Browse

Sythesis of Magnetic Nanocomposite Catalysts for Organic Transformations
유기 변환에 대한 자성 나노 복합 촉매의 합성

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
모하메드
Advisor
현택환
Major
공과대학 화학생물공학부
Issue Date
2014-08
Publisher
서울대학교 대학원
Keywords
Nanomaterial catalystsHeterogeneous catalysisNanocompositeNanocatalystCore-shell nanostructureMagnetic proepertiesMesoporous nanomaterialsCross-coupling reactionsOxidationReduction나노 물질의 촉매이기종 촉매나노 복합체나노 촉매코어-쉘 나노 구조자기 properties메조 포러스 나노 물질크로스 커플링 반응산화감소
Description
학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부, 2014. 8. 현택환.
Abstract
이기종촉매는 석유정제, 정밀 화학, 제약 생산 및 에너지 변환 등 다양한 분야에서 매우 중요한 역할을 한다. 녹색 화학 공정을 수행하고 제조 비용을 줄이기 위해 고도로 활성화된 재활용인 가능한 안정적인 이종촉매를 제조하기 위한 경제적으로 확장 가능한 방법을 개발하는것이 중요한 이슈가 되고 있다. 이와 관련하여, 다양한 구조, 모양 및 크기로 디자인된 이종나노물질은 개선된 촉매 변화를 개발하기 위한 적절한 촉매이다.
이 학위논문의 목적은 향상된 촉매 변환을 위한 이종나노 촉매의 폭넓은 시야, 합성 및 응용을 제공하는 것이다. 이 논문은 총 네가지 장으로 구성되어 있는데, 첫 번째 장에서는 화학 공정에서 이종 촉매로 성공적으로 사용되는 나노 물질 설계에 대해 설명한다. 촉매 변환, 반응성, 이기종 촉매의 비활성화 및 이기종 시스템의 재활용에서의 메조 포러스 물질과 고분자 나노 촉매등과 같은 다양한 이종 촉매 나노 물질에 대해 다룬다.
제 2장은 간단하고 경제적인 확장 공정에 의해 합성된 고활성 자기적 재활용이 가능한 중공 나노 복합촉매에 대해서 설명한다. 디자인된 나노 복합체는 nitroarenes와 스즈키 크로스 커플링 반응에서의 선택적인 감소에 우수한 촉매 활성을 나타내었다. 자기 재생 중공 나노 복합 촉매는 쉽게 자석으로 분리되고, 연속적으로 재생 될 수 있으며 대량으로 용이하게 합성될 수 있다.
제 3장은 자기 재활용 탄소 나노 복합체의 제조를 위한 그램 규모의 합성 과정을 설명한다. 다양한 나노 촉매를 지원하기 위해 새로운 자기 재생 탄소 나노 복합재료가 간단하고 경제적인 방법을 통해 합성되었다. 다공성 탄소와 Fe3O4의 나노 입자로 구성되어 디자인된 나노 복합체는 Pd 및 Pt같은 다양한 나노 입자 촉매를 쌓아서 확장형 플랫폼으로 사용될 수 있다. 이러한 특성은 nitroaromatics 와 스즈키 크로스 커플링 반응을 선택적으로 감소하는데 검증되었고 촉매 반응을 효율적으로 하고 촉매 활성을 향상하는데 기여하였다.
마지막으로 제 4장은 물에 base-free반응 조건에서 알코올의 효율적인 산화를 위한 자기 재활용 코어-쉘 Pd나노 촉매의 설계와 제작을 보여준다. Polymer 매트릭스에 반으로 분배된 Pd NPS는 가혹한 반응 조건하에서 높은 촉매 활성뿐만 아니라 나노 촉매의 안정화를 제공한다. 더욱이 자기 분리는 반응 혼합물로부터 활성의 Pd나노 촉매를 분리하고 재활용하는데 편리한 방법을 형성한다. 자기 재활용 코어-쉘 Pd나노 촉매는 간단한 공정을 사용하여 대규모로 제조 될 수 있다.
Heterogeneous catalysts play very important roles in various fields such as oil refining, fine chemicals and pharmaceutical productions, and energy conversions. It is an important issue to develop economical and scalable approaches for preparing highly active, recyclable and stable heterogeneous catalysts to perform green chemical processes and reduce the manufacturing costs. In this regard, designed heterogeneous nanomaterials with variable structures, shapes and sizes are appropriate catalysts to investigate and develop for improved catalytic transformations. The purpose of this dissertation is to provide a broad perspective, synthesis and catalytic applications of heterogeneous nanomaterial catalysts synthesized for enhanced catalytic transformations.
This dissertation is composed of four chapters. The first chapter explains the designed nanomaterials successfully used as heterogeneous catalysts in chemical processes. The discussion is made about various heterogeneous catalytic nanomaterials such as mesoporous materials and polymer supported nanocatalysts in catalytic transformations, reactivity and deactivation of heterogeneous catalysts and recyclability of the heterogeneous systems.
Chapter two describes highly active magnetically recyclable hollow nanocomposite catalysts synthesized by a simple, economical and scalable process. The designed nanocomposite exhibited excellent catalytic activities in the selective reduction of nitroarenes and Suzuki cross-coupling reactions. The catalysts could be easily separated by a magnet, and recycled consecutively. The magnetically recyclable hollow nanocomposite catalyst can be readily synthesized in a large scale.
Chapter three explains a gram scale synthesis procedure for the preparation of magnetically recyclable carbon nanocomposite. Novel magnetically recyclable carbon nanocomposites were synthesized to support various nanocatalysts using a simple and economical method. The designed nanocomposites, which are composed of porous carbon and Fe3O4 nanocrystals, can be used as an expandable platform to load versatile nanoparticle catalysts such as Pd and Pt. These nanocomposites with high surface area and permeable porous structure can contain abundant and accessible small-sized catalyst nanoparticles. These characteristics led to efficient catalytic reactions and enhanced catalytic activity, which were verified in selective reduction of nitroaromatics and Suzuki cross-coupling reactions. The nanocomposite catalysts provided excellent catalytic activities to yield the desired products in short reaction time and mild reaction conditions. The catalysts could be easily separated from the reaction mixture by a magnet, and recycled five consecutive cycles in reduction of nitrobenzene and Suzuki cross-coupling of bromobenzene without losing significant activities.
Finally, chapter four demonstrates the designed fabrication of magnetically recyclable core-shell Pd nanocatalysts for the efficient oxidation of alcohols under base-free reaction conditions in water. The Pd NPs that are half partitioned in the polymer matrix can provide not only high catalytic activity but also the stabilization of the nanocatalysts under harsh reaction conditions. Furthermore the magnetic separation provides a convenient method for removing and recycling the active Pd nanocatalysts from the reaction mixture. The designed nanocatalysts can be readily synthesized in a large scale and reused for five consecutive cycles of the oxidation of cycloheptanol. The nanocatalysts present high catalytic activity in other types of catalytic reactions involving Pd NPs such as Suzuki cross-coupling and reduction of nitroarenes. The magnetically recyclable core-shell Pd nanocatalysts can be prepared on a large scale using a simple process. 22.5 g of the Pd nanocatalysts could be prepared from one batch process using larger amounts of starting materials in a standard academic laboratory.
Language
English
URI
https://hdl.handle.net/10371/119694
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Theses (Ph.D. / Sc.D._화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse