Publications

Detailed Information

Metabolic Engineering for the Production of Isobutanol and 3- Methyl-1-butanol in Saccharomyces cerevisiae : 효모의 대사공학적 방법을 이용한 이소부탄올과 3-메틸-1-부탄올 생산 증대

DC Field Value Language
dc.contributor.advisor한지숙-
dc.contributor.author박성희-
dc.date.accessioned2017-07-17T08:45:07Z-
dc.date.available2017-07-17T08:45:07Z-
dc.date.issued2014-02-
dc.identifier.other000000017489-
dc.identifier.urihttps://hdl.handle.net/10371/127089-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 화학생물공학부, 2014. 2. 한지숙.-
dc.description.abstractHigher alcohols including isobutanol and 3-methyl-1-butanol have received much attention as biofuels because of their higher energy density and lower moisture absorption property compared with ethanol. Saccharomyces cerevisiae naturally generates small amounts of isobutanol and 3-methyl-1-butanol via amino acid biosynthesis pathway and Ehrlich pathway involved in amino acid degradation. 2-ketoisovalerate and 2-ketoisocaproate, the intermediates of Val and Leu biosynthetic pathways are first converted into corresponding aldehydes by decarboxylation, and then converted into isobutanol and 3-methyl-1-butanol, respectively, by alcohol dehydrogenases. In this study, production levels of isobutanol and 3-methyl-1-butanol were increased by deleting ALD6 gene encoding aldehyde dehydrogenase and BAT1 involved in Val and Leu production from 2-ketoisovalerate and 2-ketoisocaproate. In addition, we overexpressed LEU3Δ601, a LEU3 mutant which is a transcriptional activator of genes in the Val and Leu biosynthesis pathway, but lacking the feedback inhibition by Leu, as well as ILV2, ILV5, ILV6, ARO10, and ADH2 genes. To increase 3-methyl-1-butanol production, LEU2 gene in the Leu biosynthetic pathway was also overexpressed. The engineered yeast strain produced 377 mg/L isobutanol and 250 mg/L 3-methyl-1-butanol from 10% glucose, resulting in 20- and 17-fold increases in production titers compared with wild type.-
dc.description.tableofcontentsChapter 1. 서론 1
1.1. 개요 1
1.1.1. 바이오 연료로서 이소부탄올과 3-메틸-1-부탄올 1
1.1.2. 이소부탄올과 3-메틸-1-부탄올의 구조와 특성 3
1.1.3. S. cerevisiae에서의 이소부탄올과 3-메틸-1-부탄올의 생합성 경로 6
1.1.4. 이소부탄올 과 3-메틸-1-부탄올 생산 연구 동향 11
1.2. 실험 목적 16
Chapter 2. 재료 및 방법 17
2.1. 사용 된 균주와 배양 조건 17
2.2. BAT1과 ALD6 결손 균주의 제작 18
2.3. 플라스미드 제작 18
2.4. 발효 조건과 시료 채취 및 검출 방법 23
Chapter 3. 결과 및 토의 24
3.1. 이소부탄올 생산 24
3.1.1. 경쟁경로의 제거 영향 24
3.1.1.1. Aldehyde dehyrogenase 유전자 ALD6의 결손 24
3.1.1.2. ALD6와 BAT1 유전자의 결손 26
3.1.2. 전사조절인자와 생합성 유전자의 과발현 28
3.1.2.1. 전사조절인자(LEU3Δ601)의 과발현 28
3.1.2.2. 발린의 생합성 유전자와 Ehrlich 경로 유전자의 과발현 30
3.1.3. 최종 선별 균주에서 포도당 농도에 따른 이소부탄올 생산 32
3.2. 3-메틸-1-부탄올 생산 34
3.2.1. LEU2 유전자의 발현에 따른 3-메틸-1-부탄올 생산 34
Chapter 4. 결론 및 고찰 36
참고 문헌 39
국문 요약 43
-
dc.formatapplication/pdf-
dc.format.extent1221119 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoko-
dc.publisher서울대학교 대학원-
dc.subjectMetabolic engineering-
dc.subjectisobutanol-
dc.subject3-methyl-1-butanol-
dc.subject.ddc660-
dc.titleMetabolic Engineering for the Production of Isobutanol and 3- Methyl-1-butanol in Saccharomyces cerevisiae-
dc.title.alternative효모의 대사공학적 방법을 이용한 이소부탄올과 3-메틸-1-부탄올 생산 증대-
dc.typeThesis-
dc.contributor.AlternativeAuthorSeong-Hee Park-
dc.description.degreeMaster-
dc.citation.pagesvi, 42-
dc.contributor.affiliation공과대학 화학생물공학부-
dc.date.awarded2014-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share