Publications

Detailed Information

A NANOFIBER-STRUCTURED BIOPOLYMER FOR ADVANCED DRUG DELIVERY SYSTEMS : 차세대 약물 전달 시스템을 위한 나노섬유 구조의 생체 고분자 연구

DC Field Value Language
dc.contributor.advisor최영빈-
dc.contributor.author박천권-
dc.date.accessioned2017-07-13T08:50:07Z-
dc.date.available2017-07-13T08:50:07Z-
dc.date.issued2014-08-
dc.identifier.other000000021414-
dc.identifier.urihttps://hdl.handle.net/10371/119880-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 협동과정 바이오엔지니어링전공, 2014. 8. 최영빈.-
dc.description.abstract이 논문은 나노섬유구조의 생체고분자를 이용하여 질병 치료 효과를 극대화시킬 수 있는 차세대 약물 전달장치에 관한 것으로 나노섬유구조가 가지고 있는 넓은 비표면적과 마이크로 공극률의 특징들을 효과적으로 활용하여 다양한 전달경로와 질병에 맞는 약물전달 장치를 개발 하는 것이다.
첫째로, 점안약이 갖는 낮은 생체이용도를 해결하고자, 친점액성 물질이 포함된 표면적이 극대화된 마이크로입자를 제작하고, 녹내장 치료제인 브로모니딘을 탑재시킨 후, 약물정 형태로 눈에 전달하여 생체이용도를 높일 수 있는 약물운반체를 제작하였다. 표면이 거친 나노형상마이크로 입자는 나노형상을 잘 유지하고 있으며 비표면적을 측정하였을 때 기존의 에멀전 방식을 이용하여 제작된 구형 마이크로입자보다 13배 이상의 넓은 표면적을 지니고 있음을 확인하였다. 이를 통해, 눈에서 빠르게 녹아나는 약물정 형태로 전달하였을 때, 구형 마이크로입자에 비해서 전안부에서의 거주시간이 10배이상 증가됨을 확인하였고, 모델 약물인 브리모니딘이 탑재되었을 때, 안압 하강 효과가 기존의 제형인 알파간피 (Alphagan-P)와 비교하여 2배 이상 증가하였음을 확인하였다. 이 연구를 통하여, 친점액성 물질이 포함되고 비표면적이 증가된 나노형상 마이크로입자는 전안부에서의 거주시간이 월등히 증가되고, 그 기간 동안 약물이 서방 방출되어 약물의 생체이용도를 증가시킬 수 있는 유망한 제형임을 확인 하였다.
둘째로, 경구 투여 약물인 니페디핀의 선형전달을 위하여 나노섬유구조 시트기반의 약물전달 제형을 개발하였다. 이를 위하여 생체적합성 고분자인 poly (lactic-co-glycolic acid)(PLGA)를 전기방사 방법을 이용하여 마이크로 공극률을 가지는 나노섬유시트를 제작하였다. 녹내장 치료제인 니페디핀을 모델 약물로 선정하고 용해도 증강제인 polyvinylpyrrolidone와 섞어 약물정으로 제작 후, 위에 제작된 나노섬유시트를 덮어 캐핑하였다. 다양한 약물 방출 형상을 얻기 위하여 다양한 두께의 나노섬유시트를 이용하여 약물정을 캐핑하였고, 약물전달 실험 결과 나노섬유시트의 두께가 두꺼워질수록 약이 보다 서서히 방출되는 결과를 확인하였다. 각각 다른 두께의 나노섬유로 캐핑된 2개의 서로 다른 약물정을 결합하여 24시간동안 선형전달이 가능한 제형을 제작하였다. 이 연구를 통하여, 약물정을 캐핑하는 나노섬유 두께에 따라 약물의 전달형상이 달라짐을 확인하였고, 다른 두께의 나노섬유로 캐핑된 약물정의 결합을 통하여 약물의 선형전달이 가능함을 확인하였다.
마지막으로, 식도스텐트 시술 후, 암세포의 스텐트 주변부로의 빠른 성장으로 인해 스텐트가 막히는 단점을 해결하고자, 항암제 서방 전달 기능성이 부여된 식도스텐트를 개발하였다. PLGA를 약물확산벽 물질로 사용하였고, 대표적인 항암제인 5-FU를 모델 약으로 사용하여 전기방사 방법으로 식도스텐트를 코팅하였다. 그 결과 수용성 약물인 5-FU는 6일만에 모두 용출되었다. 약물의 다량방출을 차단하고 서방전달 기간을 증가시키고자, 약이 들어있지 않은 나노섬유를 약물이 탑재된 코팅면 앞뒤로 추가 코팅하여 약물의 서방 방출 기간을 21일까지 연장시켰다. 이 연구를 통하여 식도스텐트에 약물부가기능성을 부여하여 약물을 서방전달 시킴으로써 스텐트 이식 후에도 장기간 동안 암세포의 증식을 억제하여 스텐트의 다시 막힘 현상을 오랜 기간 막을 수 있는 스텐트를 제작할 수 있었다.
-
dc.description.abstractThis dissertation is focused on the design, fabrication and evaluation of novel drug-delivery devices based on nanofiber-structured biopolymers. Two advantageous features of nanofiber-structured biopolymers (i.e., high specific surface area and micro-porosity) are utilized to obtain effective delivery of drugs at the desired sites, hence enhanced disease treatments.
Firstly, we fabricated nanostructured microparticles (NMs) to utilize the feature of their large specific surface area. The NMs contained a mucoadhesive polymer as drug carrier to achieve prolonged retention of microparticles in the preocular surface and, thus, to obtain higher bioavailability of ocular drugs. To prepare the NMs, nanofibrous sheets were first prepared with poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) as a diffusion-wall material and a mucoadhesion promoter, respectively. The sheet was then freeze-milled to obtain the NMs. The NMs containing brimonidine as a model drug were formulated in a rapidly dissolving dry tablet of poly vinyl alcohol (PVA). For the in vivo evaluation, the tablet of drug-loaded NMs was administered into the lower cul-de-sac of the rabbit eye, where the intraocular pressure (IOP) was measured at the scheduled times. The NMs appeared to be composed of randomly oriented nanofibers to give a rough surface, resulting in a 13-fold increase in specific surface area, as compared with conventional spherical microparticles. Thus, the NMs better adhered to the eye surface when incorporated with a mucoadhesive material, PEG, while releasing the drug to the eye surface in a sustained manner. Hence, the IOP-lowering effect of brimonidine improved more than two-fold, as compared with Alphagan-P, the medication already approved in clinical use.
Secondly, we developed a nanofibrous sheet-based system to utilize its feature of micro-porosity and eventually to achieve the linear release of the oral drug, nifedipine. The nanofibrous sheets of micro-porosity were first fabricated by the electrospinning method, using PLGA, a biocompatible polymer. The sheets were then used as a drug-diffusion barrier by capping and sealing a compressed table that consisted of nifedipine and a solubility enhancer, polyvinylpyrrolidone. In this work, nanofibrous sheets of different thicknesses were prepared in order to vary the rate of drug diffusion. An in vitro drug-release study revealed that as the sheet thickness increased, drug release became more retarded, and a lag phase of drug release became more evident. We realized linear drug release by combining two distinctly capped tablets, each showing a different drug release, which exhibited an almost linear release of nifedipine during 24 h (R2 > 0.986). Therefore, we concluded that combining two tablets, each capped with nanofibrous sheets of different thicknesses, is a promising method of linear delivery for oral drugs.
We also developed an esophageal stent coated with a nanostructured polymer of micro-porosity for sustained delivery of an anticancer drug, fluorouracil (5-FU). The stents were coated with drug-loaded PLGA nanofibers (DPN) using the electrospinning method, which exhibited a sustained drug-release pattern for up to 6 days. To extend drug release, we also added the nanofiber layers composed of PLGA alone (PN), surrounding the DPN layer, as a more resistive diffusion barrier. In this way, the period of drug release could be extended to 21 days with the DPN layer topped with another 192-μm thick PN layer. Therefore, we envisioned longer periods of drug-release with the thicker PN layers, obtained simply with a longer collection time of PLGA nanofibers using electrospinning. Overall, we concluded that the drug-delivery esophageal stent prepared in this study is beneficial in the long-term treatment of dysphagia due to esophageal cancer.
-
dc.description.tableofcontentsAbstract ⅰ
Contents ⅴ
List of Tables ⅸ
List of Figures xi

Chapter 1. Introduction 1
1.1 Biopolymers 1
1.2 Nanofiber-structured Biopolymers 6
1.3 Feasures of Nanofiber-structured Biopolymers 11
1.4 Research Aims 12

Chapter 2. Preparation of Nanofiber-structured Biopolymers 14
2.1 Polymer Selection 14
2.2 Optimization Process for Nanofiber-structured Biopolymers 19
2.2 Variations in Polymer Solution Concentration 19
2.2.2 Variations in Polymer Molecular Weight 23
2.2.3 Variations in Tip-to-collector Distance 25
2.2.4 Variations in Applied Voltage 27
2.2.5 Variations in Polymer Solution Flow Rate 30
2.2.6 Variations in Rotation Speed 32
2.2.7 Optimized Condition for Nanofiber-structured Biopolymers 34

Chapter 3. Nanostructured Mucoadhesive Microparticles for Enhanced Ocular Bioavailability of Brimonidine 37
3.1 Introduction 37
3.2 Materials and Methods 43
3.2.1 Materials 43
3.2.2 Preparation of Microparticles 44
3.2.3 Preparation of Microparticle Formulations 46
3.2.4 Characterization of Microparticles 46
3.2.5 In vitro Drug Release Experiments 50
3.2.6 In vivo Evaluation of Preocular Microparticle Retention 51
3.2.7 In vivo Evaluation of IOP-lowering Effect 55
3.2.8 In vivo BRT Concentration in Aqeuous Humor (AH) 55
3.2.9 Safety Evaluation 56
3.2.9.1 In vitro Cytotocixity 56
3.2.9.2 In vivo Safety Evaluation 58
3.2.10 Statistical Analysis 58
3.3 Results and Discussion 60
3.3.1Characterization of Microparticles and Tablet Formulations 60
3.3.2 In vitro Drug Release Profiles 77
3.3.3 In vivo Mucoadhesion Study 79
3.3.4 In vivo IOP-lowering Study 88
3.3.5 In vivo BRT Concentration in Aqeuous Humor(AH) 90
3.3.6 Safety Evaluation 97
3.4 Conclusion 101

Chapter 4. A Nanofibrous Sheet-based System for Linear
Delivery of Nifedipine 103
4.1 Introduction 103
4.2 Materials and Methods 107
4.2.1 Materials 107
4.2.2 Preparation of Nanofibrous Sheets 107
4.2.3 Preparation of Drug Tablets 108
4.2.4 Characterization 111
4.2.5 In vitro Drug Release Test 112
4.3 Results 113
4.3.1 Characterization of Nanofibrous Sheets 113
4.3.2 Characterization of Drug Tablets 118
4.3.3 In vitro Drug Release Profiles 121
4.4 Discussion 134
4.5 Conclusion 138

Chapter 5. Polymeric Nanofiber-coated Esophageal Stent for Sustained Delivery of an Anticancer Drug 140
5.1 Introduction 140
5.2 Materials and Methods 144
5.2.1 Materials 144
5.2.2 Preparation of Coated Esophageal Stents 144
5.2.3 Characterization 145
5.2.4 In vitro Degradation Study 147
5.2.5 In vitro Drug Release Test 147
5.3 Results and Discussion 148
5.3.1 Characterization of Coated Esophageal Stents 148
5.3.2 Characterization of Coating Layers 153
5.3.3 In vitro Degradation of Coating Layers 158
5.3.4 In vitro Drug Release Profiles 160
5.4 Discussion 162
5.5 Conclusion 166

Chapter 6. Conclusion and Perspective 168

References 172

Abstract in Korean 181

Acknowledgement 184

Appendix 188
-
dc.formatapplication/pdf-
dc.format.extent5873853 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectbiopolymer-
dc.subjectdrug delivery system-
dc.subjectelectrospinning-
dc.subjectmicro-porosity-
dc.subjectnanofibers-
dc.subjectspecific surface area-
dc.subject.ddc660-
dc.titleA NANOFIBER-STRUCTURED BIOPOLYMER FOR ADVANCED DRUG DELIVERY SYSTEMS-
dc.title.alternative차세대 약물 전달 시스템을 위한 나노섬유 구조의 생체 고분자 연구-
dc.typeThesis-
dc.contributor.AlternativeAuthorChun Gwon Park-
dc.description.degreeDoctor-
dc.citation.pagesxviii, 197-
dc.contributor.affiliation공과대학 협동과정 바이오엔지니어링전공-
dc.date.awarded2014-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share