Publications

Detailed Information

Analysis of apxIVA gene of Actinobacillus pleuropneumoniae Korean isolates and immunogenicity of Saccharomyces cerevisiae expressing apxIA and apxIIA genes by oral administration : 국내분리 Actinobacillus pleuropneumoniae apxIVA의 유전적 특성과 apxIA 및 apxIIA 유전자 발현 Saccharomyces cerevisiae의 경구투여에 따른 면역원성 분석

DC Field Value Language
dc.contributor.advisor유한상-
dc.contributor.author신민경-
dc.date.accessioned2017-07-13T16:41:19Z-
dc.date.available2017-07-13T16:41:19Z-
dc.date.issued2012-08-
dc.identifier.other000000004149-
dc.identifier.urihttps://hdl.handle.net/10371/120174-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 수의학과 수의미생물학 전공, 2012. 8. 유한상.-
dc.description.abstract돼지 흉막폐렴은 전세계적으로 양돈산업에 막대한 경제적 손실을 나타내는 전염성 흉막염이며, 원인균은 Actinobacillus pleuropneumoniae 이다. 지금까지 전 세계적으로 15가지 혈청형이 밝혀져 있고, 흉막폐렴의 병원성은 많은 병원성 인자들중 Repeats in Toxins (RTX)에 속하는 Apx toxins, ApxI, ApxII, ApxIII 그리고 ApxIV 생성에 의한다. ApxI, ApxII 및 ApxIII는 혈청형에 따라서 다양하게 분비되며, 가장 최근에 밝혀진 ApxIV는 병원성 관련 역할은 밝혀지지 않았으나, 모든 혈청형에서 발현되고 in vivo상에서만 발현된다는 특징이 있다. Apx toxins은 강한 면역원성을 나타내기 때문에 A. pleuropneumoniae 감염에 강한 항체반응을 유발한다. 특히 많은 연구들이 가장 강한 병원성을 나타내는 것이 ApxI과 ApxII의 독소를 생산하는 혈청형과 밀접한 연관이 있는 것을 지적하고 있다. 그렇기 때문에 Apx toxins은 A. pleuropneumoniae 에 대한 진단 및 백신 개발에 항원으로서 효과적인 접근일 수 있다.
본 연구에서는 첫번째로 국내 분리 ApxIV (Kor-ApxIVA)에 대한 전체 염기서열 및 유전적 분석을 실시하고, 다른 혈청형의 A. pleuropneumoniae 의 ApxIV와 비교분석하였다. ApxIV의 구조적 특성은 N-말단의 hydrophobic domain과 C-말단의 반복적인 glycine-rich nonapeptides를 보이는 RTX toxin의 특성을 나타내었다. 또한 30번의 glycine-rich nonapeptides (L/V-X-G-G-X-G-N/D-D-X)가 Kor-ApxIVA의 C-말단에서 반복된 것을 확인하였다. 본 연구의 유전적 분석 결과가 ApxIVA의 생물학적 그리고 기능적 특징에 대한 중요한 기초 연구가 될 것으로 생각된다.
둘째로 재조합 ApxIA, ApxIIA 및 ApxIIIA를 이용한 ELISA 진단법을 개발하고, 이를 국내 야외 돼지 혈청에 적용하여 국내 야외 돼지에서 Apx toxins에 대한 항체가를 조사하였다. 결과적으로 개발된 ELISA 기법은 Apx 항원에 대한 특이 항체를 진단할 뿐만 아니라 백신 항체가 모니터링에 유용할 것으로 생각된다.
셋째로 형질전환 발현 시스템에서 A. pleuropneumoniae에 대한 효과적인 백신을 개발하기 위하여, ApxIIA의 neutralizing epitope (ApxIIA#5)를 선택하였다. 본 연구에서 ApxIIA#5 표면 제시 효모를 개발하고, 이를 A. pleuropneumoniae에 대한 경구 백신 후보로 선정하였고, 전신면역 및 점막면역 반응을 둘 다 향상 시킨다는 것을 확인할 수 있었다. ApxIIA#5 표면 제시 효모를 경구투여한 마우스에서 분리된 CD4+ T cell에 ApxIIA-activated DC를 제시하였을 때 특이적인 T cell proliferation을 보였다. 또한 ApxIIA#5 표면 제시 효모를 경구투여한 마우스의 혈액과 spleen, peyers patch 와 lamina propria에서 vector 대조군 및 비처치 대조군과 비교하여 더 높은 항원특이적 IgG 및 IgA 항원 반응을 확인할 수 있었다. 게다가 우세한 IgG2a subclass 및 IFN-γ 의 상승반응에 따라 ApxIIA#5 표면 제시 효모를 경구투여한 마우스에서 Th1-type 면역반응이 우세하게 유도된 것으로 생각된다.
마지막으로 ApxIA 발현 효모와 ApxIIA#5 표면 제시 효모를 돼지에 경구백신 후보로서 투여한 후 효능을 평가하였다. ApxIA 발현 효모와 ApxIIA#5 표면 제시 효모를 경구 투여한 돼지에서 대조군 그룹들에서 보다 혈액 및 비강액에서 더 높은 항원특이 IgG 및 IgA antibody activities를 보였다. 또한 임상증상 및 육안•조직병리학적 평가를 통해 A. pleuropneumoniae 감염된 돼지에서 돼지 흉막폐렴 항원 발현 형질전환 효모가 방어능을 나타낸 것을 확인하였다. 결론적으로 이러한 결과들은 ApxIA 발현 효모 및 ApxIIA#5 표면제시 효모가 돼지 흉막폐렴을 방어할 수 있는 경구백신의 가능성을 보여주었다. 그러므로 본 연구 결과는 현재 사용되고 있는 주사백신을 대체할 만한 live 경구 백신의 개발에 공헌할 것으로 생각된다.
-
dc.description.abstractActinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia, a highly contagious pulmonary disease in pigs with major economic losses for pig producers worldwide. Fifteen serotypes of A. pleuropneumoniae express four different Apx toxins that belong to the pore-forming repeats-in-toxin (RTX) group of toxins, ApxI, ApxII, ApxIII and ApxIV, which are major virulence factors. Although ApxI, ApxII and ApxIII are secreted by different serotypes in various combinations, ApxIV has distinctive features that are produced by all serotypes of A. pleuropneumoniae, and are expressed only in vivo. Apx toxins are highly immunogenic, thus inducing a strong antibody response to A. pleuropneumoniae infection. In particular, ApxI and ApxII are necessary for full virulence in the development of clinical signs and typical lung lesions. Therefore, Apx toxins appear to be central in any effective approach as antigens in the development of diagnostic method and vaccine against A. pleuropneumoniae.
