in-situ transmittance measurement. With this solution, the formation of Cu seed layer in high aspect ratio of via was performed. The additional improvement of the stability with RE-610® and 2,2-dipyridyl facilitated the achievement of adhesive Cu film. To overcome the structural drawbacks of non-Bosch TSV, more optimization and the modification of process were required. In a bid for it, pretreatment conditions were optimized and convection system was adopted. Optimal time was achieved by populating the Cu nuclei at the bottom of the vias, and the continuity and conformality of the seed layer were enhanced by finding the optimal rotating speed. Finally, conformal Cu seed layer was obtained, on which Cu was successfully filled by electrodeposition (ED) without voids.
In conclusion, proposed in-situ transmittance measurement was proved to be applicable for not only the evaluation of performances with various kinds of solutions but also the prediction of material characters. It was confirmed that this monitoring method has potentials to be applied in various field including Cu interconnection.
-
dc.description.tableofcontentsContents


Abstract...................................................................................................................................... i
List of Tables.............................................................................................................................. vi
List of Figures............................................................................................................................. vii

Chapter I. Introduction............................................................................................................. 1
1-1. Electroless deposition (ELD) .................................................................................... 1
1-2. Cu ELD...................................................................................................................... 9
1-3. Material properties of Cu film................................................................................... 16
1-4. Application of Cu ELD in ULSI................................................................................ 19
1-5. Organic additives....................................................................................................... 25
1-6. Evaluation of Cu ELD solution................................................................................. 30

Chapter II. Experimental.......................................................................................................... 34
2-1. in-situ transmittance measurement............................................................................ 34
2-2. Film deposition.......................................................................................................... 41
2-3. Seed layer formation in through silicon vias (TSVs)................................................ 43

Chapter III. in-situ transmittance measurement in Cu ELD
3.1. Equipment of in-situ transmittance measurement..................................................... 47
3.2. Basic understanding of transmittance curve.............................................................. 50
3.3. Effects of complexing agent...................................................................................... 57
3.4. Effects of reducing agents.......................................................................................... 63
Chapter IV. Organic additives in Cu ELD 72
4.1. Effects of organic additives....................................................................................... 72
4.2. Characterization of material properties with organic additives................................ 94

Chapter V. Seed layer formation in through silicon via (TSV).............................................. 105

Chapter VI. Conclusions........................................................................................................... 116

References................................................................................................................................... 119
국문초록...................................................................................................................................... 125
Appendix I - White Pigment in Electronic Paper................................................................... 128
Appendix II - CURRICULUM VITAE.................................................................................... 161
-
dc.formatapplication/pdf-
dc.format.extent3254538 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectelectroless deposition-
dc.subjectCu-
dc.subjectstability-
dc.subjectreactivity-
dc.subjectin-situ analysis-
dc.subjectcomplexing agent-
dc.subjectreducing agent-
dc.subjectorganic additive-
dc.subjectfilm property-
dc.subjectseed layer-
dc.subject.ddc660-
dc.titlein-situ Transmittance Evaluation of Solutions for Cu Electroless Deposition and Its Applications-
dc.title.alternative구리 무전해 도금 용액의 실시간 투과율 평가 및 그 응용-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages1, 168-
dc.contributor.affiliation공과대학 화학생물공학부-
dc.date.awarded2013-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share