In the present study, we described the complete sequencing and organization of the ApxIVA isolated in Korea (Kor-ApxIVA) and the homology of apxIVA to other A. pleuropneumoniae serotypes. The structural characteristics of ApxIVA showed RTX proteins, including N-terminal hydrophobic domains, signature sequences for potential acylation sites, and repeated glycine-rich nonapeptides in the C-terminal region of the protein. Thirty glycine-rich nonapeptides with the consensus sequence, L/V-X-G-G-X-G-N/D-D-X, were found in the C-terminus of the Kor-ApxIVA. This genetic analysis of the Kor-ApxIVA might be an important foundation for future biological and functional research on ApxIVA.
The current report describes the development of an ELISA based on the recombinant ApxIA, ApxIIA and ApxIIIA antigens and evaluated the application of the developed assays on the prevalence of anti-Apx toxin antibodies among pigs in Korea. Consequently, the developed ELISAs may be useful for A. pleuropneumoniae vaccination strategy as a screening tool for pig herds as well as for detection of specific antibodies to Apx exotoxins.
To develop an effective vaccine for A. pleuropneumoniae based on transgenic antigen expression, the neutralizing epitope of ApxIIA (ApxIIA#5) was selected as a vaccine candidate for A. pleuropneumoniae. In the present study, we demonstrated that S. cerevisiae expressing surface-displayed ApxIIA#5 has the immunogenic potential as an oral vaccine, helping to improve both systemic and mucosal immune responses. Presentation of ApxIIA on activated DCs to CD4+ T cells from mice orally administered with S. cerevisiae expressing surface-displayed ApxIIA#5 elicited specific T cell proliferation. In addition, mice orally administered with S. cerevisiae expressing surface-displayed ApxIIA#5 showed higher antigen-specific IgG and IgA antibody responses in serum and spleen, Peyers patches, and lamina propria than those with the vector-only S. cerevisiae or non-treated. Furthermore, the vaccinated mice induced Th1-type immune responses based on increased levels of IgG2a in serum and predominant increase of IFN-γ producing cells in spleen, and lamina propria.
Ultimately, S. cerevisiae expressing ApxIA and surface-displayed ApxIIA#5 were developed to serve as an oral vaccine candidate in pigs. Pigs immunized orally with S. cerevisiae expressing ApxIA and surface-displayed ApxIIA#5 showed higher specific IgG and IgA antibody activities than that with the vector-only S. cerevisiae and non-treated. Additionally, the induced immune responses are found to protect the pigs infected with A. pleuropneumoniae according to the analysis of clinical signs and the gross and microscopic pulmonary lesions. These results suggested that S. cerevisiae expressing ApxIA and surface-displayed ApxIIA#5 might be a potential oral vaccine to prevent pigs against porcine pleuropneumonia. Thus the present study is expected to contribute to the development of a live oral vaccine against porcine pleuropneumonia as alternatives to current conventional vaccines.
-
dc.description.tableofcontentsAbstract ••••••••••••••••••••••••••••••••••••••••••••• ⅰ
Contents ••••••••••••••••••••••••••••••••••••••••••••• ⅴ
List of figures ••••••••••••••••••••••••••••••••••••• ⅷ
List of tables •••••••••••••••••••••••••••••••••••••• xi
List of abbreviations •••••••••••••••••••••••••••••• xii

General introduction •••••••••••••••••••••••••••••••• 1
Literature Review ••••••••••••••••••••••••••••••••••••••••••••••• 4
Porcine pleuropneumonia •••••••••••••••••••••••••••••• 4
Actinobacillus pleuropneumoniae •••••••••••••••••••••• 4
1. Epidemiology •••••••••••••••••••••••••••••••••••••• 5
2. Apx toxins •••••••••••••••••••••••••••••••••••••••• 9
3. Infection and disease •••••••••••••••••••••••••••• 12
4. Pathogenesis of A. pleuropneumoniae •••••••••••••• 13
5. Prevention and control ••••••••••••••••••••••••••• 18
6. Current vaccine research for A. pleuropneumoniae • 19
Saccharomyces cerevisiae •••••••••••••••••••••••••••• 21
Yeast cell surface-display technology •••••••••••••••••••••••••••••••••••••••••• 22
Antigen-presenting cells •••••••••••••••••••••••••••• 26
T lymphocyte activation ••••••••••••••••••••••••••••• 28
Th1 and Th2 subsets of CD4+ T cells ••••••••••••••••• 28
Mucosal immunity •••••••••••••••••••••••••••••••••••• 32
Oral vaccines ••••••••••••••••••••••••••••••••••••••• 33

Chapter I. Predicting genetic traits and epitope analysis of apxIVA in Actinobacillus pleuropneumoniae
Abstract •••••••••••••••••••••••••••••••••••••••••••• 35
1.1. Introduction ••••••••••••••••••••••••••••••••••• 37
1.2. Materials and Methods •••••••••••••••••••••••••• 39
1.3. Results •••••••••••••••••••••••••••••••••••••••• 42
1.4. Discussion ••••••••••••••••••••••••••••••••••••• 44

Chapter II. An immunosorbent assay based on the recombinant ApxIA, ApxIIA and ApxIIIA toxins of Actinobacillus pleuropneumoniae and its application to field sera
Abstract •••••••••••••••••••••••••••••••••••••••••••• 57
2.1. Introduction ••••••••••••••••••••••••••••••••••• 59
2.2. Materials and Methods •••••••••••••••••••••••••• 61
2.3. Results •••••••••••••••••••••••••••••••••••••••• 66
2.4. Discussion ••••••••••••••••••••••••••••••••••••• 68

Chapter III. Systemic and mucosal immune responses of the surface-displayed neutralizing epitope of ApxIIA exotoxin in Saccharomyces cerevisiae by oral vaccination in mice
Abstract••••••••••••••••••••••••••••••••••••••••••••• 78
3.1. Introduction ••••••••••••••••••••••••••••••••••• 80
3.2. Materials and Methods •••••••••••••••••••••••••• 82
3.3. Results •••••••••••••••••••••••••••••••••••••••• 86
3.4. Discussion ••••••••••••••••••••••••••••••••••••• 89

Chapter IV. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs
Abstract •••••••••••••••••••••••••••••••••••••••••••• 99
4.1. Introduction •••••••••••••••••••••••••••••••••• 101
4.2. Materials and Methods ••••••••••••••••••••••••• 104
4.3. Results ••••••••••••••••••••••••••••••••••••••• 108
4.4. Discussion •••••••••••••••••••••••••••••••••••• 112

General conclusion•••••••••••••••••••••••••••••••••• 122
국문초록 ••••••••••••••••••••••••••••••••••••••••••••• 124
References ••••••••••••••••••••••••••••••••••••••••• 128
-
dc.formatapplication/pdf-
dc.format.extent2461165 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectActinobacillus pleuropneumoniae-
dc.subjectApx toxins-
dc.subjectoral immunization-
dc.subjectSaccharomyces cerevisiae-
dc.subject.ddc636-
dc.titleAnalysis of apxIVA gene of Actinobacillus pleuropneumoniae Korean isolates and immunogenicity of Saccharomyces cerevisiae expressing apxIA and apxIIA genes by oral administration-
dc.title.alternative국내분리 Actinobacillus pleuropneumoniae apxIVA의 유전적 특성과 apxIA 및 apxIIA 유전자 발현 Saccharomyces cerevisiae의 경구투여에 따른 면역원성 분석-
dc.typeThesis-
dc.contributor.AlternativeAuthorShin Min Kyoung-
dc.description.degreeDoctor-
dc.citation.pagesxiii, 144-
dc.contributor.affiliation수의과대학 수의학과-
dc.date.awarded2012-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share